Primer on Finite Fields – Brice Minaud, MPRI 2.12.1

This is a quick summary/cheat sheet on the basics of finite fields, aimed at crypto students. \mathbb{P} is the set of prime numbers. Elements of $\mathbb{Z}_n = \mathbb{Z}/n\mathbb{Z}$ are identified with $\{0, \ldots, n-1\}$. Statements about equality and unicity are up to isomorphism.

Theorem 1. \mathbb{Z}_p for $p \in \mathbb{P}$ is a field.

Proof. It suffices to show that non-zero elements are invertible. By Bézout's identity, given $x \in \{1, \ldots, p-1\}$, there exist $y, z \in \mathbb{Z}$ such that xy + pz = gcd(x, p) = 1. Hence $xy = 1 \mod p$. Concretely, y can be computed using Euclid's algorithm.

Theorem 2. Let \mathbb{F} be a finite field. There exist $p \in \mathbb{P}$ (called the characteristic of \mathbb{F}) and $n \in \mathbb{N}$ such that $|\mathbb{F}| = p^n$.

Proof. Consider the additive subgroup generated by 1. Since \mathbb{F} is finite, this subgroup is cyclic, so it is isomorphic to \mathbb{Z}_k for some $k \in \mathbb{N}^*$. If $k \notin \mathbb{P}$, there exist $a, b \in \mathbb{Z}_k^*$ such that ab = 0, which implies they are not invertible, a contradiction. So $k = p \in \mathbb{P}$ and \mathbb{F} contains \mathbb{Z}_p as a subfield. Since any field is a vector space over any subfield, it follows that $|\mathbb{F}| = p^n$ for some n.

Theorem 3. Let \mathbb{F} be a finite field of characteristic p. The map $F : x \mapsto x^p$ is an automorphism of \mathbb{F} over \mathbb{Z}_p (i.e. it leaves \mathbb{Z}_p fixed). It is called the **Frobenius** map.

Proof. The map F is clearly a morphism for multiplication. It suffices to show that $(a + b)^p = a^p + b^p$ for $a, b \in \mathbb{F}$. This can be done by writing out the expansion of $(a + b)^p$ with the binomial coefficients, and noticing that all those coefficients vanish in \mathbb{Z}_p , except the first and last. \Box

Theorem 4. For all $p \in \mathbb{P}$ and $n \in \mathbb{N}$, there exists a unique field \mathbb{F} with $|\mathbb{F}| = p^n$.

Proof. Let \mathbb{F} be the splitting field over \mathbb{Z}_p of the polynomial $P(X) = X^{p^n} - X$. Let R denote the roots of P in \mathbb{F} . The key point is that R is the set of fixed points of an automorphism (namely F^n), hence it is a field. It follows that $\mathbb{F} = R$. On the other hand, P has a derivative of -1, so it has distinct roots, and degree p^n , so $|R| = p^n$. This shows existence. Unicity essentially follows from the unicity of the splitting field.

Notation. The (unique) field of cardinality $q = p^n$ is usually denoted by \mathbb{F}_q , sometimes also GF(q) (for Galois Field). If $p \in \mathbb{P}$, $\mathbb{F}_p = \mathbb{Z}_p$.

Reminder. Let us recall two basic properties of polynomials over any field \mathbb{F} .

- Euclidian Division. For all polynomials $A, B \in \mathbb{F}[X]$ with $B \neq 0$, there exist unique polynomials $Q, R \in \mathbb{F}[X]$ such that A = PQ + R and $\deg(R) < \deg(Q)$ or R = 0. In particular, computing in $\mathbb{F}[X]$ modulo some polynomial P amounts to considering the remainders in the division by P.
- Number of roots. A corollary of Euclidian division is that $\alpha \in \mathbb{F}$ is a root of $P \in \mathbb{F}[X]$ iff $(X \alpha)$ divides P. A corollary of the corollary is that the number of roots of a polynomial is upper-bounded by its degree.

Theorem 5. Let \mathbb{F} be a finite field. The multiplicative group (\mathbb{F}^*, \cdot) is cyclic.

Proof. Let $p \in \mathbb{P}$, $n \in \mathbb{N}$ such that $|\mathbb{F}^*| = p^n - 1$. Let d be a divisor of $k = p^n - 1$. Elements whose order divides d are roots of $X^d - 1$, so there can be at most d of them. This implies there can be at most one cyclic subgroup of order d, hence at most $\phi(d)$ elements of order exactly d(where $\phi : d \mapsto |\{k : \gcd(k, d) = 1\}|$ is Euler's totient function). But each one of the k elements of \mathbb{F}^* must have some order d|k, and by a standard equality $\sum_{d|k} \phi(d) = k$, so in fact there are exactly $\phi(d)$ elements of order d. Hence there are $\phi(k)$ elements of order $k = |\mathbb{F}^*|$. \Box

Corollary 1. Let \mathbb{F} be a finite field of characteristic p. Let $\alpha \in \mathbb{F}$ be a generator of the multiplicative group (called a **primitive element**). Let P be the minimal polynomial of α over \mathbb{Z}_p (monic polynomial of smallest degree in $\mathbb{Z}_p[X]$ such that $P(\alpha) = 0$). Then $\mathbb{F} \sim \mathbb{Z}_p[X]/P$.

Proof. Clearly, $\mathbb{Z}_p(\alpha)$ (the smallest field generated by the elements of \mathbb{Z}_p and α) is equal to \mathbb{F} . This implies that \mathbb{F} is the splitting field of the minimal polynomial P of α . Because a minimal polynomial must be irreducible, this implies $\mathbb{F} \sim \mathbb{Z}_p[X]/P$.

Thus, every finite field \mathbb{F}_{p^n} can be constructed as $\mathbb{Z}_p[X]/P$, for some irreducible $P \in \mathbb{Z}_p[X]$ of degree n. This yields a concrete way to represent elements of \mathbb{F}_{p^n} : they are in bijection with the polynomials of $\mathbb{Z}_p[X]$ of degree strictly less than n. Field operations can be computed like in $\mathbb{Z}_p[X]$, followed by reduction mod P. Inverses can be computed using Euclid's algorithm.

A few more random facts.

- In practice, \mathbb{F}_{2^n} and \mathbb{F}_p for $p \in \mathbb{P}$ are the most common finite fields in computer science. In \mathbb{F}_{2^n} , field operations are especially fast; addition is just a XOR.
- The polynomial P used to represent \mathbb{F}_{p^n} as $\mathbb{Z}_p[X]/P$ is not uniquely determined. Any minimal polynomial of a primitive element will do—and you can expect many, since the polynomial will have degree n, and there are $\phi(p^n 1)$ primitive elements. Polynomials of this form are called primitive. There also exist irreducible polynomials that are not of this form.
- $-\mathbb{F}_{p^n}$ is Galois over \mathbb{Z}_p . The Galois group is cyclic, generated by the Frobenius map F.
- \mathbb{F}_{p^n} contains \mathbb{F}_{p^d} for each d|n as a subfield, and no other subfield. Indeed, \mathbb{F}_{p^d} can be obtained as the fixed points of F^d . Conversely, if a subfield has cardinality p^d for some d, since \mathbb{F}_{p^n} is a vector space over it, $(p^d)^k = p^n$ for some k, so d|n. (This can also be seen as a consequence of the fundamental theorem of Galois theory.)
- For any $q = p^n$, $\mathbb{F}_{q^m} \sim F_q[X]/P$ for some irreducible $P \in \mathbb{F}_q[X]$ of degree m (as was the case for n = 1). In particular, \mathbb{F}_q admits irreducible polynomials of every degree.