
MPRI 2.12.1 2023-2024

Exam

Notation.

– Throughout the exam, we fix a cyclic group G of prime order p. The prime p can be assumed to be very
large (exponentially large relative to the security parameter). Fix g and h = gα two distinct generators
of G. Later on, g and h will be public, but not α which is only known to a trusted authority.

– All discrete logarithms will be in base g. Given an element f ∈ G, write log(f) for the discrete logarithm
of f in base g. That is, log(f) is the unique element in Zp such that f = glog(f).

– For f1, f2 two elements of G, define f1 ⊗ f2 = glog(f1)·log(f2). Equivalently, ⊗ is defined by: ∀x, y ∈
Zp, gx ⊗ gy = gxy. If f1, . . . , fn are elements of G, define

⊗n
i=1 fi = f1 ⊗ · · · ⊗ fn.

Electronic voting via shuffling
Important. The goal of the exam is to build an electronic voting protocol. All exercises are intermediate
steps towards that goal. As a consequence, questions and exercises are ordered in a logical sequence to build
the voting protocol. They are not ordered from easiest to hardest. Feel free to answer questions in any order,
skipping questions and coming back to them as needed. The exam is designed in such a way that skipping
questions is not a problem to answer subsequent questions. Make sure to indicate clearly the number of the
question you are answering.

Exercise 1. Zero-knowledge log products.
Let X1, . . . , Xn and Y1, . . . , Yn be public elements of G. Alice knows xi = logXi and yi = log Yi for all i. Alice
wants to prove to Bob in zero-knowledge the statement:

⊗n
i=1Xi =

⊗n
i=1 Yi.

Question 1.1 Suppose ∃i,Xi = 1, or ∃i, Yi = 1. Propose a zero-knowledge proof protocol for that special case.
Sketch an argument that your protocol is zero-knowledge. (Arguing about correctness and soundness is not
required.)
Hint: If your argument is not trivial, you are not on the right track.
From now on, we assume ∀i,Xi 6= 1, and ∀i, Yi 6= 1. Consider the following protocol.

1. Alice picks independently and uniformly at random values θ1, . . . , θn−1 in Zp. She computes:

A1 = Y θ11 , A2 = Xθ1
2 Y

θ2
2 , . . . , Ai = X

θi−1

i Y θii , . . . , An−1 = X
θn−2

n−1 Y
θn−1

n−1 , An = Xθn−1
n .

Alice sends A1, . . . , An to Bob.

2. Bob picks a challenge γ ∈ Zp uniformly at random, and sends it to Alice.

3. Alice computes n− 1 values r1, . . . , rn−1 in Zp, such that:

Y r11 = A1X
−γ
1 , Xr1

2 Y
r2
2 = A2, . . . , X

ri−1

i Y rii = Ai, . . . , X
rn−2

n−1 Y
rn−1

n−1 = An−1, X
rn−1
n = AnY

(−1)n−1γ
n . (1)

Alice sends r1, . . . , rn−1 to Bob.

4. Bob accepts the proof if the equation system (1) holds.

Completeness. For once, completeness is not trivial, because we need to argue that, assuming
⊗n

i=1Xi =⊗n
i=1 Yi is true, Alice can compute r1, . . . , rn−1 such that (1) is satisfied.

Question 1.2.a Let ri = ri − θi. Show that (1) is equivalent to:

y1 0 0 · · · 0
x2 y2 0 · · · 0
0 x3 y3 · · · 0
...

...
. . . . . .

...
0 0 · · · xn−1 yn−1

0 0 · · · 0 xn





r1
r2
r3
...

rn−2

rn−1


=



−γx1
0
0
...
0

(−1)n−1γyn


. (2)
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Question 1.2.b Prove that the following determinant is zero:∣∣∣∣∣∣∣∣∣∣∣∣∣

x1 y1 0 0 · · · 0
0 x2 y2 0 · · · 0
0 0 x3 y3 · · · 0
...

...
...

. . . . . .
...

0 0 0 · · · xn−1 yn−1

(−1)nyn 0 0 · · · 0 xn

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0.

Question 1.2.c Deduce that the system (2) must have a solution r1, . . . , rn−1.
Question 1.2.d Deduce that Alice can compute a solution r1, . . . , rn−1 to (1). An exact computation is not
required; briefly sketching how the values can be computed is enough.
Zero-knowledge.
Question 1.3 Prove that the protocol is honest-verifier zero-knowledge. Is your proof showing perfect, statis-
tical, or computational zero-knowledge?
Reminder: this means building a simulator that, without knowing any secret information, is able to output a
simulated transcript ((A1, . . . , An), γ, (r1, . . . , rn−1)), such that the simulated transcript is indistiguishable from
the real transcript (i.e. the sequence of messages between Alice and Bob in a real run of the protocol).
Soundness.
Question 1.4.a Prove that if the statement

⊗n
i=1Xi =

⊗n
i=1 Yi is false, then it is not possible for Alice to find

r1, . . . , rn−1 such that Bob will accept the proof, except with some small probability. Give an upper bound for
that small probability (a.k.a. soundness error).
Question 1.4.b Can the proof be interpreted as a proof of knowledge? If so, knowledge of what?
Hint: this is a difficult question that can be skipped without any issue.

Exercise 2. Zero-knowledge shuffle.
Given two public vectors (A1, . . . , An) and (B1, . . . , Bn) in Gn, assume we know how to prove that

⊗n
i=1Ai =⊗n

i=1Bi, with a proof that is complete, sound, and zero-knowledge. (Such a protocol was built in the previous
exercise, but in this exercise, we don’t care how it works, just that it exists and has the desired properties.) Let
us call such a protocol a log-product protocol (LPP).
Let X1, . . . , Xn and Y1, . . . , Yn be public elements of G. Let c and d be (secret) elements of Zp, and let C = gc

and D = gd be public. Alice wants to prove to Bob in zero-knowledge: “there exists a permutation π of
{1, . . . , n}, and c, d ∈ Zp, such that for all i, Y di = Xc

π(i)”. Assume Alice knows c and d, and all discrete
logarithms xi = logXi and yi = log Yi. Alice uses the following protocol.

1. Bob picks a challenge t ∈ Zp uniformly at random, and sends it to Alice.

2. Alice and Bob execute the LPP protocol for the two vectors:

Φ = (X1/D
t, . . . , Xn/D

t,

n︷ ︸︸ ︷
C, . . . , C) Ψ = (Y1/C

t, . . . , Yn/C
t,

n︷ ︸︸ ︷
D, . . . ,D).

3. Bob accepts the proof if and only if he accepts the proof of the LPP protocol.

Question 2.1 Prove that the protocol is complete: if the statement “∃π,∀i, Y di = Xc
π(i)” is true, then Bob will

accept the proof.
Question 2.2 Prove that the protocol is honest-verifier zero-knowledge.
Question 2.3 Prove that the protocol is sound. Give an upper bound on the soundness error (the probability
that Bob will accept the proof even if the statement was false).

DSA signatures. The upcoming discussion will refer to DSA signatures. For this exam, it does not matter
how DSA signatures work. The only aspects of DSA signatures that matter are: (1) The signing key (used for
signing) is a uniformly random value x ∈ Zp; (2) The verification key (used for verifying signatures) is y = gx.
DSA signatures can also be used with respect to the generator h, in which case the verification key is y = hx

instead of y = gx.
Electronic voting framework. We want to perform electronic voting, using the following framework. There
are n authorized voters, and it is assumed that they all vote. Each voter picks a secret DSA signing key vi ∈ Zp,
for 1 ≤ i ≤ n. The verification keys gvi for DSA signatures with respect to g are public, and linked to the
identity of the voter. Verification keys hvi with respect to h are not initially public, and not linked with the
identity of the voters. Voting proceeds as follows.
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1. Each voter i chooses their vote, and publishes it anonymously on a public board, together with a DSA
signature of the vote with respect to generator h, and the corresponding verification key hvi . Votes are
not encrypted. On the other hand, the identity of each voter is unknown.

2. A trusted authority that knows α takes all the newly published verification keys hvi , permutes them
randomly, and at the same time, raises each of them to the power 1/α. The trusted authority then
publishes the resulting list of verification keys gvi , together with a zero-knowledge proof that this list was
obtained by randomly permuting the hvi ’s, and raising them to the power 1/α.

3. Anybody can check that the initial signatures (with respect to h) are correct, that the zero-knowledge
proof is correct, and that the final list of gvi ’s matches the public list of verification keys gvi for authorized
voters. The original votes are then accepted as having been signed by authorized voters (even if the person
who signed each vote is not known).

Exercise 3. Electronic voting with oblivious shuffles.
Given two public vectors X1, . . . , Xn and Y1, . . . , Yn, and c, d ∈ Zp, assume we know how to prove in zero-
knowledge the statement: “there exists a permutation π of {1, . . . , n}, and c, d ∈ Zp, such that for all i,
Y di = Xc

π(i)” (property (?)). (Such a protocol was built in the previous exercise.) Let us call such a protocol a
shuffle protocol.
Question 3.1 Explain how we can use the above protocol to realize the electronic voting framework outlined
just before the exercise. Would there be any concrete issues with the voting protocol if the shuffle protocol is
not zero-knowledge? If it is not sound? If it is not complete?
Assume that the trusted authority in the voting protocol is actually some sysadmin who is on holidays, and
who can only interact with the public board containing the initial votes using his old smartphone, from his
hotel room, with terrible wifi. Luckily, the server hosting the public board contains a trusted enclave that
the smartphone can connect to, and the trusted enclave can do all the work. (The enclave is a small secure
component that only the sysadmin can access.) Unfortunately, the enclave has very limited memory. After
receiving all secret information from the smartphone (c, d, a trapdoor to compute xi’s, yi’s at will, and a
description of π), the enclave has just enough memory to perform the shuffle protocol on two elements, and not
more. As a consequence, the enclave can only provide proofs of property (?) for permutations of two elements,
not all n verification keys at once.
The public board is a simple memory array: it performs no computation, and can only receive queries to read
and write memory. The enclave can interact with the public board at will, but keep in mind that everything
the enclave sends and receives to and from the public board is publicly visible.
Question 3.2 Propose a way for the enclave to permute all verification keys hxi on the public board according
to π, without breaking the security of the voting protocol (the identity of voters should not leak). At the
outcome of the permutation, each hxi must also be replaced by gxi , and your solution should provide some
sort of proof that the final permutation of Yi = gvi satisfies property (?) with regard to the verification keys
Xi = hvi from the initial votes. (This allows the vote to be publicly verifiable: anybody can check that the
original votes were signed by authorized voters only.) You are allowed to adapt the voting protocol as needed.
What is the size of your proof, using as unit one element of G or Zp (both count for 1)?
Hint: to hide values of hxi during intermediate steps of the permutation, it is enough to raise them to the
power βk, where βk is sampled uniformly for Zp by the enclave and changes for each intermediate step. This
does not need to be justified. By the end of the protocol, all values should be raised to the power 1/α, so that
the elements of the final permutation are verification keys gvi . This aspect of the computation (how to raise to
different powers to hide intermediate values) is not the focus, and does not need to very detailed. (But bonus
points if your solution only uses a polylogarithmic number of distinct powers βk.)
Hint #2: The question leaves some room for creativity. A full answer is long, but partial answers will earn
points.
Question 3.3 Now suppose the enclave is more powerful: it can execute the shuffle protocol for n/2 elements.
Unfortunately, we still have n votes, so we still cannot shuffle all n verification keys at once. Propose a solution
to realize the voting framework with a proof of size O(n).
Hint: this essentially amounts to doing an oblivious sort on n elements stored on a server, when the client can
download n/2 elements at once to their local memory (for comparison, a sorting network only ever requires the
client to download 2 elements at a time). One hint for a possible solution: use a structure similar to a bubble
sort on a constant number of inputs, but each input is actually a block of n/? elements. “?” stands for a small
constant that is omitted from this hint.
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