Linear Biases in AEGIS Keystream

Brice Minaud
ANSSI, France

SAC - August 15, 2014
(1) Blockwise Stream Ciphers
(2) Presentation of AEGIS
(3) Linear Biases in AEGIS

Blockwise Stream Ciphers

Authenticated Encryption Schemes

This requires F_{i}^{-1} for decryption.

Authenticated Encryption Schemes

This is malleable.

Authenticated Encryption Schemes

P_{i} is inserted into the state after C_{i} is output.

Blockwise Stream Cipher

A single round behaves like a stream cipher.
K_{i+1} depends on P_{i}, P_{i-1}, \ldots but not P_{i+1}.

Blockwise Stream Ciphers in CAESAR

Duplex constructions behave in this way.
So do many CAESAR candidates.
AEGIS, Artemia, Ascon, CBEAM, ICEPOLE, Keyak, Ketje, MORUS, PAES, PANDA, π-Cipher, 2/3 PRIMATEs, STRIBOB, Tiaoxin...

Keystream Biases

Keystream Biases

Assume we know, say, P_{i-1}, P_{i}, P_{i+1}, (e.g. headers).
We are interested in P_{i+2}.

Keystream Biases

Keystream Biases

Keystream Biases

Assume knowing P_{i-1}, P_{i}, P_{i+1}, there exists a bias on :

$$
\alpha_{i} \cdot K_{i} \oplus \alpha_{i+1} \cdot K_{i+1} \oplus \alpha_{i+2} \cdot K_{i+2}
$$

Then $\alpha_{i} \cdot C_{i} \oplus \alpha_{i+1} \cdot C_{i+1} \oplus \alpha_{i+2} \cdot C_{i+2}$ gives us information on $\alpha_{i+2} \cdot P_{i+2}$.

Keystream Biases

Thus, if P_{i-1}, \ldots, P_{i+2} is encrypted enough times for the bias on $\alpha_{i} \cdot K_{i} \oplus \alpha_{i+1} \cdot K_{i+1} \oplus \alpha_{i+2} \cdot K_{i+2}$ to be significant, we recover information on P_{i+2}.

- This type of attack is independent of the key or nonce.
- It is not considered in most security analyses.

Keystream Biases

In summary, knowing P_{i-1}, P_{i}, P_{i+1}, we want to find a bias on :

$$
\alpha_{i} \cdot K_{i} \oplus \alpha_{i+1} \cdot K_{i+1} \oplus \alpha_{i+2} \cdot K_{i+2}
$$

We call this a "keystream" bias.

Our Results on AEGIS

Cipher	(Single) Keystream Bias	Data
AEGIS-128	2^{-77}	$2^{154}\left(\right.$ est. $\left.2^{140}\right)$
AEGIS-256	2^{-89}	2^{178}

- The data requirements are far below a generic attack. However they are also far above any realistic threat. Above security parameters for AEGIS-128.
- The biases involve only 3 consecutive rounds, while the size of the inner state is 5 (resp. 6) times the size of the output per round.

Presentation of AEGIS

AEGIS

AEGIS : authenticated cipher introduced at SAC 2013 by Hongjun Wu and Bart Preneel. CAESAR candidate.

- AES-NI pipeline \Rightarrow outstanding speed in software.
- Simple structure.
- Already inspired other designs : Tiaoxin, PAES.

AEGIS

Three variants : AEGIS-128, AEGIS-128L, AEGIS-256.

- AEGIS-128 : 128-bit blocks, 128-bit nonce, 128-bit tag, 128-bit key.
- AEGIS-256 : 128-bit blocks, 128-bit nonce, 128-bit tag, 256-bit key.

Process of AEGIS

(1) Initialization.
(2) Processing of associated data.
(3) Encryption.
4. Finalization and tag generation.

Round function of AEGIS-128

Inner state : 5×128 bits in registers $S_{i, 0}, \ldots, S_{i, 4}$.
R : one round of AES, no key addition.
P_{i} : plaintext block number i.

Round function of AEGIS-128

Output:

$$
C_{i}=S_{i, 1} \oplus\left(S_{i, 2} \& S_{i, 3}\right) \oplus S_{i, 4} \oplus P_{i}
$$

where \& denotes bitwise AND.

Round function of AEGIS-256

Output :

$$
c_{i}=S_{i, 1} \oplus\left(S_{i, 2} \& S_{i, 3}\right) \oplus S_{i, 4} \oplus S_{i, 5} \oplus P_{i}
$$

Linear Biases in AEGIS

Output at round i

$$
\begin{gathered}
K_{i}=S_{i, 1} \oplus\left(S_{i, 2} \& S_{i, 3}\right) \oplus S_{i, 4} \\
\alpha \cdot K_{i}=\alpha \cdot S_{i, 1} \oplus \alpha \cdot\left(S_{i, 2} \& S_{i, 3}\right) \oplus \alpha \cdot S_{i, 4}
\end{gathered}
$$

Output at round i

$$
\begin{gathered}
K_{i}=S_{i, 1} \oplus\left(S_{i, 2} \& S_{i, 3}\right) \oplus S_{i, 4} \\
\alpha \cdot K_{i}=\alpha \cdot S_{i, 1} \oplus \alpha \cdot\left(S_{i, 2} \& S_{i, 3}\right) \oplus \alpha \cdot S_{i, 4}
\end{gathered}
$$

Lemma

If X, Y are n-bit uniformly random variables, the events :

$$
\begin{aligned}
& \alpha \cdot(X \& Y)=0 \\
& \alpha \cdot(X \& Y)=\alpha \cdot X \\
& \alpha \cdot(X \& Y)=\alpha \cdot Y \\
& \alpha \cdot(X \& Y)=\alpha \cdot(X \oplus Y) \oplus 1
\end{aligned}
$$

all have probability $1 / 2+2^{-\mathrm{hw}(\alpha)-1}$.

Linear approximation of \&

Hence, with the same probability :

$$
\begin{array}{lll}
\alpha \cdot K_{i}=\alpha \cdot\left(S_{i, 1}\right. & \left.\oplus S_{i, 4}\right) \\
\alpha \cdot K_{i}=\alpha \cdot\left(S_{i, 1} \oplus S_{i, 2}\right. & \left.\oplus S_{i, 4}\right) \\
\alpha \cdot K_{i}=\alpha \cdot\left(S_{i, 1}\right. & \left.\oplus S_{i, 3} \oplus S_{i, 4}\right) \\
\alpha \cdot K_{i}=\alpha \cdot\left(S_{i, 1} \oplus S_{i, 2} \oplus S_{i, 3} \oplus S_{i, 4}\right) \oplus 1
\end{array}
$$

We write :

$$
K_{i} \approx S_{i, 1} \oplus\left[S_{i, 2}\right] \oplus\left[S_{i, 3}\right] \oplus S_{i, 4}
$$

This is our output at round i.

Output at round $i+1$

Output at round $i+1$

Output at round $i+2$

$S_{i+2,2} \oplus S_{i, 2}=\mathrm{R}\left(S_{i+1,1}\right) \oplus \mathrm{R}\left(S_{i+1,1} \oplus \mathrm{R}\left(S_{i, 0}\right)\right)$

Output at round $i+2$

If we approximate (with a probability cost) :

$$
\beta \cdot \boldsymbol{R}(X)=\alpha \cdot X
$$

Then :

$$
\begin{aligned}
& \beta \cdot\left(\mathrm{R}\left(S_{i+1,1}\right) \oplus \mathrm{R}\left(S_{i+1,1} \oplus \mathrm{R}\left(S_{i, 0}\right)\right)\right) \\
= & \alpha \cdot S_{i+1,1} \oplus \alpha \cdot S_{i+1,1} \oplus \alpha \cdot \mathrm{R}\left(S_{i, 0}\right) \\
= & \alpha \cdot \mathrm{R}\left(S_{i, 0}\right)
\end{aligned}
$$

Hence we approximate :

$$
\begin{aligned}
S_{i+2,2} \oplus S_{i, 2} & =\mathrm{R}\left(S_{i+1,1}\right) \oplus \mathrm{R}\left(S_{i+1,1} \oplus \mathrm{R}\left(S_{i, 0}\right)\right) \\
& \approx \mathrm{D}\left(\mathrm{R}\left(S_{i, 0}\right)\right)
\end{aligned}
$$

where $\mathrm{D}(X)=\mathrm{R}(U) \oplus \mathrm{R}(U \oplus X)$, U uniformly random.

$$
K_{i+2} \oplus K_{i} \approx \mathrm{D}\left(\mathrm{R}\left(S_{i, 4}\right)\right) \oplus\left[\mathrm{D}\left(\mathrm{R}\left(S_{i, 0}\right)\right)\right] \oplus\left[\mathrm{D}\left(\mathrm{R}\left(S_{i, 1}\right)\right)\right] \oplus \mathrm{D}\left(\mathrm{R}\left(S_{i, 2}\right)\right)
$$

Final bias

$$
\begin{array}{rlrrrr}
K_{i} & \approx & S_{1} \oplus & {\left[S_{2}\right] \oplus} & {\left[S_{3}\right] \oplus} & S_{4} \\
K_{i+1} \oplus K_{i} & \approx & \mathrm{R}\left(S_{0}\right) \oplus & {\left[\mathrm{R}\left(S_{1}\right)\right] \oplus} & {\left[\mathrm{R}\left(S_{2}\right)\right] \oplus} & \mathrm{R}\left(S_{3}\right) \\
K_{i+2} \oplus K_{i} & \approx\left[\mathrm{D}\left(\mathrm{R}\left(S_{0}\right)\right)\right] \oplus\left[\mathrm{D}\left(\mathrm{R}\left(S_{1}\right)\right)\right] \oplus & \mathrm{D}\left(\mathrm{R}\left(S_{2}\right)\right) \oplus & \mathrm{D}\left(\mathrm{R}\left(S_{4}\right)\right)
\end{array}
$$

Final bias

$$
\begin{array}{rlrrrr}
K_{i} & \approx & S_{1} \oplus & {\left[S_{2}\right] \oplus} & {\left[S_{3}\right] \oplus} & S_{4} \\
K_{i+1} \oplus K_{i} & \approx & \mathrm{R}\left(S_{0}\right) \oplus & {\left[\mathrm{R}\left(S_{1}\right)\right] \oplus} & {\left[\mathrm{R}\left(S_{2}\right)\right] \oplus} & \mathrm{R}\left(S_{3}\right) \\
K_{i+2} \oplus K_{i} & \approx\left[\mathrm{D}\left(\mathrm{R}\left(S_{0}\right)\right)\right] \oplus\left[\mathrm{D}\left(\mathrm{R}\left(S_{1}\right)\right)\right] \oplus & \mathrm{D}\left(\mathrm{R}\left(S_{2}\right)\right) \oplus & \mathrm{D}\left(\mathrm{R}\left(S_{4}\right)\right)
\end{array}
$$

Choose masks α, β, γ such that with good probability :

$$
\alpha \cdot X=\beta \cdot \mathbf{R}(X) \quad \text { and } \quad \beta \cdot Y=\gamma \cdot \mathbf{D}(Y)
$$

We consider :

$$
\alpha \cdot K_{i} \oplus \beta \cdot\left(K_{i+1} \oplus K_{i}\right) \oplus \gamma \cdot\left(K_{i+2} \oplus K_{i}\right)
$$

Any two terms in the same column will cancel out.

Final bias

Final bias

$K_{i} \approx$
$S_{1} \oplus \quad\left[S_{2}\right] \oplus \quad\left[S_{3}\right] \oplus$
S_{4}
$K_{i+2} \oplus K_{i} \approx\left[\mathrm{D}\left(\mathrm{R}\left(S_{0}\right)\right)\right] \oplus\left[\mathrm{D}\left(\mathrm{R}\left(S_{1}\right)\right)\right] \oplus \mathrm{D}\left(\mathrm{R}\left(S_{2}\right)\right) \oplus$
$\mathrm{D}\left(\mathrm{R}\left(S_{4}\right)\right)$

Final bias

$K_{i} \approx$
$S_{1} \oplus \quad S_{2} \oplus$
S_{4}
$K_{i+2} \oplus K_{i} \approx$
$\mathrm{D}\left(\mathrm{R}\left(S_{1}\right)\right) \oplus \mathrm{D}\left(\mathrm{R}\left(S_{2}\right)\right) \oplus$
$\mathrm{D}\left(\mathrm{R}\left(S_{4}\right)\right)$

Final bias

$K_{i} \approx$
$S_{1} \oplus \quad S_{2} \oplus$
S_{4}
$K_{i+2} \oplus K_{i} \approx$
$\mathrm{D}\left(\mathrm{R}\left(S_{1}\right)\right) \oplus \mathrm{D}\left(\mathrm{R}\left(S_{2}\right)\right) \oplus$
$\mathrm{D}\left(\mathrm{R}\left(S_{4}\right)\right)$
Thus $\alpha \cdot K_{i} \oplus \gamma \cdot\left(K_{i} \oplus K_{i+2}\right)$ is biased.

Final bias

$K_{i} \approx$
$S_{1} \oplus \quad S_{2} \oplus$
$K_{i+2} \oplus K_{i} \approx \quad \mathrm{D}\left(\mathrm{R}\left(S_{1}\right)\right) \oplus \mathrm{D}\left(\mathrm{R}\left(S_{2}\right)\right) \oplus \quad \mathrm{D}\left(\mathrm{R}\left(S_{4}\right)\right)$
Thus $\alpha \cdot K_{i} \oplus \gamma \cdot\left(K_{i} \oplus K_{i+2}\right)$ is biased.
Probability cost : essentially $3 \times$ the cost of :

$$
\alpha \cdot X=\beta \cdot \mathrm{R}(X) \quad \text { and } \quad \beta \cdot Y=\gamma \cdot \mathrm{D}(Y)
$$

Plus the cost of linearizing \& in the K_{i} 's.
Total : $3 \cdot(12+6)+5+2 \cdot 9=77 \Rightarrow$ bias 2^{-77}.
AEGIS-256 : bias 2^{-89}.

Conclusion

- Attack model rarely taken into account in security analyses.
- Theoretical cryptanalysis of AEGIS-256 (high data requirements).
- Further work to be carried out on other authenticated ciphers with similar stream cipher-like behavior.

Questions

Thank you for your attention.

