Primer on Finite Fields – Brice Minaud, MPRI 2.12.1

This is a quick summary/cheat sheet on the basics of finite fields, aimed at crypto students. \(\mathbb{P} \) is the set of prime numbers. Elements of \(\mathbb{Z}_n = \mathbb{Z}/n\mathbb{Z} \) are identified with \(\{0, \ldots, n-1\} \). Statements about equality and unicity are up to isomorphism.

Theorem 1. \(\mathbb{Z}_p \) for \(p \in \mathbb{P} \) is a field.

Proof. It suffices to show that non-zero elements are invertible. By Bézout’s identity, given \(x \in \{1, \ldots, p-1\} \), there exist \(y, z \in \mathbb{Z} \) such that \(xy + pz = \gcd(x, p) = 1 \). Hence \(xy = 1 \mod p \). Concretely, \(y \) can be computed using Euclid’s algorithm.

Theorem 2. Let \(\mathbb{F} \) be a finite field. There exist \(p \in \mathbb{P} \) (called the characteristic of \(\mathbb{F} \)) and \(n \in \mathbb{N} \) such that \(|\mathbb{F}| = p^n \).

Proof. Consider the additive subgroup generated by 1. Since \(\mathbb{F} \) is finite, this subgroup is cyclic, so it is isomorphic to \(\mathbb{Z}_k \) for some \(k \in \mathbb{N}^* \). If \(k \not\in \mathbb{P} \), there exist \(a, b \in \mathbb{Z}_k^* \) such that \(ab = 0 \), which implies they are not invertible, a contradiction. So \(k = p \in \mathbb{P} \) and \(\mathbb{F} \) contains \(\mathbb{Z}_p \) as a subfield. Since any field is a vector space over any subfield, it follows that \(|\mathbb{F}| = p^n \) for some \(n \).

Theorem 3. Let \(\mathbb{F} \) be a finite field of characteristic \(p \). The map \(F : x \mapsto x^p \) is an automorphism of \(\mathbb{F} \) over \(\mathbb{Z}_p \) (i.e. it leaves \(\mathbb{Z}_p \) fixed). It is called the Frobenius map.

Proof. The map \(F \) is clearly a morphism for multiplication. It suffices to show that \((a + b)^p = ap + bp \) for \(a, b \in \mathbb{F} \). This can be done by writing out the expansion of \((a + b)^p \) with the binomial coefficients, and noticing that all those coefficients vanish in \(\mathbb{Z}_p \), except the first and last.

Theorem 4. For all \(p \in \mathbb{P} \) and \(n \in \mathbb{N} \), there exists a unique field \(\mathbb{F} \) with \(|\mathbb{F}| = p^n \).

Proof. Let \(\mathbb{F} \) be the splitting field over \(\mathbb{Z}_p \) of the polynomial \(P(X) = X^{p^n} - X \). Let \(R \) denote the roots of \(P \) in \(\mathbb{F} \). The key point is that \(R \) is the set of fixed points of an automorphism (namely \(F^n \)), hence it is a field. It follows that \(\mathbb{F} = R \). On the other hand, \(P \) has a derivative of \(-1\), so it has distinct roots, and degree \(p^n \), so \(|R| = p^n \). This shows existence. Unicity essentially follows from the unicity of the splitting field.

Notation. The (unique) field of cardinality \(q = p^n \) is usually denoted by \(\mathbb{F}_q \), sometimes also \(\text{GF}(q) \) (for Galois Field). If \(p \in \mathbb{P} \), \(\mathbb{F}_p = \mathbb{Z}_p \).

Reminder. Let us recall two basic properties of polynomials over any field \(\mathbb{F} \).

- **Euclidian Division.** For all polynomials \(A, B \in \mathbb{F}[X] \) with \(B \neq 0 \), there exist unique polynomials \(Q, R \in \mathbb{F}[X] \) such that \(A = PQ + R \) and \(\deg(R) < \deg(Q) \) or \(R = 0 \). In particular, computing in \(\mathbb{F}[X] \) modulo some polynomial \(P \) amounts to considering the remainders in the division by \(P \).

- **Number of roots.** A corollary of Euclidian division is that \(\alpha \in \mathbb{F} \) is a root of \(P \in \mathbb{F}[X] \) iff \((X - \alpha) \) divides \(P \). A corollary of the corollary is that the number of roots of a polynomial is upper-bounded by its degree.
Theorem 5. Let \mathbb{F} be a finite field. The multiplicative group (\mathbb{F}^*, \cdot) is cyclic.

Proof. Let $p \in \mathbb{P}$, $n \in \mathbb{N}$ such that $|\mathbb{F}| = p^n - 1$. Let d be a divisor of $k = p^n - 1$. Elements whose order divides d are roots of $X^d - 1$, so there can be at most d of them. This implies there can be at most one cyclic subgroup of order d, hence at most $\phi(d)$ elements of order exactly d (where $\phi : d \mapsto |\{k : \gcd(k, d) = 1\}$ is Euler’s totient function). But each one of the k elements of \mathbb{F}^* must have some order $d | k$, and by a standard equality $\sum_{d | k} \phi(d) = k$, so in fact there are exactly $\phi(k)$ elements of order $k = |\mathbb{F}^*|$. \hfill \qed

Corollary 1. Let \mathbb{F} be a finite field of characteristic p. Let $\alpha \in \mathbb{F}$ be a generator of the multiplicative group (called a primitive element). Let P be the minimal polynomial of α over \mathbb{Z}_p (monic polynomial of smallest degree in $\mathbb{Z}_p[X]$ such that $P(\alpha) = 0$). Then $\mathbb{F} \sim \mathbb{Z}_p[X]/P$.

Proof. Clearly, $\mathbb{Z}_p(\alpha)$ (the smallest field generated by the elements of \mathbb{Z}_p and α) is equal to \mathbb{F}. This implies that \mathbb{F} is the splitting field of the minimal polynomial P of α. Because a minimal polynomial must be irreducible, this implies $\mathbb{F} \sim \mathbb{Z}_p[X]/P$. \hfill \qed

Thus, every finite field \mathbb{F}_{p^n} can be constructed as $\mathbb{Z}_p[X]/P$, for some irreducible $P \in \mathbb{Z}_p[X]$ of degree n. This yields a concrete way to represent elements of \mathbb{F}_{p^n}: they are in bijection with the polynomials of $\mathbb{Z}_p[X]$ of degree strictly less than n. Field operations can be computed like in $\mathbb{Z}_p[X]$, followed by reduction mod P. Inverses can be computed using Euclid’s algorithm.

A few more random facts.

- In practice, \mathbb{F}_{2^n} and \mathbb{F}_p for $p \in \mathbb{P}$ are the most common finite fields in computer science. In \mathbb{F}_{2^n}, field operations are especially fast; addition is just a XOR.

- The polynomial P used to represent \mathbb{F}_{p^n} as $\mathbb{Z}_p[X]/P$ is not uniquely determined. Any minimal polynomial of a primitive element will do—and you can expect many, since the polynomial will have degree n, and there are $\phi(p^n - 1)$ primitive elements. Polynomials of this form are called primitive. There also exist irreducible polynomials that are not of this form.

- \mathbb{F}_{p^n} is Galois over \mathbb{Z}_p. The Galois group is cyclic, generated by the Frobenius map F.

- \mathbb{F}_{p^n} contains \mathbb{F}_{p^d} for each $d | n$ as a subfield, and no other subfield. Indeed, \mathbb{F}_{p^d} can be obtained as the fixed points of F^d. Conversely, if a subfield has cardinality p^d for some d, since \mathbb{F}_{p^n} is a vector space over it, $(p^d)^k = p^n$ for some k, so $d | n$. (This can also be seen as a consequence of the fundamental theorem of Galois theory.)

- For any $q = p^n$, $\mathbb{F}_{q^m} \sim \mathbb{F}_q[X]/P$ for some irreducible $P \in \mathbb{F}_q[X]$ of degree m (as was the case for $n = 1$). In particular, \mathbb{F}_q admits irreducible polynomials of every degree.