
MPRI, 2025

Brice Minaud

email: brice.minaud@ens.fr

Techniques in Cryptography and Cryptanalysis

Post-Quantum Signatures

Quantum computing

New model of computation. Computes on superposition of
n-bit strings.

Grover algorithm: given arbitrary (efficient) F: {0,1}n → {0,1},
find x such that F(x) = 1 in time O(2n/2).

Shor algorithm: factors integer and computes discrete
logarithm in polynomial time.

Fine print: existence of efficient quantum computers in the
forseeable future is still up for debate. “Weak” forms of
quantum computing already exist.

3

Post-Quantum crypto

Today, most of public-key crypto is based on hard problems arising
from number theory:

• Integer Factorization RSA

• Discrete Log Diffie-Hellman, ElGamal…

• Elliptic Curves ECDSA, pairing-based crypto, including
 most SNARKs…

Broken in quantum polynomial time by Shor’s algorithm.

In short: efficient quantum computers ⇒ global crypto catastrophe.
(Caveats apply.)

→ Need to anticipate. To have solutions ready, + forward security.

→ Ongoing NIST-organized “selection process” (a.k.a. competition)
to define new post-quantum standards.

4

Post-Quantum crypto

There is nothing wrong with the general outline of building
encryption or signatures from a hard problem + trapdoor.

‣ Ultimately, post-quantum cryptography is “just” about changing
the underlying hard problems.

...and evaluating post-quantum resistance.

...and selecting concrete parameters.

...and changing proof models (quantum oracles, post-post
quantum cryptography...).

...and ensuring side-channel resistance.

...and optimizing classical efficiency.

...and deploying the result.

5

Hard problems in post-quantum world

Number Theory

Lattices, codes,…
(conjectured)

Post-quantum candidate hard problems:

• Lattices.

•Code-based crypto.

• Isogenies.

• Symmetric crypto (→ signatures).

•Multivariate crypto.

Lattices are the mainstream candidate. Other PQ
approaches for Public-Key crypto “only” motivated
by PQ. Lattice-based crypto stands on its own:

• Simplicity (of some schemes, not their analysis).

• Security from worst-case hardness (in theory).

• Very expressive/versatile, e.g. FHE etc.

6

Timeline for post-quantum transition

7

Aug. 2016: NSA surprise call for post-quantum security. (Updated) FAQ:

https://media.defense.gov/2022/Sep/07/2003071836/-1/-1/1/CSI_CNSA_2.0_FAQ_.PDF

Dec. 2016: NIST call for post-quantum signature & key exchange schemes.

https://csrc.nist.gov/projects/post-quantum-cryptography

2022: Second NIST call for post-quantum signatures.

https://csrc.nist.gov/Projects/pqc-dig-sig/standardization/call-for-proposals

By 2035: most public-key cryptography should have transitioned (NIST).

???

2025: ICCS call for post-quantum cryptographic algorithms.

https://niccs.org.cn/en/notice/202502/t20250205_378200.html

http://www.apple.com/uk
http://www.apple.com/uk
http://www.apple.com/uk
http://www.apple.com/uk

What about France and Europe? 🇪🇺

8

Lots of French & European expertise on crypto primitives.

‣ Especially symmetric, code-based, lattice-based, isogenies,

multivariate.

Many (most?) NIST winners are created in Europe.

ANSSI recommends hybrid approaches (w/o specific timeline).

Large national projects on cybersecurity, including post-quantum.

Current outlook for NIST PQ signatures (as of early 2025)

9

First call, signature finalists (2022):

‣ Dilithium. [Lattices*]

‣ Falcon. [Lattices*]

‣ Rainbow. [Multivariate, broken]

Alternate signatures:

‣ SPHINCS+. [hash-based]

‣ Picnic. [MPC-in-the-head]

‣ GeMSS. [Multivariate, broken]

Second call for new post-quantum signatures (2023), especially:

‣ Not based on lattices.

‣ With short signatures.

Main Approaches for post-quantum signatures:

Lattices, codes, isogenies, multivariate, hash-based, MPC-in-the-head.

*Structured lattices.

How to build a signature scheme?

10

Two main paradigms.

Hash-and-Sign signatures

‣ Similar to RSA signatures.

‣ Based on a trapdoor permutation.

Fiat-Shamir signatures

‣ Similar to Schnorr signatures.

‣ Based on a zero-knowedge proof with Fiat-Shamir transform.

Lattices,

Multivariate,

Codes

Lattices,

Isogenies,

MPC-in-the-head

Hash-based signatures

‣ Similar to SPHINCS/XMSS signatures.

‣ Based on a one-time/few-time signature with Goldreich/Merkle transform.

A Hash-and-Sign lattice signature

Trapdoor permutation

12

Sample: outputs key k and trapdoor t.

Forward: given key k and input x, can compute y = F(k,x) in PPT.

Inverse: given trapdoor t and target y, can compute x such that

y = F(k,x) in PPT.

Trapdoor permutation

Security: given target y, cannot compute x such that y = F(k,x) in
PPT (except with negligible probability of success).

Example: RSA is a trapdoor permutation, with key N = pq, trapdoor
d = e-1 mod 𝜙(N), F(N,x) = xe mod N, F-1(N,d,y) = yd mod N.

Hash-and-Sign Signatures

13

Public key: k = key for trapdoor permutation F (allows to compute F).

Secret key: trapdoor t for F (allows to compute F-1).

Hash-and-Sign signature

• Sign(m): 𝜎 = F-1(hash(m)), computed using t.

• Verify(m,𝜎): check F(𝜎) = hash(m), computed using k.

Given: 'hash' = hash function.

This blueprint* transforms a trapdoor permutation into a signature scheme.

⇒ all we need is a lattice-based trapdoor permutation.

Remark: we need the hash function to map into the range of F.
*only a “blueprint” because it does not necessarily yield a secure signature scheme (cf. later).

Short Integer Solution (SIS)

14

Ajtai ’96 (the foundational article of Lattice-based crypto).

Say I have m > n vectors ai in .ℤn
q

Problem: find short x = (x1,…,xm) in such that .

Here, short means of small norm: ||x|| ≤ 𝛽.

ℤm
q ∑ xiai = 0

‣ The crucial point is the norm constraint 𝛽. Otherwise this is just a
linear system.

‣ Typically, Euclidian norm, with representatives in [-q/2,q/2].

‣ Solution must exist as long as there are at least qn vectors of
norm ≤ , due to collisions. E.g. and .β/ 2 β > n log q m ≥ n log q

SIS and lattices

15

Equivalent formulation:

SIS problem. Given a uniform matrix , find with and
 such that .

A ∈ ℤn×m
q x ∈ ℤm

q

| |x | | ≤ β Ax = 0

For A as above, define ℒ⊥(A) = (in ℤq).

This is a (q-ary) lattice!

SIS = finding a short vector in ℒ⊥(A).

{x ∈ ℤm
q : Ax = 0}

Better! Ajtai ’96: Solving SIS (for uniformly random A) implies
solving GapSVP in dimension n for any lattice!

→ “Worst-case to average-case” reduction. Note m irrelevant.

β n

(Cryptographic) hash function

16

Hash function H: {0,1}* → {0,1}n.

Preimage resistance: for uniform y ∈ {0,1}n, hard to find x
such that H(x) = y.

Collision resistance: hard to find x ≠ y ∈ {0,1}* such that H(x)
= H(y).

Note: collision is ill-defined for a single hash function. (why?)

→ To formally define hash functions, usually assume they are a
family of functions. Parametrized by a “key”.

(See also Random Oracle Model.)

(Cryptographic) hash function

17

In theory, collision-resistance ⇒ preimage resistance.

Argument: if the hash function is “compressing” enough, whp
the preimage computed by a preimage algorithm, on input
H(x), will be distinct from x. (Because most points will have
many preimages.)

In practice, preimage resistance should cost 2n, while collision
resistance should cost 2n/2. → Previous reduction is not so
relevant.

Right now we are more in the world of theory, so we’ll only care
about collision resistance.

Ajtai’s hash function

18

Pick random . Define:
A ∈ ℤn×m
q

HA : {0,1}m → ℤn
q

x ↦ Ax

Finding a collision for random A yields a SIS solution with .

Indeed, HA(x) = HA(x) yields A(y-x) = 0 with y-x ∈ {-1,0,1}m.

β = m

Example: q = n2, m = 2n log q (compression factor 2), need roughly
n ~ 100, mn ~ 100000…

Inhomogeneous SIS problem

19

ISIS problem. Given a uniform matrix , and ,
find with and such that .

A ∈ ℤn×m
q t ∈ ℤn

q
x ∈ ℤm

q | |x | | ≤ β Ax = t

ISIS ⇔ finding a preimage for the hash function x ↦ Ax.

⚠ x is required to be short.

⇒ ISIS implies preimage resistance for x ↦ Ax, while SIS implies
collision resistance.

Adding a trapdoor

20

ISIS problem. Given a uniform matrix , and ,
find with and such that .

A ∈ ℤn×m
q t ∈ ℤn

q
x ∈ ℤm

q | |x | | ≤ β Ax = t

SIS = finding a short vector in ℒ⊥(A).

ISIS = finding a close vector in ℒ⊥(A).

⇒ a good basis of ℒ⊥(A) yields a “trapdoor” for SIS and ISIS.

⇒ it gives a trapdoor for x ↦ Ax, turning it into a trapdoor permutation.

GPV/Falcon-style Hash-and-Sign lattice-based signature

21

Public key: A = matrix for which FA: x ↦ Ax is preimage-resistant.*

Secret key: trapdoor t for FA = good basis of ℒ⊥(A).*

Falcon-style signature

• Sign(m): short 𝜎 = FA-1(hash(m)), computed using t.

• Verify(m,𝜎): check FA(𝜎) = hash(m), and check 𝜎 is short.

Given only A, forging a signature

= finding a short preimage of hash(m) for the function x ↦ Ax

= solving ISIS for random target.

But this is not enough for the signature scheme to be secure. (Why?)

*Falcon uses NTRU lattices.

Adversary Challenger

Compute M*,𝜎*.

EUF-CMA: existential unforgeability under chosen message attacks

Pick Mi. Mi

signsk(Mi)
Repeat

freely

22

pk Sample pk, sk.

...

The adversary wins iff verifypk(M*,𝜎*) = True, and M* ∉ {Mi}.

The signature scheme is secure if no PPT adversary wins, except with
negligible probability.

Arguing security for Hash-and-Sign signatures

23

General idea:

‣ Without signature oracle, trapdoor permutation security ⇒ unforgeability.

So all we need is to argue the signature oracle does not leak information.

‣ To do that, argue (message,signature) pairs can be simulated without sk.

Generally: show that (x,F(x)) is indistinguishable from (F-1(y),y).

Roughly, in our lattice-based scheme, this means showing:*

“(x,Ax) where x ← short”

is indistinguishable from:

“(F-1A(y),y) where y ← uniform”

*Falcon uses a form of rejection sampling to enforce this.

More about security

24

A Fiat-Shamir lattice signature

Reminder: Schnorr protocol
• Let 𝔾 = <g> ~ ℤp and y ∈ 𝔾. I know x ∈ ℤp such that y = gx.

•Corresponding language is trivial! ∀y ∃x, y = gx. But proof of

knowledge still makes sense.

k ←$ ℤp r = gk

e ←$ ℤpe

s = k - xe

accept iff r = gsye

This is a proof of knowledge for knowing the discrete log x of y.

Prover P Verifier V

Fiat-Shamir: sigma protocol → signature

NIZK knowledge proof: “I know a witness w for R(x,w)” and can prove
it non-interactively without revealing anything about w.

This is an identification scheme.

Sigma protocol → can integrate message into challenge randomness.

This yields a signature scheme!

Public key: x

Secret key: w

Sign(m): signature = NIZK proof with challenge = hash(commit,m)

Verify signature = verify proof.

That is the Fiat-Shamir transform.

⇒ all we need is a lattice-based sigma protocol.

Schnorr signature

k ←$ ℤp r = gk

e ←$ ℤpe

s = k - xe

accept iff r = gsye

Schnorr signature:

Public key: y = gx

Secret key: x

Sign(m): signature 𝜎 = (r,s) with r = gk for k ←$ ℤp, s = k - xH(r,m).

Verify(𝜎,m): accept iff r = gsyH(r,m).

Security reduces to Discrete Log, in the Random Oracle Model.

Schnorr protocol:

Homomorphic hash function

29

Let's look at ℍ: x ↦ gx as a (strange) hash function.

‣ It is preimage-resistant (from hardness of discrete log problem).

‣ It is homomorphic: ℍ(x+y) = ℍ(x)ℍ(y).

Rewritten Schnorr protocol

• Let 𝔾 = <g> ~ ℤp and X ∈ 𝔾. I know x ∈ ℤp such that X = ℍ(x).

k ←$ ℤp K = ℍ(k)

e ←$ ℤpe

s = k - ex

accept iff K = ℍ(s)Xe

Prover P Verifier V

This is correct as long as ℍ is homomorphic.

Don't need ℍ = x ↦ gx specifically.

...do you know a lattice-based “hash function” that is homomorphic?
Ajtai's hash function!

Lattice-based “Schnorr” protocol

Let ℍ: such that ℍ(x) = Ax. I know short x such that X = ℍ(x).ℤm
p → ℤn

p

short k ← ℤm
p K = ℍ(k)

short e ← ℤpe

s = k - ex

accept iff K = ℍ(s)+eX
and s is short

Prover P Verifier V

This is exactly Schnorr, using Ajtai's hash function in place of x ↦ gx.

Remark. Because domain(ℍ) = short vectors, needed to add some
shortness conditions.

Analysis of modified Schnorr protocol

‣ (Perfect) Completeness.

Follows directly from homorphism of ℍ.

‣ (Special) Knowledge soundness.

Extractor for original Schnorr: gets K = gk, asks two challenges
e≠e’, gets back s, s’ with K = ℍ(s)+eX = ℍ(s')+e'X. Implies ℍ(s-s')
= (e'-e)X. Yields X =ℍ((s-s’)(e’-e)-1) ⇒ preimage of X.

‣ Honest-verifier zero knowledge.

Simulator for original Schnorr: draw e ←$ ℤp, s ←$ ℤp, then K =
ℍ(s)+eX. Return transcript (K,e,s). Note K, e still uniform and
independent → distribution is identical to real transcript.

This argument no longer works. (Why?)

This argument no longer works. (Why?)

Lyu-09: fixing the modified Schnorr

33

