
MPRI, 2024

Brice Minaud

email: brice.minaud@ens.fr

Techniques in Cryptography and Cryptanalysis

Meta information

2

“Techniques in Cryptography and Cryptanalysis”: will cover (a choice
of) important areas of cryptography.

- Lattices

- Zero-Knowledge Proofs

- Oblivious algorithms

Phong Nguyễn

8 x 1.5h, 1st period

Brice Minaud

8 x 1.5h, 2nd period

Teachers:

...here soon

📍 still here

More meta information

3

Exams: 1.5h, same time slot as lectures. A few exercises.

See also website for additional material.

Interested in crypto? Have questions? Looking for an internship?

Don't hesitate to write to Phong and/or me.

Contact: brice.minaud@ens.fr, phong.nguyen@ens.fr

What is security?

4

Historically, most basic goal = protecting the confidentiality of data
exchanges.

Data exchange

Alice BobEve

Kerckhoff’s (first three) principles:

1.The system must be practically, if not mathematically,

indecipherable.

2.It should not require secrecy, and it should not be a problem

should it fall into enemy hands.

3.It must be possible to […] change or modify [the key] at will.

One-Time Pad

5

Data exchange

Alice BobEve

Modern version: the algorithms are public. They are parametrized by
a (secret) key.

key K key K

One-Time Pad.
Message space: M ← {0,1}n Key space: K ← {0,1}n

Encryption(M): C = M ⊕ K
Decryption(C): M = C ⊕ K

Security of One-Time Pad

6

One-Time Pad.
Message space: M ← {0,1}n Key space: K ← {0,1}n

Encryption(M): C = M ⊕ K
Decryption(C): M = C ⊕ K

Naive security: impossible for Eve to find M from C.

Not great. Encryption could leak last bit of M and still be secure by
that definition.

We want to express that Eve learns nothing about M.

Perfect secrecy

7

Perfect secrecy, historical version, Shannon, 1949.

Prior distribution: distribution of M known a priori to Eve.

Posterior distribution: distribution of M known to Eve after seeing
the encryption EncK(M) of M (for uniform K).

Perfect secrecy: posterior distribution = prior distribution.

Perfect secrecy, equivalent modern version, folklore, 20th century.

Let M0 and M1 be two arbitrary messages.

Perfect secrecy: EncK(M0) = EncK(M1).

The equality is an equality of distributions. The randomness is over
the uniform choice of K.

OTP and perfect secrecy

8

Proposition. The One-Time Pad achieves perfect secrecy.

Proof. Enc(M0) = C iff K = C ⊕ M0.

So there is exactly one K that yields each possible C. Since K is
uniform, so is C. Thus:

Enc(M0) = Unif({0,1}n) = Enc(M1).

(Note: this would hold in any group.)

Theorem (Shannon ’49). If perfect secrecy holds, it must be the
case that the two parties share some prior information (a key) with:

length(key) ≥ length(message)

where length denotes the bit length.

So OTP is essentially the only perfectly secure scheme.

Measuring Security

Advantage

10

‣ Previous solution is infeasible in most cases.

→ we must be content with imperfect security.

‣ The relevant notion to formally express that Eve cannot learn
anything is often about the indistinguishability of two distributions.

Roadmap of a security definition: the adversary is an algorithm
attempting to infer secret information.

Often, this will be expressed as the adversary trying to distinguish
two distributions.

Advantage.

Let D0 and D1 be two probability distributions. The advantage of an
adversary A (i.e. an algorithm, here with output in {0,1}) is:

AdvD0,D1(A) = |2Prb ${0,1}(A(Db) = b)� 1|
<latexit sha1_base64="hIh5Ya4kQ83D4Bg0XoJJYhZPJYo=">AAADV3icbVJLj9MwEHZbWEp5bAtHLhZlpYJKlRQkuCB1RQ9wKxLdXakukeNMWmudh2ynUHkj8Y/4NRz2Av+CKzhJkTbdHSmTTzPfPPxp/FRwpR3nstFs3bp9cKd9t3Pv/oOHh93eoxOVZJLBnCUikWc+VSB4DHPNtYCzVAKNfAGn/vn7In+6Aal4En/W2xSWEV3FPOSMahvyuh8NkRE+Djb5FzP1nOHUc/PB8XP8Dl+My9RM5p7xMVmBVh55holxhi7JLWkw9fyCaN1L7F543b4zckrD14G7A320s5nXa/whQcKyCGLNBFVq4TqpXhoqNWcC8g7JFKSUndMVLCyMaQRqaco35/jIRgIcJtJ+scZl9GqFoZFS28i3zIjqtdrPFcGbcotMh2+XhsdppiFm1aAwE1gnuBAQB1wC02JrAWWS210xW1NJmbYyd46ujlmD2ICuPcSosJzcIRJi+MqSKKJx8MKQkEZcbAMIaSZ0bogK/+ObZBgGG56qnSLfKkk6RIAmieQrHlMhINSkcPWw/a01KX19BVOS7eBivSSF2OQlZCJRQPyVTLK01jzfry+b2gY0tEpUfKiXVYyOvRR3/y6ug5PxyH01Gn963Z9Mvlc300ZP0FM0QC56gyboA5qhOWLoB/qJfqHfzcvm39ZBq11Rm43dnT1GNWv1/gH3xRsD</latexit>

Types of security

11

let M0 and M1 be two arbitrary messages…

Perfect security:

EncK(M0) = EncK(M1) (as distributions, for uniform K).

Equivalently: AdvEncK(M0), EncK(M1)(A) = 0, for every A.

Statistical security:

AdvEncK(M0), EncK(M1)(A) is negligible, for every A.

Computational security:

AdvEncK(M0), EncK(M1)(A) is negligible, for every efficient adversary A.

Quantifying negligibility, efficiency

12

“Asymptotic” security “Concrete” security

Negligible
(probability) O(λ-c) for all c usually ≤ 2-λ/2 or 2-λ

Efficient
(adversary) Poly(λ) significantly less than

2λ operations

Security parameter, often denoted λ: used to quantify security.

• “Asymptotic” security: used in more theoretical results. λ

remains a variable.

• “Concrete” security: used in more practical results. Typically λ

= 80, 128, or 256. (e.g. “128-bit” security.)

Caveats: computation model (TM, RAM, circuits), “basic”
operation, memory, etc.

Concreteness of security

13

Bits of
security Practical significance

32 Your phone can do it, instantly.

66 Bitcoin hashes per second worldwide.

80 Bitcoin hashes per year worldwide.

(Some state actors could do it?)

128 Considered secure. Standard choice.

(Watch out for trade-offs, like time/data or multi-target)

256 Arguments for impossibility based on physics.

(Relevant for very long-term or quantum security.)

Bitcoin data from https://www.blockchain.com/en/charts/hash-rate in 2019.

https://www.blockchain.com/en/charts/hash-rate

Types of security, again

14

let M0 and M1 be two arbitrary messages…

Perfect security:

EncK(M0) = EncK(M1) (as distributions, for uniform K).

Equivalently: AdvEncK(M0), EncK(M1)(A) = 0, for every A.

Statistical security:

AdvEncK(M0), EncK(M1)(A) is negligible, for every A.

Computational security:

AdvEncK(M0), EncK(M1)(A) is negligible, for every efficient adversary A.

Statistical distance

15

Statistical distance.

Let D0 and D1 be two probability distributions over some set X.

Good tool to bound or analyze advantage.

Proposition 1. This is, in fact, a distance.

Proof. x, y ↦ |y - x| is a distance. So Dist(⋅,⋅) is a sum of distances.
(Can also write it out.)

Dist(D0,D1) =
1

2

X

x2X

|D0(x)� D1(x)|
<latexit sha1_base64="11HlaaOn81WiS2ArjS+lLPk2WRc=">AAADUHicbVJbb9MwFHY7LiNc1sEjLxbVpA6NKilI8IJUQR94HBLdKtVV5LgnrTXHiWyntPIi8XP4NTzwAvwRxBs4SZGWbkey/emc71z86USZ4Nr4/q9We+/W7Tt39+959x88fHTQOXx8ptNcMRizVKRqElENgksYG24ETDIFNIkEnEcX78v4+QqU5qn8ZDYZzBK6kDzmjBrnCjvvLFEJHrlGRW8U+id4FAbH+C0msaLMBoUdFETnSWjXmHCJJwW+dLTe+hi/KKkOXIadrt/3K8PXQbAFXbS10/Cw9ZvMU5YnIA0TVOtp4GdmZqkynAkoPJJryCi7oAuYOihpAnpmq88W+Mh55jhOlTvS4Mp7NcPSROtNEjlmQs1S78ZK502xaW7iNzPLZZYbkKxuFOcCmxSXyuE5V8CM2DhAmeJuVsyW1MlknL7e0dU2SxArMI2PWB1XnT2iQMJnliYJlfPnlsQ04WIzh5jmwhSW6Pg/vkmGk/mKZ3qryLqWxCMCDEkVX3BJhYDYkPJqut2zNKS6myPYiuwal+OlGUhbVJCJVAOJFirNs0bxYje/KuoK0NgpUfOhmVYzPLcpwe5eXAdng37wsj/4+Ko7HH6pd2YfPUXPUA8F6DUaog/oFI0RQ1/RN/QD/Wx/b/9p/91r1dT29kVPUMP2vH+XnBpK</latexit>

Statistical distance, cont'd

16

Proposition 2. The statistical distance Dist(D0,D1) is equal to the
advantage of the best adversary trying to distinguish D0 from D1.

Proof. Let A be the adversary such that, given x ← Db, A outputs 0
iff D0(x) ≥ D1(x). A is clearly best possible.

AdvD0,D1(A) = 2Prx Db(x),b ${0,1}(A(x) = b)� 1

= 2
X

x0

X

b0

Pr(A(x) = b|x = x 0, b = b0)

· Prx Db(x = x 0|b = b0)Prb ${0,1}(b = b0)� 1

=
X

x0

X

b0
A(x0)=b0Db(x

0)� 1

=
X

x0

max(D0(x
0),D1(x

0))� 1

= Dist(D0,D1) using:max(a, b) =
1

2
(a+ b + |b � a|).

<latexit sha1_base64="PRyLEvad3C20Wh2QTTZr90khBQc=">AAAE8XicbVNdb9MwFM1KYSN8rfDIi8XY2rKuagqIgTRpE33gcUjsQ5q7yHGc1pqdhNgprbxI/A3eEK/8Gh75N9wkLVs/LNW+uffc45OTWy8WXOlO5+9a5U717r31jfv2g4ePHj/ZrD09VVGaUHZCIxEl5x5RTPCQnWiuBTuPE0akJ9iZd/Uxr5+NWKJ4FH7Rk5j1JRmEPOCUaEi5tbU/BicSHfmj7NL03E6r5zpZ46hpH2C00y1qx0nmmjHCA6YV6rleY9xsIa98dvFLhE2n5eAMuqCCDpDXRHvIwfhir+1Q2S+ZsEolsNSzMvDq2Yz7fxu6RmM4x/WcHZ7rTYztHTxUMaHMtN+/pTLD1I80Wikra5TdQDNtv4VbJXeGKsQWKpdFYkn00POkcYAEhNYLpfXMLnyoN5de9IZCknEDDM1Ruan5eWNMd4YvJPbgO2eNqftN/DUlfrlpNtYmVTwcfCgJScvLFeAgIRQ0mW7WIGgXXngXXXvATq6bbXdzq9PuFAstB8402LKm69itVdaxH9FUslBTQZS6cDqx7huSaE4Fy2ycKgYf4YoM2AWEIZFM9U0xfBnahoyPgiiBX6hRkb3dYYhUaiI9QOZmqsVanlxZA9sXrtbBft/wME41C2l5c5AKpCOUjzbyecKoFhMICE04iEd0SMApDX8Ae/s295CJEdNz9EYFhRQbJyxk32gkJQn9VwYHRHIx8VlAUqFhbFUwi1f50vJHPFZTi8alRzYWTOMo4QMeEiFYoHG+zafhGGpc7PMSTAGGi3N5UcxCU44lFZFi2BskURrPkWeL/QUpEJAAnCjxbL6tRNgwOs7ioCwHp92287rd/fxm6/DwezlEG9Zz64XVsBzrnXVofbKOrROLVvYrl5VBZVhV1R/Vn9VfJbSyNh28Z9bcqv7+Bzixmf8=</latexit>

Statistical distance, cont'd

17

Proposition 2. The statistical distance Dist(D0,D1) is equal to the
advantage of the best adversary trying to distinguish D0 from D1.

Proof. Let A be the adversary such that, given x ← Db, A outputs 0
iff D0(x) ≥ D1(x). A is clearly best possible.

AdvD0,D1(A) = 2Prx Db(x),b ${0,1}(A(x) = b)� 1

= 2
X

x0

X

b0

Pr(A(x) = b|x = x 0, b = b0)

· Prx Db(x = x 0|b = b0)Prb ${0,1}(b = b0)� 1

=
X

x0

X

b0
A(x0)=b0Db(x

0)� 1

=
X

x0

max(D0(x
0),D1(x

0))� 1

= Dist(D0,D1) using:max(a, b) =
1

2
(a+ b + |b � a|).

<latexit sha1_base64="PRyLEvad3C20Wh2QTTZr90khBQc=">AAAE8XicbVNdb9MwFM1KYSN8rfDIi8XY2rKuagqIgTRpE33gcUjsQ5q7yHGc1pqdhNgprbxI/A3eEK/8Gh75N9wkLVs/LNW+uffc45OTWy8WXOlO5+9a5U717r31jfv2g4ePHj/ZrD09VVGaUHZCIxEl5x5RTPCQnWiuBTuPE0akJ9iZd/Uxr5+NWKJ4FH7Rk5j1JRmEPOCUaEi5tbU/BicSHfmj7NL03E6r5zpZ46hpH2C00y1qx0nmmjHCA6YV6rleY9xsIa98dvFLhE2n5eAMuqCCDpDXRHvIwfhir+1Q2S+ZsEolsNSzMvDq2Yz7fxu6RmM4x/WcHZ7rTYztHTxUMaHMtN+/pTLD1I80Wikra5TdQDNtv4VbJXeGKsQWKpdFYkn00POkcYAEhNYLpfXMLnyoN5de9IZCknEDDM1Ruan5eWNMd4YvJPbgO2eNqftN/DUlfrlpNtYmVTwcfCgJScvLFeAgIRQ0mW7WIGgXXngXXXvATq6bbXdzq9PuFAstB8402LKm69itVdaxH9FUslBTQZS6cDqx7huSaE4Fy2ycKgYf4YoM2AWEIZFM9U0xfBnahoyPgiiBX6hRkb3dYYhUaiI9QOZmqsVanlxZA9sXrtbBft/wME41C2l5c5AKpCOUjzbyecKoFhMICE04iEd0SMApDX8Ae/s295CJEdNz9EYFhRQbJyxk32gkJQn9VwYHRHIx8VlAUqFhbFUwi1f50vJHPFZTi8alRzYWTOMo4QMeEiFYoHG+zafhGGpc7PMSTAGGi3N5UcxCU44lFZFi2BskURrPkWeL/QUpEJAAnCjxbL6tRNgwOs7ioCwHp92287rd/fxm6/DwezlEG9Zz64XVsBzrnXVofbKOrROLVvYrl5VBZVhV1R/Vn9VfJbSyNh28Z9bcqv7+Bzixmf8=</latexit>

Statistical distance, cont'd

18

Corollary. Let A be any algorithm. Then:

Dist(A(D0),A(D1)) ≤ Dist(D0,D1)

Proof. Let B be the best adversary distinguishing D0 from D1, and C
be the best adversary distinguishing A(D0) from A(D1).

Dist(A(D0),A(D1)) = AdvA(D0),A(D1)(C) = AdvD0,D1(C○A)

≤ AdvD0,D1(B) = Dist(D0,D1).

Proposition 3. For all n, Dist(D0n,D1n) ≤ nDist(D0,D1).

Proof.
Dist(An,Bn) ≤ Dist(An,An-1B) + Dist(An-1B,An-2B2) + ... + Dist(ABn-1,Bn).

Sometimes called the “hybrid” argument, although the same term is
also used in more general settings.

Statistical distance, cont'd

19

Proposition 3. For all n, Dist(D0n,D1n) ≤ nDist(D0,D1).

Statistical distance, cont'd

20

Corollary. Let A be any algorithm. Then:

Dist(A(D0),A(D1)) ≤ Dist(D0,D1)

Proof. Let B be the best adversary distinguishing D0 from D1, and C
be the best adversary distinguishing A(D0) from A(D1).

Dist(A(D0),A(D1)) = AdvA(D0),A(D1)(C) = AdvD0,D1(C○A)

≤ AdvD0,D1(B) = Dist(D0,D1).

Proposition 3. For all n, Dist(D0n,D1n) ≤ nDist(D0,D1).

Proof.
Dist(An,Bn) ≤ Dist(An,An-1B) + Dist(An-1B,An-2B2) + ... + Dist(ABn-1,Bn).

Sometimes called the “hybrid” argument, although the same term is
also used in more general settings.

Computational version

21

Advantage of the best adversary = statistical distance.

By extension:

Advantage of a class of adversaries.

Let D0 and D1 be two probability distributions, and A a set of
adversaries. Define:

AdvD0,D1(A) = sup{AdvD0,D1(A) : A ∈ A}

Define A(t) the set of adversaries that terminate in time t. Let:

AdvD0,D1(t) = AdvD0,D1(A(t))

NB For asymptotic security, what matters usually is to distinguish
two families of distributions. We want (abuse of notation):

AdvD0,D1(Poly(λ)) = Negl(λ)

with D0, D1 (implicitly) parametrized by λ.

Computational version, cont'd

22

Types of security, revisited

23

let M0 and M1 be two arbitrary messages…

Perfect security:

EncK(M0) = EncK(M1) (as distributions, for uniform K).

Equivalently: Dist(EncK(M1), EncK(M2)) = 0.

Equivalently: AdvEncK(M0), EncK(M1)({all A}) = 0.

Statistical security:

Dist(EncK(M1), EncK(M2)) is negligible.

Equivalently: AdvEncK(M0), EncK(M1)({all A}) is negligible.

Computational security:

AdvEncK(M0), EncK(M1)({efficient A}) is negligible.

Exercise

24

Consider a Bernoulli (coin flip) distribution B with B(0) = 1/2 - ε and
B(1) = 1/2 + ε. Let U be the uniform distribution on {0,1}. Observe:

Dist(B,U) = ε.

Assume we are doing a one-time pad with an imperfect randomness
source, where the key bits are drawn according to B:

K ← Bn (instead of Un)

Say ε is negligible (asymptotic sense).

Is this still secure?

Perfect security? Statistical? Computational?

Solution

25

Let's encrypt a message M ∈ {0,1}n.

Dist(EncK(M),Un) = Dist(K⊕M,Un)

≤ Σi<n Dist((K⊕M)i ,U)

= nε i-th bit of K⊕M

For M0, M1 ∈ {0,1}n.

Dist(EncK(M0),EncK(M1)) ≤ Dist(EncK(M0),Un) + Dist(EncK(M1),Un)

≤ 2nε

Note that n⋅Negl(n) = Negl(n) so this is (statistically) secure!

(A more refined analysis shows this grows in . The hybrid
argument is a little crude here.)

p
n✏

<latexit sha1_base64="7grgtzvu+pHYgctF7iDudZ0yMpE=">AAADL3icbVLLitRAFK2Jjxnjq0eXboLNgIg0ySjossGNyxHsmYGpZqhUbnUXU49YddPahIAf4lb3fo24Ebf+hZWkhUnPXEjlcO65Dw43L5X0mKa/dqIbN2/d3t27E9+9d//Bw9H+o2NvK8dhxq2y7jRnHpQ0MEOJCk5LB0znCk7yi7dt/mQFzktrPuC6hLlmCyOF5AwDdT4aUf/RYW0aCqWXqqXG6STtIrkKsg0Yk00cne9Hu7SwvNJgkCvm/VmWljivmUPJFTQxrTyUjF+wBZwFaJgGP6+71ZvkIDBFIqwLn8GkYy9X1Ex7v9Z5UGqGS7+da8lrc3mut0ajeDOvpSkrBMP7yaJSCdqkNSYppAOOah0A406G5RO+ZI5xDPbFB5d7L0GtAAftay+6VWLqwMAnbrVmpnheU8G0VOsCBKsUNjX14j++zpcXxUqWfmPR596jmCpAap1cSMOUAoG0fYZ0+C2Rdu9whboTh8HterYEUzcd5Mp6oPnC2aocNG+267umoQETwYleD8OyXhGH08m2D+UqOD6cZC8nh+9fjafTL/0R7ZEn5Cl5RjLymkzJO3JEZoSTFflKvpHv0Y/oZ/Q7+tNLo53N4T0mg4j+/gOurBJJ</latexit>

Shannon's impossibility, revisited

26

Theorem (Shannon ’49). If perfect secrecy holds, it must be the
case that the two parties share some prior information (a key) with:

length(key) ≥ length(message)

where length denotes the bit length.

Saying perfect security is impossible.

What about statistical security?

Modern definition

27

Statistical secrecy.

Let M0 and M1 be two arbitrary messages.

Statistical secrecy: Dist(EncK(M0), EncK(M1)) is negligible.

More formally:

Statistical secrecy.

∀ p ∈ Poly(𝜆), ∀ M0, M1 of size p, Dist(EncK(M0), EncK(M1)) = O(𝜆-c),
(where the distributions are induced by K ←$ {0,1}𝜆).

Is this possible?

No. Hint: for p > 3𝜆, ∃ M0, M1 such that the set of possible
encryptions are disjoint.

Conclusion

28

For many goals of cryptography (even simply symmetric
encryption), can't have statistical security.

→ Strategy:
1) Reduce security of crypto protocols to the security of their basic
bricks (known as primitives: encryption, signature etc).

2) (When possible) reduce security of primitives to known
mathematical hard problem, e.g. discrete logarithm, LWE etc.

How? use arguments based on advantage, statistical distance, etc:
see MPRI course 2.30 “Proofs of security protocols”!

Conclusion

29

Corollary: crypto requires problems that are computationally
hard, but not information theoretically hard (= against unbounded
adversaries).

...against
poly-time

adversaries

...against
unbounded
adversaries

Proving hardness of a problem:
Difficult :-(

Remark. Information-theoretical arguments don't even really care what an algorithm is.

(Turing machine? RAM ? Quantum? Family of circuits? ...)

Conclusion

30

Crypto requires problems that are computationally hard, but not
information theoretically hard. Which we don't know how to do.

Corollary 1. Cryptography requires hardness assumptions.

Corollary 2. Entire modern world relies on statements we don't
know how to prove (or if they are provable).

...and it would be catastrophic if they were wrong. (Payment
ecosystem, secure Internet, private messaging, etc)

Corollary 1. Cryptography requires hardness assumptions.

Corollary 2. Entire modern world relies on statements we don't
know how to prove (or if they are provable).

...and it would be catastrophic if they were wrong. (Payment
ecosystem, secure Internet, private messaging, etc)

Remark. Crypto is rather unique within Computer Science in requiring that some
problems should be hard.

Hard problem zoo

31

Hard problems relate to cryptographic primitives. Higher-level
constructions can be proved secure assuming secure underlying
primitives.

Hard problems for asymmetric primitives.
‣ The RSA problem (≠factorization).

‣Discrete Logarithm over certain groups.

‣Hard problems in lattices.

‣ Syndrome decoding for random codes.

‣ Etc...

Hard problems for symmetric primitives.

‣ Ad-hoc assumptions: the primitive (AES, DES etc) is secure.

See MPRI 2.12.2 “Arithmetic
algorithms for cryptology”

See MPRI 2.12.1 = us :)

See MPRI 2.13.2 right before :)

Wait, no proofs for symmetric primitives?

32

Functionality: no special structure (roughly, only need to “obfuscate”).

Speed: handles massive data: needs to be extremely fast.

Strategy: take extremely efficient operations (XOR, add, bit shift etc), combine
them in carefully designed, but algebraically “incoherent” ways (on purpose).

⇒ No proof (for primitives) but well-studied, and works very well.

vs assymetric crypto:

Functionality: special structure (trapdoor, morphism etc).

Speed: critical but punctual operations.

Strategy: take mathematical objects with special properties, use those
properties.

⇒ Proofs reducing to some hard problem in underlying math object.

In practice

33

vs

SHA-2 hash:

RSA encryption:
Public parameter N = pq with prime p, q.

Encryption of m = m3 mod N.

What is this course about then?

34

In combination, existing MPRI crypto courses cover all major types of
primitives (cf. earlier slide), both in symmetric and asymmetric crypto
+ proofs built on top (MPRI 2.30).

This course:

- first half: lattices.

- this half: advanced primitives (especially zero-knowledge proofs).

Key point: cryptography can do much more than simple encryptions,
signatures, key exchanges, etc.

Think: electronic voting, cryptocurrencies, delegated computation,
homomorphic encryption...

→ We will see some important constructions beyond basic primitives.

Brief interlude: crypto magic

35

Challenge:

Define an injective mapping F: {0,1}* → {0,1}λ.

How about if injectivity is only computational?

i.e. computationally hard to find x ≠ y s.t. F(x) = F(y).

Then it's fine! It's a (cryptographic) hash function.

(Story for another time: hardness as sketched above is ill-defined.)

Zero knowledge proofs

Zero Knowledge

37

Goldwasser, Micali, Rackoff '85.

A zero-knowledge course would be a very bad course.

Image credit Oded Goldreich www.wisdom.weizmann.ac.il/~oded/PS/zk-tut10.ps

http://www.wisdom.weizmann.ac.il/~oded/PS/zk-tut10.ps

Expressivity

38

Zero-knowledge (ZK) proofs are very powerful and versatile.

On an intuitive level (for now), statements you may want to prove:

‣ “I followed the protocol honestly.” (but want to hide the secret
values involved.) E.g. prove election result is correct, without
revealing votes.

‣ “I know this secret information.” (but don't want to reveal it.) For
identification purposes.

‣ “The amount of money going into this transaction is equal to the
amount of money coming out.” (but want to hide the amount, and
how it was divided.)

What do we want to prove?

39

Want to prove a statement on some x: P(x) is true.

Exemple: x = list V of encryptions of all votes + election result R

P(V,R) = result R is the majority vote among encrypted votes V.

In general, can regard x as a bit string.

Equivalently: want to prove x ∈ ℒ. (set ℒ = {y : P(y)}.)

What is a proof?

40

Prover P Verifier V
Proof 𝜋 for x ∈ ℒx

Expected properties of proof system:

‣ Completeness. If x ∈ ℒ, then ∃ proof 𝜋, V(𝜋) = accept.

‣ Soundness. If x ∉ ℒ, then ∀ proof 𝜋, V(𝜋) = reject.

‣ Efficiency. V is PPT (Probabilistic Polynomial Time).

Without the last condition, definition is vacuous (prover is useless).

For a language ℒ :

accept/reject

Zero knowledge

41

Intuitively: Verifier learns nothing from 𝜋 other than x ∈ ℒ.

...this is impossible for previous notion of proof.

(only possible languages are those in BPP, i.e. when the proof is
useless...)

→ going to generalize/relax notion of proofs in a few ways:

‣ Interactive proof, probabilistic prover, imperfect (statistical)
soundness...

Interactive proof

42

Prover P

x

...

Interactive
proof

Verifier V

An Interactive Proof (P,V) for ℒ must satisfy:

‣ (Perfect) Completeness. If x ∈ ℒ, then P↔V accepts.

‣ (Statistical) Soundness. If x ∉ ℒ, then ∀ prover P*, Pr[P*↔V rejects] =
non-negl(|x|). (i.e. ≥ 1/p(|x|) for some fixed polynomial p.)

‣ Efficiency. V is PPT.

Caveat: prover is unbounded.

accept/reject

Interactive Proofs

43

NP = languages that have a (non-interactive) proof with (deterministic)
verifier in P.

IP = languages that have an interactive proof with probabilistic verifier.

Concept discovered independently in cryptography (Goldwasser,
Micali, Rackoff), and complexity theory (Babai).

Remark:

‣ “interactive proofs with deterministic verifier” = NP.

‣ “non-interactive proofs with probabilistic verifier” = AM.

Connection with Probabilistically Checkable Proofs (rich theory).

Complexity theory view:

IP

44

IP: complexity class of languages that admit an interactive proof.

Theorem. Shamir, LKFN at FOCS '90.

IP = PSPACE.

Very powerful but in crypto, for usability, we want efficient (PPT) prover.

→ argument of knowledge.

Public-coin proof: verifier gives its randomness to prover (AM).

Private-coin proof: no such restriction (IP). No more expressive.

Interactive argument of knowledge

45

Prover P

x

...

Interactive
proof

Verifier V

An Interactive Proof (P,V) for ℒ must satisfy:

‣ (Perfect) Completeness. If x ∈ ℒ, then P↔V accepts.

‣ (Statistical) Soundness. If x ∉ ℒ, then ∀ PPT prover P*, Pr[P*↔V rejects]
= non-negl(|x|). (i.e. ≥ 1/p(|x|) for some fixed polynomial p.)

‣ Efficiency. V is PPT.

accept/reject

(only difference)

Preliminary examples

Pepsi vs Coke is in IP
Prosper (P) wants to prove to Véronique (V) that she can
distinguish Pepsi from Coke. Let (X0,X1) = (Pepsi,Coke).

Prover P (Prosper)

(b’ = b)

Verifier V (Véronique)

b ←$ {0,1}glass of Xb

guess b’

accept iff b’ = b

Tasting (or chemistry?)

This interactive proof is complete and sound.

Soundess error = 1/2. Reduce to 2-λ: iterate the protocol λ times.

Graph isomorphism (unbounded prover)
• Suppose two graphs G0, G1 are isomorphic: ∃𝜎, 𝜎(G0) = G1.

• Prover wants to prove G0~G1 without revealing anything about the

isomorphism.

Formally: ℒ = {(G,G'): G~G'}, want to prove (G0,G1) ∈ ℒ.

Prover P Verifier V

𝜃←random isom. on G0 H = 𝜃(G0)

b ←$ {0,1}b

𝜌 s.t. H = 𝜌(Gb)

accept iff H = 𝜌(Gb)

(H = 𝜌(Gb))

Analysis

49

‣ (Perfect) Completeness.

“If x ∈ ℒ, then P↔V accepts”.

Clearly true.

‣ (Statistical) Soundness.

“If x ∉ ℒ, then ∀ prover P*, Pr[P*↔V rejects] = non-negl(|x|)”.

True: V will reject with probability ≥ 1/2.

‣ Efficiency. V is PPT.

We want to actually use this → want a bounded prover (PPT).

Graph isomorphism (bounded prover)
• Prover knows an isomorphism 𝜎 between G0, G1: 𝜎(G0) = G1.

• Prover wants to prove G0~G1 without revealing anything about the

isomorphism.

Formally: ℒ = {(G,G'): G~G'}, want to prove (G0,G1) ∈ ℒ.

Prover P Verifier V

𝜃←random isom. on G0 H = 𝜃(G0)

b ←$ {0,1}b

𝜌 = 𝜃 ◦ 𝜎b

accept iff H = 𝜌(Gb)

Bounded prover who knows a witness. Public coin. Perfect ZK.
(H = 𝜌(Gb))

Proofs of knowledge

?

Motivation

52

We want a bounded prover (PPT).

Corollary: secret prover knowledge is necessary.

In Graph isomorphism, intuitively, proof “shows” that not only
statement is true, but prover knows a witness: the permutation 𝜎.

This difference is meaningful!

Example: cyclic group G = <g>. For this language...

ℒ = {h | ∃s, h = gs}

Interactive Proof: trivial (ℒ = G !)

Knowing a witness: hard (Discrete Log problem)

Defining knowledge

53

To generalize, we want witnesses.

NP languages are great: ℒ = {x | ∃w, R(x,w)} for efficient R.

→ Want to formalize: the prover knows a witness.

What does it mean for an algorithm to know something?

Defining knowledge

54

Algorithm 𝒜 knows a secret s if it outputs s.

Algorithm 𝒜 knows a secret s if s appears somewhere in the code.

Attempt 1.

Attempt 2.

Algorithm 𝒜 knows a secret s if there exists an efficient algorithm ℰ
that can extract s from 𝒜.

Attempt 3.

Soundness of a knowledge proof

55

Prover P Extractor E

witness w
s.t. R(x,w)

...

Knowledge soundness.

∃ efficient extractor E that, given access to P and x, can compute w
such that R(x,w).

x

can control completely,
including random tape

More formally

56

NP Language ℒ = {x | ∃w, R(x,w)}.

Knowledge soundness (attempt 1, right idea, not yet perfect).

A proof system is knowledge-sound if and only if:

 ∃ efficient extractor EP with oracle access to a prover P such that
∀ x, ∀ P that convinces V (with probability 1), EP outputs w such that
R(x,w) (with probability ≥ 1/2).

Remark: this is a property of the verifier.

Modern definition

57

NP Language ℒ = {x | ∃w, R(x,w)}.

Approved

Knowledge soundness (simple).

A proof system is knowledge-sound if and only if:

 ∃ efficient extractor EP with oracle access to a prover P such that
∀ x, ∀ P that convinces V with non-negligible probability, EP outputs
w such that R(x,w) with non-negligible probability.

Knowledge soundness (better).

A proof system is knowledge-sound with soundess 𝜅 iff:

∃ efficient extractor EP such that if 𝜖 = Pr[P↔V accepts] > 𝜅, then EP
succeeds with probability at least 𝜖 - 𝜅.

More information: “On Defining Proofs of Knowledge”, Bellare and Goldwasser

https://www.wisdom.weizmann.ac.il/~oded/pok.html

https://www.wisdom.weizmann.ac.il/~oded/pok.html

Knowledge soundness for Graph Isomorphism

58

Extractor:

- calls P, gets H = 𝜃(G0).

- asks b = 0, and b = 1. This is legitimate due to randomness control!

Gets back 𝜌0, 𝜌1 with H = 𝜌0(G0) = 𝜌1(G1).

- G1 = 𝜌1-1◦𝜌0(G0) → witness 𝜎 = 𝜌1-1◦𝜌0.

Special soundness: two challenges reveals witness, cf. next section.

Prover P Verifier V

𝜃←random isom. on G0 H = 𝜃(G0)

b ←$ {0,1}b

𝜌 = 𝜃 ◦ 𝜎b

accept iff H = 𝜌(Gb)

(H = 𝜌(Gb))

Zero knowledge

Towards zero knowledge

60

For language in NP, witness itself is a proof of knowledge...

‣ Zero-knowledge: prove membership or knowledge while revealing
nothing else.

Prover P Verifier V

𝜎

accept iff G1 = 𝜎(G0)

(G1 = 𝜎(G0))

Towards zero knowledge

61

Need to formalize: the verifier learns nothing.

?

Honest-verifier zero-knowledge

62

Prover P Verifier V

Simulated
transcript

...

Honest-verifier zero-knowledge.

The (interactive) proof system (P,V) is zero-knowledge iff:

∃ efficient (PPT) simulator S s.t. ∀ x ∈ ℒ, transcript of P interacting
with V on input x is indistinguishable from the output of S(x).

x x

Simulator S
x

Indistinguishable

Analysis

63

Point of definition:

‣ anything V could learn from interacting (honestly) with P, could also

learn by just running S.

‣ S is efficient and knows no secret information.

⇒ Anything V can compute with access to P, can compute without P.

That expresses formally: “V learns nothing from P”.

‣ Is the Graph Isomorphism proof ZK?

Yes. Simulator: choose b in {0,1}, and random permutation 𝜋 of Gb.
Publish as simulated transcript: (𝜋(Gb),b, 𝜋). This is identically
distributed to a real transcript → perfect zero-knowledge.

Key argument: 𝜋(Gb) for uniform 𝜋 does not depend on b.

Approved

Types of zero knowledge

64

Let 𝜌 be the distribution of real transcrpits, 𝜎 simulated transcript.

‣ Perfect ZK: 𝜌 = 𝜎.

‣ Statistical ZK: dist(𝜌,𝜎) is negligible. (dist = statistical distance)

‣ Computational ZK: advantage of efficient adversary trying to

distinguish 𝜌 from 𝜎 is negligible.

Likewise: completeness, soundness can be perfect/statistical/
computational.

What if the prover is malicious (does not follow the protocol?)

implies

Honest-verifier Zero-knowledge

65

Prover P* Verifier V

Simulated
transcript

...

Zero-knowledge.

The (interactive) proof system (P,V) is zero-knowledge iff:

∀ prover P*, ∃ PPT simulator S s.t. ∀ x ∈ ℒ, transcript of P*
interacting with V on input x is indistinguishable from output of S(x).

x x

Simulator S
x

Indistinguishable

Summary

66

A ZK proof is (perfectly/statistically/computationally):

1.Complete

2.Sound

3.Zero-knowledge.

A ZK proof of knowledge is (perfectly/statistically/computationally):

1.Complete

2.Knowledge-Sound

3.Zero-knowledge.

“Proof of
membership”

“Proof of
knowledge”

Question

67

Is a zero-knowledge proof of knowledge possible?

Yes. Graph Isomorphism is an example.

Subtlety: Knowledge Extractor can control the prover’s random tape,
Verifier cannot.

Examples

Graph isomorphism
• I know an isomorphism 𝜎 between two graphs G0, G1: 𝜎(G0) = G1.

• I want to prove G0~G1 without revealing anything about the

isomorphism.

Formally: ℒ = {(G,G'): G~G'}, want to prove (G0,G1) ∈ ℒ.

Prover P Verifier V

𝜃←random isom. on G0 H = 𝜃(G0)

b ←$ {0,1}b

𝜌 = 𝜃 ◦ 𝜎b

accept iff H = 𝜌(Gb)

Bounded prover who knows a witness. Public coin. Perfect ZK.

Graph non isomorphism
• I am an unbounded prover who knows G0≁G1.

• I want to prove G0≁G1 without revealing anything else.

Formally: ℒ = {(G,G'): G≁G'}, want to prove (G0,G1) ∈ ℒ.

Prover P Verifier V

𝜃←random isom. on Gb

b ←$ {0,1}

H = 𝜃(Gb)

b’
accept iff b’ = b

return b’ iff Gb’ ~H

Unbounded prover. Private coin. Not ZK for malicious V.

Knowledge of a square root
• Public N = pq for large primes p, q, public x in ℤN.

• I am a bounded prover who knows w such that x = w2 mod N.

• I want to prove that knowledge without revealing anything else.

Prover P Verifier V

b ←$ {0,1}

accept iff z2 = xby

r ←$ ℤN y = r2

b

z = wbr

Knowledge of a discrete log
• Let 𝔾 = <g> ~ ℤp and y ∈ 𝔾. I know x ∈ ℤp such that y = gx.

•Corresponding language is trivial! ∀y ∃x, y = gx. But proof of

knowledge still makes sense.

k ←$ ℤp r = gk

e ←$ ℤpe

s = k - xe

accept iff r = gsye

Known as Schnorr protocol.

Prover P Verifier V

Analysis of Schnorr protocol

‣ (Perfect) Completeness.

Clear.

‣ (Special) Knowledge soundness.

Extractor: gets r = gk, asks two challenges e≠e’, gets back s, s’
with r = gsye = gs’ye’. Yields y = g(s-s’)/(e’-e).

‣ (Perfect) Honest-verifier zero knowledge.

Simulator: draw e ←$ ℤp, s ←$ ℤp, then r = gsye. Return transcript
(r,e,s). Note r, e still uniform and independent → distribution is
identical to real transcript.

We will use this for a signature!

Equality of exponents = DH language
• Let 𝔾 ~ ℤp, g, h ∈ 𝔾. I know x ∈ ℤp such that (y, z) = (gx, hx).

•Corresponding language is Diffie-Hellman language (for fixed g, h)!

ℒ = {(g, ga, gb, gab): a, b ∈ ℤp} ↔ ℒ ’= {(ga, ha): a ∈ ℤp} for h = gb

Prover P Verifier V

k ←$ ℤp q = gk, r = hk

e ←$ ℤpe

s = k - xe
accept iff q = gsye

and r = hsze

This is two ‘simultaneous’ executions of Schnorr protocol, with
same (k,e). Soundness and ZK proofs are the same.

We will use this in a voting protocol!

Sigma protocols and NIZK

Sigma protocol

Prover P Verifier V

k ←$ ℤp r = gk

e ←$ ℤpe

s = k - xe

accept iff r = gsye

Schnorr protocol:

Commit

Challenge

Response

Public-coin ZK protocols following this pattern = Sigma Protocols.

Fiat-Shamir transform:

By setting Challenge = Hash(Commit), can be made non-interactive
→ Non-Interactive Zero-Knowledge (NIZK)

Special soundness

Prover P Verifier V

k ←$ ℤp r = gk

e ←$ ℤpe

s = k - xe

accept iff r = gsye

Commit

Challenge

Response

Special soundness: “answering two distinct uniform challenges
for the same commit ⇒ knowing witness”

Special soundness ⇒ Knowledge soundness ⇒ Soundness

Sigma protocol → signature

NIZK knowledge proof: “I know a witness w for R(x,w)” and can prove
it non-interactively without revealing anything about w.

This is an identification scheme.

Sigma protocol → can integrate message into challenge randomness.

This yields a signature scheme!

Public key: x

Secret key: w

Sign(m): signature = NIZK proof with challenge = hash(commit,m)

Verify signature = verify proof.

That is the Fiat-Shamir transform.

Example: Schnorr signature

k ←$ ℤp r = gk

e ←$ ℤpe

s = k - xe

accept iff r = gsye

Schnorr signature:

Public key: y = gx

Secret key: x

Sign(m): signature 𝜎 = (r,s) with r = gk for k ←$ ℤp, s = k - xH(r,m).

Verify(𝜎,m): accept iff r = gsyH(r,m).

Security reduces to Discrete Log, in the Random Oracle Model.

Schnorr protocol:

ZK proofs for arbitrary circuits

Reductions
Suppose there exists an efficient (polynomial) reduction from ℒ ’ to ℒ :

∃ efficient f such that x ∈ ℒ ’ iff f(x) ∈ ℒ. (Karp reduction.)

If I can do ZK proofs for ℒ, I can do ZK proofs for ℒ ’!

To prove x ∈ ℒ ’, do a ZK proof of f(x) ∈ ℒ.

Also works for knowledge proofs (via everything being constructive).

⇒ The dream: if we can do ZK proof for an NP-complete language, we
can prove everything we ever want!

Notably circuit-SAT.

Commitment scheme

A commitment scheme is a (family of) functions C: X×A→V s.t.:

• Binding: it is hard to find x≠x' and a, a' s.t. C(x,a) = C(x',a').

•Hiding: for all x, x', the distributions C(x,a) for a ←$ A and C(x',a)

for a ←$ A are indistinguishable.

Instantiation: pick a hash function.

Usage:

• Alice commits to a value x by drawing a ←$ A and sending

C(x,a).

• Later, Alice opens the commitment by revealing the inputs x,a.

The dream: ZK proof for 3-coloring
• I know an 3-coloring c of a graph G (into ℤ3).

• I want to prove that such a coloring exists, without revealing

anything about the coloring.

Formally: ℒ = {(G): G admits a 3-coloring}

Prover P

open commit on
𝜃◦c(v),𝜃◦c(w)

Verifier V

𝜃←$ permutation on ℤ3.
commit on 𝜃◦c(x)
for each vertex x.

v, w ←$ vertex set
v, w

Bounded prover with a witness. Public coin. Computational ZK.

accept iff
𝜃◦c(v) ≠ 𝜃◦c(w)

The wake-up

...this is incredibly inefficient.

- transform circuit-SAT instance into 3-coloring instance.

- run previous protocol many times (roughly #circuit size ×
security parameter) → gigantic proofs, verification times...

SNARKs

SNARK(?) tile by William Morris.

Finite Fields
Most of what follows is going to happen in a finite field.

For a short presentation of finite fields, see:

https://www.di.ens.fr/brice.minaud/cours/ff.pdf

A key idea we will use:

If P≠Q are two degree-d polynomials over 𝔽q, then for 𝛼 ← 𝔽q drawn
uniformly at random, Pr[P(𝛼)≠Q(𝛼)] ≥ 1 - d/q.

Proof: P-Q is a non-zero polynomial of degree at most d, so it can
be zero on at most d points.

→ to check if two bounded-degree polynomials are equal, it is
enough to check at a random point!

https://www.di.ens.fr/brice.minaud/cours/ff.pdf

A toy example
Prover P Verifier V

...
x x

Prosper Véronique

Véronique wants to compute the 1000th Fibonacci number in ℤp.

She doesn't have time, so she asks Prosper to to it. But she wants
a proof that the computation was correct.

(P & V hate closed formulas and fast exponentiation.)

“Solution”: agree on whole computation circuit → encode as SAT
problem → transform into 3-coloring problem → include NIZK
proof of that 3-coloring problem with the result.

Remark: size of proof is linear in the size of the circuit Véronique
doesn't want to compute.

SNARK

We would like to achieve zero-knowledge proofs that are succint
and non-interactive.

Succint Non-interactive Argument of Knowledge: SNARK.

Also a fantastical beast by Lewis Caroll:

A new approach

Prosper computes the Fibonacci sequence f1, ..., f1000 in ℤp.

He sends f1, f2, and f1000 to Véronique.

This line of presentation is loosely borrowed from Eli Ben-Sasson:

https://www.youtube.com/watch?v=9VuZvdxFZQo

Magic claim: she will be able to check that this computation was
correct, for all i, with 99% certainty, by asking Prosper for only 4
values in ℤp.

Now V. wants to check fi+2 = fi + fi+1 for all i's.

Disclaimers:
- we assume Prosper answers queries honestly (for now).

- from now on, assume |ℤp| is “large enough”, say |ℤp| > 100000.

(Otherwise, just go to a field extension.)

https://www.youtube.com/watch?v=9VuZvdxFZQo

A new approach

Setup: Prosper interpolates a degree-999 polynomial P in ℤp such
that P(i) = fi for i = 1, ..., 1000.

Let D = (X-1)⋅(X-2)⋅...⋅(X-998).

P(i+2) - P(i+1) - P(i) = 0 for i = 1,...,998

D divides P(X+2) - P(X+1) - P(X)
P(X+2) - P(X+1) - P(X) = D⋅H for some H

⇔
⇔

How Véronique checks that the computation was correct:

- Véronique draws 𝛼 ← ℤp uniformly, computes D(𝛼).

- She asks Prosper for P(𝛼), P(𝛼+1), P(𝛼+2), H(𝛼).

- She accepts computation was correct iff:

P(𝛼+2) - P(𝛼+1) - P(𝛼) = D(𝛼)⋅H(𝛼)

Why the approach works

Completeness: if Prosper computed the fi's correctly, then he can
compute H(𝛼) as required.

Soundness: The only requirements for soundness to hold are

‣ The same polynomial P was used to compute P(𝛼), P(𝛼+1),

P(𝛼+2) (as well as P(1), P(2), P(1000));

‣ P and H have the correct degree (resp. 1000 and 1).

If Prosper computed the P(i) = fi’s incorrectly, then as long as the
previous requirements hold, we have:

Pr[P(𝛼+2) - P(𝛼+1) - P(𝛼) = D(𝛼)⋅H(𝛼)] ≤ 1000/p < 0.01
so Véronique will detect the issue with > 99% probability.

(An implicit assumption here is: H does not depend on 𝛼.)

It remains to force Prosper to answer queries honestly.

In particular, soundness argument crucially relies on P, H being
bounded-degree polys.

→ need to limit Prosper to computing polys of degree < 1000.

→ A new ingredient: pairings.

Quick “reminder”

Fix cyclic group 𝔾 = <g>.

Discrete Logarithm Problem: given ga for uniform a, compute a.

(Computational) Diffie-Hellman Problem: given (ga,gb) for
uniform a, b, compute gab.

In crypto, it is often assumed that these problems are difficult (in
the relevant group).

Example of group used in practice: prime subgroup of ℤp*.

Pairings
Pairings. Let 𝔾 = <g>, 𝕋 = <t> be two cyclic groups of order p. A
map e: 𝔾 × 𝔾 → 𝕋 is a pairing iff for all a, b in ℤp,

e(ga,gb) = tab.

Remarks:

- Definition doesn't depend on choice of generators, as long as t
= e(g,g).

- Assume Discrete Log is hard in 𝔾, otherwise this is useless. On
the other hand, e implies DDH cannot be hard (why?).

- First two groups need not be equal in general.

- Can be realized with 𝔾 an elliptic curve, 𝕋 = 𝔽q*.

Encodings
Fix 𝔾 = <g> of order p.

Encode a value a ∈ ℤp as ga. We will write [a] = ga.

We assume DL is hard → decoding a random value is hard. But
encoding is deterministic → checking if h ∈ 𝔾 encodes a given
value is easy.

Additive homomorphism: given encodings [a],[b] of a and b, can
compute encoding of a+b: [a+b] = [a][b].

→ can compute ℤp-linear functions over encodings.

Idea: a pairing e: <g> × <g> → <t> allows computing quadratic
functions over encodings (at the cost of moving to 𝕋).

Keeping Prosper honest, using encodings
First: want to ensure P computed by Prosper is degree ≤ 1000.

Approach:

- Véronique draws evaluation point 𝛼 ← ℤp uniformly at random.

- V. publishes encodings [𝛼], [𝛼2], ..., [𝛼1000].

→ Prosper can compute [P(𝛼)], because it is a linear combination
of the [𝛼i]'s, i ≤ 1000. But only for deg(P) ≤ 1000.

E.g. cannot compute [𝛼1001].

Prosper can compute in the same way [P(𝛼)], [P(𝛼+1)], [P(𝛼+2)],
[H(𝛼)].

Remark: Prosper can compute [(𝛼+1)i] from the [𝛼j]'s for j ≤ i.

Remaining issues:

1) ensure value “[P(𝛼)]”returned by Prosper is in fact a linear
combination of [𝛼i]'s.

2) ensure deg(H) ≤ 1, not 1000.

3) ensure [P(𝛼)], [P(𝛼+1)], [P(𝛼+2)] etc. are from same polynomial.

4) last issue: how does Véronique check the result? Cannot
decode encodings.

Dealing with issues (1) and (2)

1) ensure [P(𝛼)] is in fact a linear combination of [𝛼i]'s.
2) ensure deg(H) ≤ 1, not 1000.

Goal

Solution:

V. publishes encodings [𝛼], [𝛼2], ..., [𝛼1000]...

...and also encodings [𝛾], [𝛾𝛼], [𝛾𝛼2], ..., [𝛾𝛼1000] for a uniform 𝛾.

→ Prosper can compute [P(𝛼)], and [𝛾P(𝛼)], and send them to V.

V. can now use the pairing e to check: e([P(𝛼)],[𝛾]) = e([𝛾P(𝛼)],[1]).

The point: if Prosper did not compute [P(𝛼)] as linear combination
of [𝛼i]'s, he cannot compute [𝛾P(𝛼)]. (Note this is quadratic.)

This is an ad-hoc knowledge assumption (true in a generic model).

1) ensure [P(𝛼)] is in fact a linear combination of [𝛼i]'s.

2) ensure deg(H) ≤ 1, not 1000.

Goal

Solution:

V. publishes encodings [𝛼], [𝛼2], ..., [𝛼1000]...

...and also encodings [𝜂], [𝜂𝛼], for a uniform 𝜂.

→ Prosper can compute [H(𝛼)], and [𝜂H(𝛼)].

V. can check: e([H(𝛼)],[𝜂]) = e([𝜂H(𝛼)],[1]).

The point: if Prosper did not compute [H(𝛼)] as linear combination
of [𝛼i]'s, i ≤ 1, he cannot compute [𝜂H(𝛼)].

Dealing with issue (3)

3) ensure [P(𝛼)], [P(𝛼+1)], [P(𝛼+2)] etc. are from same polynomial.
Goal

Solution:

Let's deal with [P(𝛼)], [P(𝛼+1)].

V. publishes [𝜃], [𝜃((𝛼+1)2-𝛼2)], ..., [𝜃((𝛼+1)1000-𝛼1000)] for a uniform 𝜃.

→ Prosper can compute [𝜃(P(𝛼+1)-P(𝛼))].

V. can check: e([𝜃(P(𝛼+1)-P(𝛼))],[1]) = e([P(𝛼+1)-P(𝛼)],[𝜃]).

The point: if Prosper did not compute [P(𝛼)], [P(𝛼+1)] with same
coefficients, he cannot compute [𝜃(P(𝛼+1)-P(𝛼))].

Checking divisibility

Summary of 3 previous slides: we have forced Prosper to compute
[P(𝛼)], [H(𝛼)], ... as polys of correct degree.

Remains to check P(𝛼+2)-P(𝛼+1)-P(𝛼) = D(𝛼)⋅H(𝛼), using the
encodings.

No problem! this is a quadratic equation. Check:

e([P(𝛼+2)-P(𝛼+1)-P(𝛼)],[1]) = e([D(𝛼)],[H(𝛼)])

Conclusion. Since P(𝛼), H(𝛼) etc are polys of right degree, original
argument applies: checking equality at random 𝛼 ensures with
≥ 1-1000/|ℤp| > 99% probability the equality is true on the whole
polys → D divides P(𝛼+2)-P(𝛼+1)-P(𝛼) → computation was correct.

Efficiency

Prosper proves correct computation by providing a constant
number of encodings: [P(𝛼)], [𝛾P(𝛼)], [H(𝛼)], [𝜂H(𝛼)] etc.

#encodings is absolute constant, independent of circuit size.

Pre-processing by Véronique was still linear in circuit size: publishes
[𝛼i], i ≤ 1000, etc. But...

- Can be amortized over many circuits.

- Exist “fully succint” SNARKs, with O(log(circ. size)) verifier pre-
processing.

Working with circuits directly

In essence: we have seen how to do a succint proof of polynomial
divisibility.

Can in principle encode valid machine state transitions as
polynomial constraints → succint proofs for circuit-SAT.

Now: want to do that more concretely = get SNARKs for circuit-SAT
(directly).

We are going to encode a circuit as polynomials.

For simplicity, forget about negations. Write
circuit with (XOR), (AND) gates. Then:

1) Associate an integer i to each input; and to
each output of a mult gate .

2) Associate an element ri ∈ 𝔽q to mult gate i.

Now circuit can be encoded as polys. For each i
= 1,...,6, define polynomials vi, wi, yi:

‣ vi(rj)=1 if value i is left input to gate j, 0 if not.

‣ wi(rj)=1 if value i is right input to gate j, 0 if not.

‣ yi(rj)=1 if value i is output of gate j, 0 if not.

1 2 3 4

5

6

r6

r5

In this case, vi, wi, yi are degree 2.

Encoding mult gate 5:

‣ v3(r5)=1, vi(r5)=0 otherwise.

‣ w4(r5)=1, wi(r5)=0 otherwise.

‣ y5(r5)=1, yi(r5)=0 otherwise.

Encoding mult gate 6:

‣ v1(r6)=v2(r6)=1, vi(r6)=0 otherwise.

‣ w5(r6)=1, wi(r6)=0 otherwise.

‣ y6(r6)=1, yi(r6)=0 otherwise.

1 2 3 4

5

6

r6

r5

Exemple.

The point: an assignment of variables c1, ..., c6 satisfies the circuit iff:

(𝝨civi(r5))⋅(𝝨ciwi(r5)) = 𝝨ciyi(r5) and (𝝨civi(r6))⋅(𝝨ciwi(r6)) = 𝝨ciyi(r6)

Equivalently:

(X-r5)(X-r6) divides (𝝨civi) ⋅ (𝝨ciwi) - 𝝨ciyi

c1 c2 c3 c4

c5

c6

→ we have reduced:

“Prosper wants to prove he knows inputs satisfying a circuit.”
into:

“Prosper wants to prove he knows linear combinations V = 𝝨civi, W =
𝝨ciwi, Y = 𝝨ciyi, such that T = (X-r5)(X-r6) divides VW-Y.”

⇔ ∃ H, T⋅H = V⋅W-Y

1. quadratic!

2. polynomial equality!We know how to do that!

V. publishes [𝛼i], plus auxiliary [𝛾𝛼i] etc... (at setup, indep. of circuit)

P.'s proof is [V(𝛼)], [W(𝛼)], [Y(𝛼)], [H(𝛼)], plus auxiliary [𝛾V(𝛼)] etc...

V. checks e(T(𝛼),H(𝛼))=e([V(𝛼)],[W(𝛼)])e([Y(𝛼)],[1])-1 and auxiliary stuff.

Constant-size proof. Construction works for any circuit.

Succint Zero Knowledge?

Proof: ([V(𝛼)], [W(𝛼)], [Y(𝛼)], [H(𝛼)]) (+ auxiliary values)

Is it ZK?

‣ ZK not needed for “delegation of computation” application.

‣ But needed for other applications.

Zero Knowledge

Proof: ([V(𝛼)], [W(𝛼)], [Y(𝛼)], [H(𝛼)]) (+ auxiliary values)

Validity check: T⋅H = V⋅W-Y at point 𝛼 (+ auxiliary tests)

(That is, concretely we check: e([T(𝛼)],[H(𝛼)]) = e([V(𝛼)],[W(𝛼)])e([Y(𝛼)],[1])-1)

Natural idea to build ZK simulator:

Pick proof (a,b,c,d) uniformly among values that verify the validity check.

Problem: cannot argue indistinguishability.

Solution: modify proof so that the above simulator is indistinguishable.

zk-SNARK
[V'] = [V + dVT]

[W'] = [V + dWT]

[Y'] = [Y + dYT]

[H'] = [(V'⋅W'-Y')/T]

dV ←$ ℤp

dW ←$ ℤp

dY ←$ ℤp

well-defined: T | V'⋅W'-Y', because T | V⋅W-Y.

Old proof: ([V(𝛼)], [W(𝛼)], [Y(𝛼)], [H(𝛼)])

New proof: ([V'(𝛼)], [W'(𝛼)], [Y'(𝛼)], [H'(𝛼)])

Validity check: unchanged!

New proof is ZK because it is a uniform among 4-tuples that satisfy validity*.

* assuming T(𝛼) ≠ 0, which holds except with negligible probability. Building simulator left as exercise.

Remark: also, need to adapt auxiliary checks.

⚠ Above statement assumes [𝛼i]'s + auxiliary values were built honestly.

Subversion of preprocessing

Q: How to enforce the [𝛼i]'s + auxiliary values were built honestly?
A: check [𝛼i][𝛼] = [𝛼i] for all i.

Same idea for auxiliary values: check [𝛼i][𝛾] = [𝛾𝛼i] for all i, etc.

Q: What if the pairing is asymmetric (𝔾1 × 𝔾2 → 𝕋 instead of 𝔾 × 𝔾 → 𝕋)?

A: Publish [𝛼i]'s in both groups. Can then check as above.

Historical note: for fully succint SNARKs subversion of preprocessing is a
non-trivial issue. Initial setup required “trusted setup” → “ceremonies”.

Recap: the scheme
Prover P Verifier V

x x[𝛼], [𝛼2], …, [𝛼n]

aux. values:

[𝛾𝛼i]'s, [𝜂𝛼i]'s, etc.

Preprocessing

Proof(s)
Prover P Verifier V

x x([V'(𝛼)], [W'(𝛼)], [Y'(𝛼)], [H'(𝛼)])

aux. values:

[𝛾V'(𝛼)]'s, [𝜂V'(𝛼)]'s, etc.

• Check coherence

• Check validity
including coherence
of aux. values.

Recap: the ideas

Key step: convert target computation/language into polynomials.

Why? Polynomials...
‣ ...enable “key lemma” about checking equality at single point

(“minimal distance” property). Key in “succint proof”-style results.

‣ ...enable enforcing honesty efficiently, here via encodings + pairings.

Even better: arrange that checking proof = checking quadratic equation.

Enables use of pairings. More specific to this approach.

In practice

Construction was proposed in Pinocchio scheme

(Parno et al. S&P 2013).

Practical: proofs ~ 300kB, verification time ~ 10 ms.

- Introduced for verifiable outsourced computation.

- Zero-knowledge variant (built as seen earlier).

- Further improvements since.

Applications

Real-World Crypto

Application #1: e-Voting

e-Voting

Are going to see (more or less) Helios voting system.

https://heliosvoting.org/

Used for many small- to medium-scale elections.

Including IACR (International Association for Cryptologic Research).

We will focus on yes/no referendum.

Nice description of Belenios variant: https://hal.inria.fr/hal-02066930/document

https://heliosvoting.org/
https://hal.inria.fr/hal-02066930/document

Goals

We want:

‣ Vote privacy

‣ Full verifiability:

• Voter can check their vote was counted

• Everyone can check election result is correct

Every voter cast ≤1 vote, result = number of yes votes

We do not try to protect against:

‣Coercion/vote buying

Quick reminder: Diffie-Hellman key exchange

Alice Bob

ga

gb

a ←$ ℤp b ←$ ℤp

𝔾 = <g>, |𝔾| = p

Afterwards: Alice & Bob can both compute gab.

But computing gab is hard for external observer (DDH problem).

Quick reminder: ElGamal Encryption

𝔾 = <g>, |𝔾| = p

Secret key: x ∈ ℤp

Public key: h = gx

Enc(m) = (gr, m・hr), where r ←$ ℤp

Dec(k,c) = c/kx

Security reduces to DDH assumption over 𝔾.

Multiplicatively homomorphic: given (k,c) = Enc(m), (k',c') = Enc(m'),

(kk',cc') is an encryption of mm'.

Basics

Election = want to add up encrypted votes...

→ just use additively homomorphic encryption!

Helios: use ElGamal. Multiplicatively homomorphic.

To make it additive: vote for v is gv.

Recovering v from gv is discrete log, but brute force OK (v small).

In addition: voters sign their votes.

Helios: Schnorr signatures.

Who decrypts the result?

Public bulletin board
• Voter public sig. keys: pki

• Master public key: mpk=gx

• votes: ci = encmpk(vi)

• signatures: sigski(ci)

Voter i

owns voter secret sig. key ski

wants to vote vi ∈ {0,1}

Decryption trustee

generates ElGamal master key
pair (mpk=gx,msk=x)

generates

Anobody
checks

• encrypted result: c = ∑ ci

• result: decmsk(c)

First attempt

?

Problem: how to verify final result.

Making election result verifiable

ElGamal encryption:

Master keys: (mpk=gx,msk=x)

Encrypted election result c = (cL = gk,cR = m∙gxk)

Election result = Dec(c) = m = cR / cLx

→ giving decryption is same as giving cLx

→ to prove decryption is correct, prove:

 discrete log of (cL)x in base cL = discrete log of mpk=gx in base g

⇔ (g,gx, cL, cLx) ∈ Diffie-Hellman language
→ to make election result verifiable: decryption trustee just provides
NIZK proof of DH language for (g,gx, cL, cLx)!

Take ZK proof of DH language from earlier + Fiat-Shamir → NIZK

Note ZK property is crucial.

Public bulletin board
• Voter public sig. keys: pki

• Master public key: mpk=gx

• votes: ci = encmpk(vi)

• signatures: sigski(ci)

Voter i

owns voter secret sig. key ski

wants to vote vi ∈ {0,1}

Decryption trustee

generates ElGamal master key
pair (mpk=gx,msk=x)

generates

Anobody
checks

• encrypted result: c = ∑ ci

• result: decmsk(c) + DH proof

Now with verifiable election result

Problem 2: how about I vote encmpk(1000)?

Proving individual vote correctness

In addition to vote encmpk(vi) and signature sigski(ci), voter provides NIZK
proof that vi ∈ {0,1}.

Helios doesn't use SNARK here, but more tailored proof of disjunction.

Note ZK property is crucial again.

To prevent “weeding attack” (vote replication):

NIZK proof includes gk, pki in challenge randomness (hash input of
sigma protocol), where gk is the randomness used in encmpk(vi).

→ proof (hence vote) cannot be duplicated without knowing ski.

Public bulletin board
• Voter public sig. keys: pki

• Master public key: mpk=gx

• votes: ci = encmpk(vi)+proof ≤1

• signatures: sigski(ci)

Voter i

owns voter secret sig. key ski

wants to vote vi ∈ {0,1}

Decryption trustee

generates ElGamal master key
pair (mpk=gx,msk=x)

generates

Anybody
checks

• encrypted result: c = ∑ ci

• result: decmsk(c) + DH proof

Now with full verifiability

Bonus problem: replace decryption trustee by threshold scheme.

Application #2: Anonymous Cryptocurrencies

cash-512.webp (WEBP Image, 512 × 512 pixels) https://cdn0.iconfinder.com/data/icons/business-management-...

1 of 1 18/05/2020, 07:46

Cryptocurrencies

 Electronic Money: credit cards etc. Traceable + Central authority (bank).

≠ Electronic Cash: not traceable.

≠ Cryptocurrencies: no central authority*.

*in principle.

Normal life

ShopClient

Bank

Problem: double spending

coin i

coin i

coin i

Fundamental problem with electronic money.

Central Authority solution

coin i

coin i

coin i

Check not spent

same coin

Central authority: keeps ledger
of who has spent what.

Cryptocurrency solution: public ledger

No bank → who checks validity of transactions? (no double
spending)

Idea: just publish all transactions! Everybody can check.

Public ledger:

Alice Bob

Bob Charlie

Alice Charlie

Bob David

Public ledger

How to prevent people from writing any transaction they want?

An account is a (public key, secret key) pair for signature scheme.

Pseudo-anonymity: account is just a key.

Alice: (pkA, skA).

Bob: (pkB, skB).

Ledger:

Alice Bob

pkA pkB

+ signskA(pkA → pkB)

Accounts
Ledger: pkA pkB

+ signskA(pkA → pkB)

How do you know pkA has the money?

Comes from previous transaction (tx) in the ledger (chain).

pkA pkB

+ signskA(pkA → pkB)

pkC pkA

+ signskA(pkC → pkA)

Fungibility
One transaction:

pkA pkD

pkB

pkC

pkE

pkA

3

1

1

2

1.5

1.5

Σ = 5 Σ = 5

+ signatures with skA, skB, skC.

Payback: pkA is giving the change back to itself.

Public ledger, revisited
Ledger is a chain of transactions.

pkA pkD

pkB

pkC

pkE

pkA

3

1

1

2

1.5

1.5

+ sign skA, skB, skC.

tx 1

pkA pkH

pkF

pkG

pkI

pkA

1.5

2

0.5

2

1

1

+ sign skA, skF, skG.

tx 2

…

No real notion of account: every tx input links to previous unspent
tx output (utxo).

To receive money, user can create new “account” (pk, sk) as
destination, for every tx.

The blockchain
Transactions are arranged into blocks.

pkA pkD

pkB

pkC

pkE

pkA

3

1

1

2

1.5

1.5

+ sign skA, skB, skC.

tx 1

pkA pkH

pkF

pkG

pkI

pkA

1.5

2

0.5

2

1

1

+ sign skA, skF, skG.

tx 2

…

One block

hash

The blockchain
Blocks are arranged into a chain.

pkA pkD

pkB

pkC

pkE

pkA

…

tx i

pkA pkH

pkF

pkG

pkI

pkA

tx i+1

pkA pkD

pkB

pkC

pkE

pkA

…

tx i

pkA pkH

pkF

pkG

pkI

pkA

tx i+1

Block 1 Block 2

…

Each new block contains hash(previous block).

hash

Bitcoin and anonymity

Whole transaction graph is public!

Can trace transactions. See e.g. Ron and Shamir 2012.

pkA pkD

pkB

pkC

pkE

pkA

3

1

1

2

1.5

1.5

+ sign skA, skB, skC.
Probably same person

Bitcoin and anonymity

Suspicious activity.

Normal transaction

pkA pkD

pkB

pkC

pkE

pkA

3

1

1

2

1.5

1.5

+ sign skA, skB, skC.

Encrypt is public: identities (public keys), amounts.

Hidden transaction (Zcash)

pkA pkD

pkB

pkC

pkE

pkA

3

1

1

2

1.5

1.5

+ sign skA, skB, skC.

Everything is encrypted: identities, amounts.

Need to check:

‣ Sum of inputs = sum of outputs.

‣Quantities are positive.

‣ Spender knows secret key skB for each spender ID pkA. .

‣ spender IDs correspond to previous unspent tx's.

ZK proof (w/ homomorphism) ✔
ZK proof (“range proof”) ✔

zk-SNARK ✔
?

Interlude: Merkle trees

c1 c2 c3 cn...

Root R

h1 = H(c1,c2) h2 = H(c3,c4) hn/2

H(h1,h2)

Leaves of the Merkle tree are (all) commits c1, …, cn.

Each internal node of the Merkle tree is a hash of its children.

Proving an element is in a set...

c

Root R

To prove c is a leaf, without revealing location, prove:

“There exist x1, …, xh such that R = H(xh, …, H(x2,H(x1,c))…).”

where H is collision-resistant (with symmetric inputs).

x1

x2

xh

Linking transaction to unspent tx's

Scheme (simplified):

‣ Every tx contains commit = Hash(recipient, tx-ID, randomness).

‣ Every tx publishes nullifier = Hash(spending key, tx-ID) for the tx-ID of

previous tx it spends from.

Blockchain stores:

T: Merkle tree of commits L: List of nullifiers

When a new tx is issued:

‣Check ZK proof (included in tx)
that ∃ commit for spender in T.

‣Check nullifier is new (not in L),

then add it to L.

‣Check ZK proof (included in tx)

that commit and nullifier are for
same tx-ID.

Non-application: Annoying mathematicians

Please don't.

Theorem proving vs NP

Let's encode theorem statements in some way: Encoding of T is [T].

ℒ = {([T],1B): there exists a proof of T of length at most B}

This language is NP-complete. (Exercise)

→ If you prove the Riemann hypothesis, can in theory publish a
succint ZK proof of knowledge. Only information revealed:

‣ You know a (correct) proof.

‣ An upper bound on the size of your proof.

‣No information about the proof whatsoever. 👍

Tip: To maximize annoyance, publish ZK proof of knowledge for “Riemann Hypothesis is true OR Syracuse
conjecture is true”.

Fin

Bonus question: If you read a proof of “P = NP” using the zk-
SNARK from this course, can you deduce that P = NP?

