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Stationary set reflection is a simple combinatorial principle that comes as a
consequence of certain strong forcing axioms, such as Martin’s Maximum (MM)
or PFA+ [8]. In a slightly weaker form (which will be considered in Corollary 2),
it also holds above a strongly a compact cardinal.

In recent years, several studies have tackled the problem of whether sta-
tionary set reflection implies another common principle, the singular cardinal
hypothesis, beginning with B. Veličković [8], then M. Foreman and S. Todorčević
[3], all of whom considered somewhat stronger versions of stationary set reflec-
tion, until the problem was closed, positively, by S. Shelah [7] in 2004. In this
article, we propose a simpler variant of Shelah’s proof.

The proof presented here is self-contained, aside from one reference to She-
lah’s PCF theory. As such, we briefly recall some of the basic definitions. Let
X be a set and λ a cardinal. The following definitions are proper extensions
of the usual definitions of club and stationary sets to structures of the form
[X]λ = {x ∈ X : Card(x) = λ}. For X ⊆ ORD, otp(X) denotes the order type
of X.

Definition 1. C ⊆ [X]λ is said to be closed iff, for any continuous increasing
sequence 〈cξ : ξ < α〉 of elements of C of length α ≤ λ,

⋃
ξ<α cξ ∈ C.

C is said to be unbounded iff, for any x ∈ [X]λ, there exists c ⊇ x in C.
C is said to be club iff it is both closed and unbounded.

Definition 2. S ⊆ [X]λ is said to be stationary iff for any club set C ⊆ [X]λ,
C ∩ S 6= ∅.

Definition 3. Stationary set reflection states that, for any set X and stationary
subset S of [X]ω, we can reflect S in some A ∈ [X]ℵ1 ; that is, S ∩ [A]ω is
stationary in [A]ω.

Definition 4. The singular cardinal hypothesis SCH is the following assertion:
for any singular cardinal κ, if 2cof(κ) < κ, then κcof(κ) = κ+.

The layout of this article is as such. First, we shall need Lemma 2 to set off
the induction in the main proof (Lemma 1 is used to prove Lemma 2). Then
we state and prove the main result in Theorem 1. The fact that stationary set
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reflection implies the SCH comes in Corollary 1 as a consequence of the main
theorem. Finally, in Corollary 2, we show that the previous results still hold
without any constraint on the size of the reflecting sets.

Lemma 1. If stationary subsets of [ω2]ω reflect, then they reflect in some α ∈
ω2.

Proof. Let S be a stationary subset of [ω2]ω, and suppose that S does not reflect
in any α ∈ ω2. Then for each α ∈ ω2 there is a club set C(fα) in [α]ω containing
the closure points in [α]ω of some function fα : [α]<ω → α, and such that
S ∩ [α]ω ∩ C(fα) = ∅. Letting fα(e) = min(e) for e ∈ [ω2]ω − [α]ω, we can look
at fα as a function from [ω2]<ω into ω2.

By making simple definitions by cases, we can build two functions f and g
from [ω2]<ω into ω2 such that for all X ⊆ ω2:

1. if X is closed by f , then for all α ∈ X, X is closed by fα;

2. if X is closed by g and Card(X) = ℵ1, then either X ∈ ω2 or otp(X) = ω1.

The construction of g, for instance, may go as follows.

1. For e ∈ [ω2]n with n > 2, g(e) = n − 3. Thus, if X ⊆ ω2 is closed by g,
then ω ⊆ X.

2. For n ∈ ω and ξ ∈ ω1 − ω, g({n, ξ}) = hξ(n), where hξ : ω → ξ is a fixed
bijection. Thus, if X ⊆ ω2 is closed by g, then X ∩ ω1 ∈ ω1 + 1.

3. For ξ ∈ ω1 and α ∈ ω2−ω1, g({ξ, α}) = iα(ξ), where iα : ω1 → α is a fixed
bijection. Thus, if X ∈ [ω2]ℵ1 is closed by g and ω1 ⊆ X, then X ∈ ω2.

4. For α < β in ω2−ω1, g({α, β}) = i−1
β (α). Thus, if X ∈ [ω2]ℵ1 is closed by

g and otp(X) > ω1, then X ∩ ω1 is unbounded, hence ω1 ⊆ X by point 2,
hence X ∈ ω2 by point 3.

5. In all other cases g(e) equals 0.

Let C(f) and C(g) be the respective club sets of closure points of f and g in
[ω2]ω.

Finally, let A ∈ [ω2]ℵ1 such that S ∩ C(f) ∩ C(g) reflects in A. A is closed
by g, but A 6∈ ω2 by hypothesis, so otp(A) = ω1. Let then h be the unique
isomorphism from ω1 into A; {h(ξ) : ξ < ω1} is club in A, so there exists α ∈ A
such that A∩α ∈ S. Since A is closed by f and α ∈ A, by choice of f we know
that A is closed by fα, hence, due to the definition of fα, so is A ∩ α. On the
other hand, since S∩ [α]ω∩C(fα) = ∅ and A∩α ∈ S∩ [α]ω, A∩α cannot closed
by fα; so there is a contradiction.

Lemma 2. If stationary subsets of [ω2]ω reflect, then ℵℵ0
2 = ℵ2.
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Proof. For each α ∈ ω2, let us pick 〈Xα
ξ : ξ < ω1〉 a continuous increasing

sequence of countable subsets of α cofinal in α. Let C =
⋃

α<ω2
{Xα

ξ : ξ < ω1}.
Notice that [ω2]ω−C cannot reflect in any α ∈ ω2 by choice of C, so by Lemma 1
it does not reflect at all; hence it is not stationary, hence C contains a club set.
Since club sets in [ω2]ω are of size ℵℵ0

2 (see [1], Theorem 3.2) and Card(C) = ℵ2,
we get ℵℵ0

2 = ℵ2.

Theorem 1 (Shelah [7]). If stationary set reflection holds, then for any reg-
ular cardinal λ ≥ ℵ2, λℵ0 = λ.

Proof. Assume that the theorem does not hold, and let λ be the least coun-
terexample. Basic cardinal arithmetic (along with Lemma 2) shows that λ is
the successor of some κ of cofinality ℵ0, and κℵ0 > λ. Furthermore, Lemma 2
implies that 2ℵ0 < κ. Our goal is to show that stationary set reflection does not
hold in [λ]ω.

To that end we need to borrow the following notion from PCF theory [6].
We borrow the terminology from [2].

Definition 5. Given a sequence 〈µα : α < β〉 of regular ordinals and an ideal
I on β, a scale on 〈µα : α < β〉 is a I-strictly increasing and cofinal sequence
〈fξ : ξ < γ〉 in

∏
α<β µα.

The scale 〈fξ : ξ < γ〉 is said to be better iff, for every cardinal α < γ
with cof(α) > β, there exists a club set C ⊆ α, and, letting 〈ci : i < δ〉 be an
enumeration of C in increasing order, we can define for each i < δ a set Zi ∈ I
such that for all i < j in δ, fi � (β − (Zi ∪ Zj)) < fj � (β − (Zi ∪ Zj)).

PCF theory shows that we can choose an increasing sequence 〈κn : n < ω〉
of regular cardinals in κ with limit κ so as to have a better scale 〈fξ : ξ < λ〉
on 〈κn : n < ω〉, with respect to the ideal FIN of finite subsets of ω (see [6],
II, Claim 1.5A). In fact, in the scope of this proof, we shall only need the better
scale property to hold for α of cofinality ℵ1.

For X ⊆ ORD, let δ(X) = sup(X∩λ), and χ(X)(n) = sup(X∩κn). Most of
the proof will hinge on the comparison, for X ∈ [λ]ω, between χ(X) and fδ(X).
Let us then define:

EX = {n < ω : χ(X)(n) ≤ fδ(X)(n)}

Let {Aξ : ξ < ω1} be a set of almost-disjoint subsets of ω; that is, for all
ξ 6= ζ in ω1, Aξ ∩Aζ is finite; and let φ be a partial function:

φ : P(ω) →ω1

E 7→min{ξ < ω1 : Card(Aξ ∩ E) = ℵ0}

Finally, let us consider the set:

S = {X ∈ [λ]ω : φ(EX) is defined and φ(EX) ≥ otp(X),
X is closed by x 7→ fx(n), for all n}

We are going to show that S is stationary, yet does not reflect in any A ∈ [λ]ℵ1 .
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Claim 1. S does not reflect in any A ∈ [λ]ℵ1 .

Proof. Let us assume to the contrary that S reflects in some A ∈ [λ]ℵ1 . Let
〈Xi : i < ω1〉 be a continuous cofinal sequence of increasing countable subsets
of A, and let R = {i < ω1 : Xi ∈ S}. Since {Xi : i < ω1} is club in [A]ω, saying
that S reflects in A is the same as saying that {Xi : i ∈ R} is stationary in [A]ω,
or that R is stationary in ω1. First, we show that cof(sup(A)) = ℵ1.

Let us assume towards contradiction that cof(sup(A)) < ℵ1. Then there
exists α ∈ ω1 such that sup(Xα) = sup(A). Now for any β ≥ α with β ∈ R,
fδ(Xβ) = fδ(Xα), while χ(Xβ) ≥ χ(Xα); hence EXα

⊆ EXβ
, and in particular

φ(EXβ
) ≤ φ(EXα

). However, since Xβ ∈ S, we also have φ(EXβ
) ≥ otp(Xβ),

and otp(Xβ) grows towards ω1, so there is a contradiction.
Since cof(sup(A)) = ℵ1, we are free to assume that δ(Xi) = sup(Xi) is

stricly increasing, trimming 〈Xi : i < ω1〉 if necessary. Let δi = δ(Xi), and let
βi = min(A− δi). Trimming 〈Xi : i < ω1〉 two more times, we can ensure that:

∀i < j ∈ R, (βi < δj) ∧ (βi ∈ Xj) (1)

Now let us apply the better scale property of 〈fξ : ξ < γ〉 to δ(A): there
exists a club set C ⊆ δ(A), with 〈ci : i < ω1〉 an increasing enumeration of C,
along with a sequence 〈ni : i < ω1〉 of elements of ω such that for i < j ∈ R and
n ≥ ni, nj , we have fδi

(n) < fδj
(n). As i 7→ ni infers a division of C ∩R into ℵ0

subsets, one of them is stationary: let us rename it R. Thus, there exists k ∈ ω
such that for all i < j in R, fδi � [k, ω) < fδj � [k, ω).

Because of (1), we know that for i in R and j = min(R− (i + 1)), fδi ≤FIN

fβi
<FIN fδj

, so there exists mi ∈ ω such that for all n ≥ mi, fδi
(n) ≤ fβi

(n) <
fδj

(n). Using the same reasoning as before, we can thin R so as to have mi = m
a constant, and increase k so that k ≥ m. As a result:

∀i < j ∈ R, fδi
� [k, ω) ≤ fβi

� [k, ω) < fδj
� [k, ω) (2)

Now let f ∈
∏

n<ω κn with f(n) =
⋃

i∈R fβi
(n) if n ≥ k and 0 otherwise.

Because of (1) and the closure properties of S, for i < j ∈ R and n ∈ ω we have
fβi

(n) ∈ Xj , so f(n) ≤
⋃

i∈R(Xi ∩ κn) = χA(n). Let B = {n ∈ [k, ω) : f(n) =
χA(n)} and B = {n ∈ [k, ω) : f(n) < χA(n)} = [k, ω) − B. We are going to
prove that, for all i in some stationary subset of R, fδi

� B ≥ χ(Xi) � B and
fδi

� B < χ(Xi) � B.
Let n ∈ B. Since f(n) = χ(A)(n) and cof(f(n)) = ℵ1, we can define

a club set Cn in χ(A)(n) such that for all i < j in Cn, χ(Xi)(n) < fδj (n),
and also fδi

(n) ∈ Xj . As a result, for l a limit point of Cn, we get fδl
(n) ≥⋃

i∈Cn∩l fδi
(n) =

⋃
i∈Cn∩l χ(Xi)(n) = χ(Xl)(n). Let Dn be the club set of limit

points of Cn: as R∩ (
⋂

n<ω Dn) is stationary, we rename it R; and for all i ∈ R
we have fδi

� B ≥ χ(Xi) � B.
Let n ∈ B. Since f(n) < χ(A)(n), there exists i(n) ∈ ω1 such that f(n) <

χ(Xi(n)(n)). As supn∈B(i(n)) < ω1, R− supn∈B(i(n)) is stationary and we can
rename it (again) R. Thus, for all i ∈ R we have fδi � B < χ(Xi) � B.
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We have shown that for i ∈ R, {n ∈ [k, ω) : χ(Xi)(n) ≤ fδi(n)} = B, so
EXi =FIN B. In particular, φ(EXi) remains constant on R. That is contradic-
tory, since φ(EXi

) ≥ otp(Xi) and otp(Xi) tends to ω1.

Claim 2. S is stationary.

Proof. Let C be a club set in [λ]ω. By Kueker’s theorem, C contains the set of
closure points of some function fC : [λ]<ω → λ. We are going to look for X ∈ S
such that f ′′C [X] ⊆ X.

In order to build a set X ∈ S, the main issue is to control both EX and
otp(X), so that φ(EX) ≥ otp(X). For that purpose, we consider a closed two-
player game Gε for each choice of ε ∈ ω1. Player 1 sets up constraints that will,
later on, allow us to control EX and ensure that φ(EX) ≥ ε; meanwhile, player
2 tries to meet these constraints, build the set X, bound χ(X), as well as prove
that otp(X) ≤ ε.

In the first part of the proof, we show that player 2 has a winning strategy
for some ε ∈ ω1. In the second part, we show how player 1 should play against
that strategy in order to obtain X as required. We begin by describing Gε.

Let θ be a sufficiently large regular cardinal, say θ = (2λ)+, and let H(θ) =
{X : tc(X) < θ}, where tc(X) is the transitive closure of the set X. Let / be a
well-order on H(θ). For X ⊆ ORD, we define sk(X) as the Skolem hull of X
in 〈H(θ),∈, /〉, skλ(X) = sk(X) ∩ λ, and cl(X) = skλ(X ∪ {〈fξ : ξ < λ〉, fC}).
Moreover, let 〈tn : n < ω〉 be an enumeration of each Skolem term in 〈H(θ),∈, /〉
applied to every possible combination of functions x 7→ fx(n) for n < ω, fC ,
with variables vi, i ∈ N. The idea is that, if we interpret the vi’s as the elements
of some countable set X, the ti’s enumerate all possible elements of cl(X).

The game Gε proceeds as follows.

1. (a) At step 2n: player 1 picks an ordinal ξ2n ∈ κn. Player 2 then picks
α2n and γ2n in κn such that ξ2n ≤ α2n ≤ γ2n.

(b) At step 2n + 1: player 1 picks an ordinal ξ2n+1 ∈ λ. Player 2 then
picks α2n+1 in λ such that ξ2n+1 ≤ α2n+1.

2. Player 2 chooses an ordinal ζn in ε.

Once the game is over, let X = cl({αn : n ∈ ω}). Interpreting the variables vi

in tn as αi, one can compute the value of each tn. Let τn be the value of tn
whenever it is an element of λ. The τn’s thus constitute an enumeration of X.

Player 2 is said to win the game iff:

1. For all n ∈ ω, X ∩ κn ⊆ γ2n.

2. The mapping g : X → ε with g(τn) = ζn is well-defined and strictly
increasing. As such g witnesses otp(X) ≤ ε.

Fact 1. There exists ε ∈ ω1 such that player 2 has a winning strategy for Gε.
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Proof. Let ε ∈ ω1. The first point is that the game Gε is closed, because if
player 2 loses, that loss is appearent in a finite number of moves. Indeed, if at
the end of the game, for some n ∈ ω, X ∩ κn 6⊆ γn, then some element τn of X
witnesses it; but the value τn can be computed as soon as all αi (recursively)
appearing in tn have been determined, and there is only of finite number of
them. The same goes for the second winning condition.

Since Gε is closed, the Gale-Stewart theorem [4] guarantees that one of the
two players has a winning strategy. Let us assume towards contradiction that
player 1 has a winning strategy σε for all ε ∈ ω1. The crux of the matter here is
that player 1’s best interest is always to play ξn as high possible. In particular,
if we modify σε to increase player 1’s answer ξn to some sequence of moves by
player 2, we still get a winning strategy.

Assuming that player 1 follows the strategy σε, for any given sequence s of
moves by player 2 up to step n of the game, let σε(s) be the answer ξn dictated
to player 1 by his strategy σε (letting σε(s) = 0 if s is not a possible sequence
of moves for player 2 when player 1 applies σε). We can define a new strategy σ
for player 1 by σ(s) = supε∈ω1

σε(s). Due to the remark above, σ is a winning
strategy for player 1 for all games Gε.

From here on we assume that player 2 always plays αn = ξn, and player 1
answers with σ. Thus, up to step 2n, this subgame is determined by player 2’s
choices of γ2i ∈ κi, for i ≤ n, and ζn ∈ ε < ω1. As a result, there are only κn

possible sequence of moves up to step 2n + 1 (we are free to assume ω1 < κ0);
so the set of all possible plays ξ2n+2 by player 1 is bounded in κn+1. Thus,
improving σ if necessary, we can assume that player 1’s moves are independent
of all previous moves. Let 〈ξn : n < ω〉 be the sequence of player 1’s moves.

Let us now turn back to the regular games Gε, and play as player 2 against
strategy σ using the following strategy of our own. We are going to play αn = ξn

every turn, so we know from the start the set X = cl({αn : n < ω}) = cl({ξn :
n < ω}). Let ε = otp(X). We play in the game Gε.

Since we know X and have a mapping g : X → ε, we can compute in advance
the value of each g(τn). Each turn, we play αn = ξn, γn = sup(X ∩ κn) when n
is even, and ζn = g(τn). This is clearly a winning strategy for player 2, so σ is
not a winning strategy, which is a contradiction.

Let then ε ∈ ω1 be such that player 2 has a winning strategy τ for Gε. If
we play against τ , we know that we will get a set X such that otp(X) ≤ ε,
X ∈ C, and X is closed by all relevant functions; thus the last remaining point
is to ensure φ(EX) ≥ ε. Letting A = Aε, we are going to achieve this by having
EX = A.

First, we need M ≺ H(θ) such that χ(M) ≤FIN fδM
, and M contains all

relevant objects: 〈fξ : ξ < λ〉, 〈κi : i < ω〉, τ , fC . To obtain such an M we
build an increasing continuous sequence 〈Mζ : ζ < ω1〉 of elementary submodels
of H(θ) with 〈Mα : α < ζ〉 ∈ Mζ for all ζ, and put the aforementioned relevant
objects in M0. Since Mζ ∈ Mζ+1 and Mζ+1 ≺ H(θ), there exists a continuous
increasing sequence 〈α(ζ) : ζ < ω1〉 with αζ ∈ Mζ such that for each ζ < ω1,
χ(Mζ) <FIN fα(ζ+1). Using the better scale property of 〈fξ : ξ < λ〉 applied
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to the point supζ<ω1
(α(ζ)), we can extract a subsequence 〈αη(i) : i < ω〉 of

〈αζ : ζ < ω1〉 such that, letting η = supi<ω(η(i)), there exists k < ω such
that fαη(i) � [k, ω) < fαη(i+1) � [k, ω) < fαη

� [k, ω). Then M = Mη satisfies
the condition, since χ(M) =

⋃
i<ω χ(Mη(i)) =FIN

⋃
i<ω fαη(i) ≤FIN fαη

≤FIN

fδM
. Let 〈mi : i < ω〉 be an enumeration of M ∩ λ.

Fact 2. δ(skλ(M∪κ)) = δ(M). Similarly, sup(skλ(M∪κn)∩κn+1) = sup(M∩
κn+1) for all n < ω.

Proof. Let α ∈ skλ(M ∪ κ): there exists a Skolem term z1 with parameters
x1, . . . , xm in M and y1, . . . , yn in κ such that α = z1(β1, . . . , βm, γ1, . . . , γn).
Now if we consider the Skolem function z2(β1, . . . , βm) corresponding to the
formula: sup(x < λ : ∃x1, . . . , xn ∈ κ, x = z1(β1, . . . , βm, x1, . . . , xn)), it is
clear that z2(β1, . . . , βm) ≥ z1(β1, . . . , βm, γ1, . . . , γn) in skλ(M ∪ κ); but, since
M ≺ skλ(M ∪ κ) and κ ∈ M , zM

2 = z
skλ(M∪κ)
2 , so α ≤ z2(β1, . . . , βm) ∈ M ∩ λ

(necessarily z2(β1, . . . , βm) < λ for cofinality reasons, as the parameters are all
in κ).

Hence δ(skλ(M∪κ)) ≤ δ(M). The converse also holds since M ⊂ skλ(M∪κ),
so we have an equality. We can apply the same reasoning to obtain the second
equality.

Now we play the game Gε as player 1 against player 2’s winning strategy τ
as follows.

1. At step 2n:

(a) if n ∈ A, we play ξ2n = 0;

(b) if n 6∈ A, we play ξ2n = fδM
(n).

2. At step 2n + 1, we play ξ2n+1 = mn.

This game yields a set X = cl({αn : n < ω}).

Fact 3. EX = A.

Proof. Because of player 1’s move ξ2n+1 = mn on odd n, M ∩ λ ⊆ X, so
δM ≤ δX . Conversely, X ⊂ skλ(M ∪ κ), so Fact 2 yields δM = δX .

Let us look at step 2n of the game we have described. First, if n ∈ A, we
played ξ2n = fδM

(n), so player 2 was forced to respond with α2n ≥ fδM
(n).

Hence χ(X)(n) ≥ fδX
(n), so n ∈ EX , so A ⊆ EX .

Second, if n 6∈ A, we played ξ2n = 0. Since all moves up to that point in the
game belong to M ∪ κn−1, and τ ∈ M , we have α2n ∈ skλ(M ∪ κn−1) ∩ κn. In
particular α2n ≤ sup(M∩κn) thanks to Fact 2; hence α2n ≤ fδX

(n), so n 6∈ EX ,
so A ⊇ EX .

Corollary 1. Stationary set reflection implies the SCH.
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Proof. Assume to the contrary that SCH does not hold, and let us pick κ the
first cardinal that contradicts SCH. Silver’s theorem [5] implies that cof(κ) = ℵ0;
so we have κℵ0 > κ+. Theorem 1, on the other hand, states that (κ+)ℵ0 = κ+,
so there is a contradiction.

Corollary 2. If for all regular cardinal λ ≥ ℵ2 and stationary S ⊆ [λ]ω, S
reflects in some A ∈ [λ]<λ, then for any regular λ ≥ ℵ2, λℵ0 = λ. In particular,
SCH still holds.

Proof. That is, Theorem 1 still holds if we allow reflection in any A ∈ [λ]<λ.
This stems from the fact that, in the proof of Theorem 1, the set S does not
actually reflect in any A ∈ [λ]<λ.

Assume to the contrary that S reflects in some A ⊆ λ, Card(A) < λ. First,
suppose that Card(A) < κ. Then we can collapse Card(A) on ω1 with the cor-
responding classic forcing. Since this forcing preserves countable sequences and
stationary sets, S is unaffected and still reflects in A, while Card(A) becomes
ω1, which contradicts Theorem 1. As a side effect, however, since ordinals in λ
that were formerly of cofinality greater than ℵ1 may end up, after the forcing,
with cofinality ℵ1, and we still need to apply the better scale property to them,
we now have to use the better scale property to a greater extent; namely, we
need it to hold on all ordinals of cofinality greater than or equal to ℵ1, and not
just on those of cofinality ℵ1, as was the case in Theorem 1.

Now suppose that Card(A) = κ. Let δ = sup(A) and γ = cof(Card(A));
since κ is singular, we have γ < κ. Recall that in Claim 1, we have shown that
cof(sup(A)) > ℵ0; the reasoning we used does not really depend on Card(A)
and still holds. Thus we can apply the better scale property of 〈fξ : ξ < λ〉 to
δ: this entails that the set {n ∈ ω : cof(fδ(n)) = γ} is cofinite. Let then m ∈ ω
such that n ≥ m implies cof(fδ(n)) = γ.

For each n ≥ m, we are going to build a set Bn ⊆ A ∩ κn of size ≤ γ; we
consider three cases:

1. if χ(A)(n) = fδ(n), then we choose Bn ⊆ A ∩ κn such that sup(Bn) =
sup(A ∩ κn);

2. if χ(A)(n) < fδ(n), then Bn = ∅;

3. if χ(A)(n) > fδ(n), then Bn = {αn} with αn = min{χ(A)(n)− fδ(n)}.

Let Bλ ⊆ A of size γ such that sup(Bλ) = sup(A).
Furthermore, let Y = {n ≥ m : χ(A)(n) < fδ(n)}; since cof(δ) > ℵ0, using

the better scale property on δ, we know that there exists α < δ in A such that
fα(n) > χ(A)(n) for all n ∈ Y (removing a finite number of elements from Y if
necessary). Finally, let B = B0 ∪

⋃
i<ω(Bi+1 − κi)∪ (Bλ − κ)∪ {α}. Increasing

B if necessary, we are free to assume that B is closed by x 7→ fx(n), for all n
(because A itself satisfies that condition).
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The construction of B ensures that the set

D = {X ∈ [A]ω : δ(X) = δ(X ∩B)
∧ ∀n ≥ m,χ(A)(n) = fδ(n) =⇒ χ(X)(n) = χ(X ∩B)(n)
∧ {αn : n ≥ m,χ(A)(n) < fδ(n)} ∪ {α} ⊆ X}

is club in [A]ω. The construction of D, in turn, ensures that for each X ∈ S∩D,
EX =FIN EX∩B (recall that EX = {n < ω : χ(X)(n) ≤ fδ(X)(n)}), so that we
get X ∩B ∈ S by definition of S.

As a result S reflects in B. Indeed, let C be a club set in [B]ω and CA = {X ∈
[A]ω : X ∩B ∈ C}, then there exists X ∈ S ∩D ∩CA, and X ∩B ∈ S ∩C.
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