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Exam

Exercise 1. Fully Homomorphic Encryption over natural numbers.

Let p, q be two large primes. Let N = pq. Let β � p, q (i.e. β is an integer much smaller than p and q).
Consider the following symmetric encryption scheme, with secret key p, and (public) evaluation key N .

Encryption. To encrypt a message m ∈ {0, 1}, sample q′ and r independently and uniformly at random
in {0, . . . , β}, and let Enc(m) = q′p+ 2r +m.

Decryption. To decrypt a ciphertext c, compute Dec(c) = (c mod p) mod 2. In that expression, “a mod
b” outputs an integer in {0, . . . , b− 1}.

Question 1.1. Without doing detailed computations, show how it is possible to compute an encryption of the
message m + m′ (addition modulo 2), given only an Enc(m) and Enc(m′), under some circumstances. The
computation may also use the evaluation key N , if necessary. Same question for m ·m′ (multiplication modulo
2), and m+ 1.

Question 1.2. For fixed parameters N, β, is the scheme fully homomorphic, in the sense that one may compute
an arbitrary boolean circuit homomorphically? If yes, justify the answer; if not, briefly explain how to modify
the scheme to be fully homomorphic.

Question 1.3. Recall that in the standard IND-CCA security definition of an encryption scheme, the adversary
has access to a decryption oracle. That is, the adversary can query an oracle, on an arbitrary input of their
choice, and obtain a decryption of that input. Show that the above encryption scheme is not IND-CCA secure.

Exercise 2. Pedersen commitments.

Let G be a cyclic group of prime order p. Fix g and h = gα two distinct generators of G. The generators g and
h are public, but not α (which is not known to anyone). We now describe Pedersen commitments. To commit
to an element x ∈ Zp means to sample r from Zp uniformly at random, and to publish c = gx · hr. To open
the commitment c means to publish the corresponding values x and r (such that c = gx · hr). A commitment
scheme must be hiding and binding, in the sense defined in the next two questions.
Question 2.1. (Hiding property.) Show that for any value x, the distribution of c is indistinguishable from
the uniform distribution over G (perfectly, statistically, or computationally).

Question 2.2. (Binding property.) Show that if two distinct openings (x, r) and (x′, r′) are provided for the
same commitment c, then this implies solving a certain instance of the discrete logarithm problem.

Question 2.3. Briefly sketch an argument showing that the for a fixed matrix A of suitable size, the proba-
bilistic map x 7→ Ax + e defined over short vectors x, and where e is sampled as a short vector for each new
commitment, is a hiding and binding commitment scheme. (Provided the size of A and notion of shortness are
chosen in an adequate way, such that certain computational problems are hard.)
From a Pedersen commitment, one can build a zero-knowledge proof showing that the prover knows the com-
mited value x, without revealing x.

1. First, the prover samples u, v uniformly at random in Zp, and sends d = gu · hv to the verifier.

2. The verifier then samples e uniformly at random from Zp, and sends it to the prover.

3. The prover computes s = u− xe, and t = v − re (in Zp), and sends s, t to the verifier.

4. The verifier accepts the proof iff gs · ht · ce = d.

Question 2.4. Show that this interactive proof system is complete (if the prover does know x, the verifier
will accept). Show that it satisfies special soundness (if the verifier accepts for two different values of e, and
for the same d, then the prover does know x). Show that it is honest-verifier zero-knowledge (the transcript of
an honest interaction can be simulated without knowing x). Does the zero-knowledge property hold perfectly,
statistically, or only computationally?
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Exercise 3. Post-quantum Signatures via Zero-Knowledge (and schizophrenia).

Notation. For ~v ∈ Zn2 and i ∈ {1, . . . , n}, let vi denote the i-the coordonnate of the vector ~v. For ~v, ~w ∈ Zn2 ,
~v+ ~w is the sum vector, where the sum is computed coordinate-wise modulo 2. We may also write ~v− ~w, which
is equivalent. In this exercise, we write that a triple (~a,~b,~c) encodes a secret ~s iff ~a+~b+ ~c = ~s.

Multi-Party Computation (MPC)

Alice, Bob and Charlie share a secret ~s ∈ Zn2 : Alice knows ~a ∈ Zn2 , Bob knows ~b ∈ Zn2 , and Charlie knows
~c ∈ Zn2 , such that ~a+~b+~c = ~s. Only Alice knows ~a, only Bob knows ~b, only Charlie knows ~c. The triple (~a,~b,~c)
is sampled uniformly at random in (Zn2 )3 among triples that satisfy the condition ~a+~b+ ~c = ~s. (Equivalently:
~a et ~b are sampled uniformly at random in Zn2 , and ~c = ~s− ~a−~b.)
Question 3.1. Show that if Alice et Bob share their knowledge of ~a and ~b with each other, they still know
nothing about ~s, in the sense that ~s remains uniform from their point of view.
Alice, Bob and Charlie now wish to share a secret that encodes the sum si + sj of two bits of ~s. Towards that
end, Alice computes a′ = ai + aj , Bob computes b′ = bi + bj , and Charlie computes c′ = ci + cj .
Question 3.2. Show that (a′, b′, c′) is uniform among triples (x, y, z) that encode si + sj .
Hint : equivalently, show that x and y are uniform and independent, and z = si + sj − x− y.
In that manner, Alice, Bob and Charlie are able to “compute” a sum of two bits of the secret ~s, in the sense
that they now share a new secret that encodes the sum of the two bits. Alice, Bob and Charlie now wish
to “compute” a product sisj of two bits of the secret, in the same sense. Towards that end, Alice, Bob and
Charlie sample independently and uniformly at random one bit each, denoted respectively ra, rb, rc. Alice
sends (ra, ai, aj) to Charlie, Charlie sends (rc, ci, cj) to Bob, Bob sends (rb, bi, bj) to Alice. Alice computes
a′ = aiaj + aibj + ajbi + ra − rb. Bob computes b′ = bibj + bicj + bjci + rb − rc. Charlie computes c′ =
cicj + ciaj + cjai + rc − ra.
Question 3.3. Show that (a′, b′, c′) is once again uniformly random among triples that encode sisj . What
happens if we remove the ri’s?

Question 3.4. Propose a way to compute the negation of a secret bit si, in the same sense that we have
computed addition and product in the previous questions.

Question 3.5. Propose a protocol that allows Alice, Bob et Charlie to compute F (~s) for an arbitrary map
F : Zn2 → Zn2 . The map F is given in the form of a boolean circuit, publicly known to all parties, and composed
of addition, multiplication and negation gates. At the outcome of the computation, Alice, Bob and Charlie
must know the result F (~s) of the computation, but they must not learn anything about ~s, aside from F (~s). No
proof is required, but bonus points if you can find a way to formally express the property stated in that last
sentence (hint: you can draw inspiration from the way “zero-knowledge” is defined, using a simulator).

Zero-Knowledge from MPC

Notation. Let H : Zn2 → Zn2 denote a hash function (with a fixed input length). For a uniform element ~x ∈ Zn2 ,
was assume that given ~y = H(~x), and only ~y, finding a preimage of ~y is a hard problem (i.e. finding ~x′ ∈ Zn2 ,
not necessarily distinct from ~x, such that H(~x′) = ~y, is hard). In the remainder, we use a commitment scheme.
This can be done as in the previous exercise, but more simply, one can also do the following. To commit to a
value x means to sample r uniformly at random among bitstrings of some fixed (sufficiently large) length, and
to send H(x ‖ r), where ‖ denotes concatenation. To open the commitment means to reveal x and r.

Sylvie samples ~s ∈ Zn2 uniformly at random, and publishes ~y = H(~s). Sylvie wishes to prove in zero-knowledge
thta she knows a preimage of ~y.
Question 3.6. Propose a generic way to achieve that goal, using a technique from the course. (Details are not
required, the idea can be sketched in a couple lines.)
However, we do not want to use that generic approach. Among other issues, it would not be quantum-resistant.
Instead, Sylvie will prove her knowledge of a preimage of ~y using the following protocol.

(a) Sylvie shares a secret ~s among three virtual entities Alice, Bob and Charlie, by sampling ~a, ~b, ~c such that
~a+~b+ ~c = ~s, exactly like in the previous section. Note that Alice, Bob and Charlie only exist in Sylvie’s
head. Sylvie then computes H(~s) following the same multi-party computation protocol as in the previous
section, as if Alice, Charlie and Bob were really three distinct people. (For that purpose, H is viewed
as a circuit.) Finally, Sylvie sends to Thomas the following information: a commitment to the secret ~a
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of Alice, a commitment to every value computed at the output of a logic gate by Alice (the values a′
of questions 2 and 3), as well as the random bits ra used in multiplication gates (question 3) ; likewise
for Bob and Charlie.1 Sylvie also sends the values ~af , ~bf , ~cf , obtained by Alice, Charlie and Bob at the
outcome of the computation (and such that H(~s) = ~af +~bf + ~cf ).

(b) Thomas chooses one person among Alice, Bob and Charlie, et and sends that choice to Sylvie.

(c) Sylvie opens all commitments related to the two people not chosen by Thomas.

(d) Thomas accepts the proof if all the computations he can check based on the information he has received
are correct. (In more detail: he checks that: (1) the values revealed by Alice in step (c) do match the
commtiments from step (a); (2) each logic gate computed by Alice, Charlie, and Bob is computed correctly,
whenever Thomas knows the inputs of the gate ; (3) the final outcome of the computation is equal to ~af ,
~bf , ~cf , for the two virtual parties chosen in step (b); (4) ~y = ~af +~bf + ~cf .)

Question 3.7. Assume that Thomas chooses Alice in step (b). Show that Thomas is able to check all compu-
tations performed by one of the other virtual parties (which one?).

Question 3.8. Suppose that Sylvie does not actually know a preimage of y. Propose a strategy for Sylvie such
that Thomas will accept the proof, with probability (at least) 1/3. Conversely, show that if Sylvie can produce
a proof that will be accepted with probability 1 (relative to Thomas’ choice in step (b)), then she must know a
preimage. What does that imply about the zero-knowlege proof?

Question 3.9. Show that the previous protocol is zero-knowledge.

Question 3.10. The zero-knowledge proof in this exercise is a sigma protocol; recall that such protocols can
be converted into a signature scheme via the Fiat-Shamir transform. Provide an upper bound of the signature
size, as a function of the number of gates of the circuit computing H, and other parameters of the scheme (such
as n, and the length of a commitment). Bonus points: what can be said about the quantum resistance of the
resulting signature scheme?

1Note that Sylvie does not commit to the values (rc, ci, cj) received by Alice for a multiplication gate (question 3); she only
commits to the output value a′.
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