
MPRI 2.12.1 2020-2021

Exam

Preliminaries:

– A graph is a pair (V,E) where V is a set of vertices, and E is a set of pairs of (distinct) vertices,
called the edges of the graph. Two edges {a, b} and {c, d} in E intersect if and only if they share a
common vertex; that is, if and only if {a, b} ∩ {c, d} 6= ∅.

– Whenever we talk about committing in the exercises, we will use the following simple commitment
scheme. To commit to a value x, Alice draws a sufficiently long binary string r uniformly at
random, and sends h = H(x, r) as her commitment, where H is a public hash function. To open
her commitment, Alice reveals x and r. We assume the hash function H is collision-resistant: in
particular, once h is given, there is only one way for Alice to open her commitment, she cannot find
(x′, r′) 6= (x, r) such that H(x′, r′) = H(x, r) = h (formally, the commitment is binding, as defined
in the course). We also assume that h reveals no information about x (formally, we assume the
commitment is hiding, as defined in the course).

– Throughout the exercises, Enc denotes a modern, probabilistic IND-CCA public-key encryption
scheme.

– Z∗N denotes the multiplicative group of ZN (the elements of ZN that are invertible for multiplica-
tion).

Exercise 1 (Zero-knowledge identification). Alice wants to be able to prove her identity to Bob, in
order to get access to her files stored on Bob’s server. To do so, Alice’s first idea is to use the public-key
encryption scheme Enc. Before starting, Alice picks a private key for Enc, and publishes the corresponding
public key. When she needs to identify herself to Bob, Alice proceeds as follows. First, Bob encrypts
some random data r with Enc, and sends the encryption to Alice. Then, Alice recovers r by decrypting
the data using her private key, and sends back r to Bob. Bob accepts if the decrypted r sent back by
Alice is correct.

1.a. Insofar as this identification protocol can be seen as a “proof” of Alice’s ability to decrypt, is
the proof honest-verifier zero-knowledge? What if Bob is malicious (general zero-knowledge)?

Alice instead considers the following protocol. She picks two large prime numbers p and q, and sets
N = pq. All computations from now on are modulo N . Alice picks k random values si ∈ Z∗N , and
computes vi = s2i for i in [1, k]. She publishes N and the vi’s as her public identification key. Later, when
Alice wants to identify herself to Bob, she proceeds as follows. First, Alice picks a random r ∈ Z∗N , and
sends x = r2 to Bob. Bob then draws some uniformly random bits a1, . . . , ak, and sends them to Alice.
Alice computes y = r

∏
saii , and sends y to Bob. Bob accepts if y2 = x

∏
vaii .

1.b. Show that this proof of knowledge is complete (correct), sound, and honest-verifier zero-
knowledge.

Exercise 2 (Oblivious compaction). Alice is storing n files on Bob’s server. All files are of the same
size. Currently, the files are simply stored in an array A of size n, one file after the other, on Bob’s
server. Each cell in the array A can hold one file. All files are encrypted with the public-key encryption
scheme Enc, with Alice holding the private key (but not Bob). Recently, Alice went through her files,
downloading and decrypting them one after the other, and tagged some of the files with the “OLD” tag.
Each time, after adding the tag or not, she reuploaded a fresh encryption of the file in the same place
in the array A (potentially including a tag, which we assume does not change the file size). Now, Alice
wants to delete all files tagged with OLD, and reduce her storage cost on Bob’s server. But she does not
want Bob to know which files are being deleted among the n files. She is okay with Bob learning how
many files are deleted, but not which ones.
Let r ≤ n be the number of files tagged with OLD. What Alice wants is to do is to reorder the files in
the array A, so that all files tagged with OLD come first. Once that is done, she can simply tell Bob to
delete the first r files, and free up that memory. The problem is, Alice is using her smartphone, which
is only capable of holding two files at the same time (plus some auxiliary data, like cryptographic keys,
counters, etc), and she does not want Bob to learn which files are being moved to the first r positions.

1

2.a. Since the files tagged with OLD have been modified before being re-encrypted and re-uploaded,
and the others have been re-encrypted and re-uploaded with no difference in content, can Bob deduce
from this which files have been tagged with OLD?

2.b. Propose a solution to Alice’s problem using oblivious sorting. How many rounds of interaction
(roundtrips) are needed between Alice and Bob?

Alice knows oblivious sorting is a little slow, and would prefer a faster solution (her smartphone is not
very powerful). She considers instead the following protocol. Assume n = 2k is a power of two. Bob
creates k + 1 arrays (Ai)i∈[0,k] of the same size as array A, with A0 = A; the other arrays are initially
empty. For each file tagged as OLD, Alice adds an integer tag d denoting how many positions the cell
needs to be moved to the left, so that all cells tagged OLD end up in the first r positions (in the same order
as in A). Then, Alice scans through each array Ai starting from level i = 0. For each cell at position j in
Ai whose file is marked as OLD, and tagged with integer dj , the cell is copied to array Ai+1 at position
j − (dj mod 2i+1). The distance tag dj is at the same time updated as dj ← dj − (dj mod 2i+1), since
the file has now been moved dj mod 2i+1 positions to the left.

2.c. How can Alice perform all these operations obliviously, given the limitations of her smartphone?

2.d. Prove that the new position j − (dj mod 2i+1) in array Ai+1 is equal either to j or to j − 2i.

2.e. Prove that no collision occurs, that is, it is never the case that two files are moved to the same
cell in an array.

2.f. How many rounds of interaction are needed between Alice and Bob to carry out the whole
operation? How much memory is needed on Bob’s server?

2.g. (∗) Assume that Alice’s smartphone is a little more powerful, and can store m > 2 files
at the same time. Propose a more efficient variant of the previous oblivious protocol. (To avoid
unnecessary complications, the proposal is not required to work for all possible values of m, it is
enough if it works for an infinite number of possible m’s.)

Exercise 3 (Zero-knowlede Proofs for NP-complete languages). In the course, we have seen a zero-
knowledge proof of knowledge of a 3-coloring of a graph. Instead, let us consider the following problem.
A vertex cover of a graph is a set of vertices S such that every edge in the graph has at least one endpoint
in S. Alice wants to prove to Bob that she knows a vertex cover S of size k for some public graph G.
She proceeds as follows.

a) Alice draws a uniformly random permutation π of the vertices V . She computes a commitment
hπ to the permutation π. Let G′ = (V ′, E′) be the permuted graph, with V ′ = π(V) and E′ =
{{π(a), π(b)} : {a, b} ∈ E}. Let S′ = π(S) be the vertex cover in the permuted graph. Alice
computes commitments (hs)s∈S′ for each individual vertex in the vertex cover, and also computes
commitments (he)e∈E′ for each individual edge. She sends all commitments hπ, (hs), (he) to the
verifier.

b) The verifier picks a bit b ∈ {0, 1}, and an integer i ∈ [1, |E|], uniformly at random. The verifier
sends b and i to Alice.

c) If b = 0, Alice opens her commitment to π, and her commitments to every edge (he), and sends
them to the verifier. If b = 1, Alice opens her commitment to the i-th value in (he), corresponding
to some edge e in G′, and opens her commitment to one value in (hs), choosing it so that the
corresponding vertex v belongs to e (uniformly at random if there are several such vertices). She
sends the openings to the verifier.

d) The verifier accepts the proof iff there were k values in (hs) (so the vertex cover is the right
size), if the open commitments are correct (with the earlier conventions, the opening x, r satisfies
H(x, r) = h, where h was the original commitment), and additionally: if b = 0, the verifier checks
that the edges E′ are equal to E permuted by π; if b = 1, the verifier checks that the opened vertex
v belongs to the opened edge e.

3.a. Is this proof of knowledge complete (correct), sound, and honest-verifier zero-knowledge?

2

3.b. (∗) Consider the k-clique problem: Alice wants to prove she knows a k-clique in G, that is,
a subset C of vertices of G of size k, such that for every v 6= w ∈ C, {v, w} ∈ E (the subgraph
induced by G on those vertices is complete). Sketch a zero-knowledge proof of knowledge for this
problem. (Detailed arguments about correctness, soundess and zero-knowledge are not required.)

3

