

Techniques in Cryptography and Cryptanalysis

Brice Minaud

email: brice.minaud@ens.fr

Post-Quantum Signatures

Quantum computing

n-bit strings.

find x such that F(x) = 1 in time O(2^{n/2}).

logarithm in polynomial time.

quantum computing already exist.

- New model of computation. Computes on superposition of
- Grover algorithm: given arbitrary (efficient) F: $\{0,1\}^n \rightarrow \{0,1\}$,
- Shor algorithm: factors integer and computes discrete

Fine print: existence of efficient quantum computers in the forseeable future is still up for debate. "Weak" forms of

Post-Quantum crypto

from number theory:

- Integer Factorization RSA
- Diffie-Hellman, ElGamal... Discrete Log
- Elliptic Curves

most SNARKs...

Broken in quantum polynomial time by Shor's algorithm.

(Caveats apply.)

to define new post-quantum standards.

- Today, most of public-key crypto is based on hard problems arising

 - ECDSA, pairing-based crypto, including
- In short: efficient quantum computers \Rightarrow global crypto catastrophe.

- \rightarrow Need to anticipate. To have solutions ready, + forward security.
- \rightarrow Ongoing NIST-organized "selection process" (a.k.a. competition)

Post-Quantum crypto

There is nothing wrong with the general outline of building encryption or signatures from a hard problem + trapdoor.

• Ultimately, post-quantum cryptography is "just" about changing the underlying hard problems.

...and evaluating post-quantum resistance. ...and selecting concrete parameters. ...and changing proof models (quantum oracles, post-post quantum cryptography...). ...and ensuring side-channel resistance. ...and optimizing classical efficiency. ...and deploying the result.

Hard problems in post-quantum world

Post-quantum candidate hard problems:

- Lattices.
- Code-based crypto.
- Isogenies.
- Symmetric crypto (\rightarrow signatures).
- Multivariate crypto.

Lattices are the mainstream candidate. Other PQ approaches for Public-Key crypto "only" motivated by PQ. Lattice-based crypto stands on its own:

- Simplicity (of some schemes, not their analysis).
- Security from worst-case hardness (in theory).
- Very expressive/versatile, e.g. FHE etc.

Number Theory

Lattices, codes,... (conjectured)

Timeline for post-quantum transition

Aug. 2016: NSA surprise call for post-quantum security. (Updated) FAQ: https://media.defense.gov/2022/Sep/07/2003071836/-1/-1/1/CSI_CNSA_2.0_FAQ_PDF

Dec. 2016: NIST call for post-quantum signature & key exchange schemes. https://csrc.nist.gov/projects/post-quantum-cryptography

2022: Second NIST call for post-quantum signatures. https://csrc.nist.gov/Projects/pgc-dig-sig/standardization/call-for-proposals

2025: ICCS call for post-quantum cryptographic algorithms. https://niccs.org.cn/en/notice/202502/t20250205 378200.html

By 2035: most public-key cryptography should have transitioned (NIST).

INSTITUTE OF COMMERCIAL CRYPTOGRAPHY **STANDARDS**

777

What about France and Europe?

Lots of French & European expertise on crypto primitives.

Especially symmetric, code-based, lattice-based, isogenies, multivariate.

Many (most?) NIST winners are created in Europe.

ANSSI recommends hybrid approaches (w/o specific timeline).

Large national projects on cybersecurity, including post-quantum.

Current outlook for NIST PQ signatures (as of early 2025)

First call, signature finalists (2022):

- Dilithium. [Lattices*]
- Falcon. [Lattices*]
- Rainbow. [Multivariate, broken]

Second call for new post-quantum signatures (2023), especially:

- Not based on lattices.
- With short signatures.

Main Approaches for post-quantum signatures:

*Structured lattices.

- Alternate signatures:
 - SPHINCS+. [hash-based]
 - Picnic. [MPC-in-the-head]
 - Gemss. [Multivariate, broken]

Lattices, codes, isogenies, multivariate, hash-based, MPC-in-the-head.

How to build a signature scheme?

Two main paradigms.

Hash-and-Sign signatures

- Similar to RSA signatures.
- Based on a trapdoor permutation.

Fiat-Shamir signatures

- Similar to Schnorr signatures.
- Based on a zero-knowedge proof with Fiat-Shamir transform.

- Hash-based signatures
 Similar to SPHINCS/XMSS signatures.

Lattices, Isogenies, MPC-in-the-head

Based on a one-time/few-time signature with Goldreich/Merkle transform.

A Hash-and-Sign lattice signature

Fast-Fourier Lattice-based Compact Signatures over NTRU

FALCON

Trapdoor permutation

Sample: outputs key **k** and *trapdoor* **t**.

 $y = F(\mathbf{k}, \mathbf{x})$ in PPT.

PPT (except with negligible probability of success).

 $d = e^{-1} \mod \phi(N), F(N,x) = x^e \mod N, F^{-1}(N,d,y) = y^d \mod N.$

- **Forward:** given key k and input x, can compute y = F(k,x) in PPT.
- **Inverse:** given trapdoor t and target y, can compute x such that

- **Security:** given target y, **cannot** compute x such that $y = F(\mathbf{k}, \mathbf{x})$ in
- *Example:* RSA is a trapdoor permutation, with key N = pq, trapdoor

Hash-and-Sign Signatures

Hash-and-Sign signature

Secret key: trapdoor t for F (allows to compute F⁻¹). • Sign(m): $\sigma = F^{-1}(hash(m))$, computed using t.

• Verify(m,σ): check F(σ) = hash(m), computed using k.

This blueprint* transforms a trapdoor permutation into a signature scheme.

 \Rightarrow all we need is a lattice-based trapdoor permutation.

Remark: we need the hash function to map into the range of F. *only a "blueprint" because it does not necessarily yield a secure signature scheme (cf. later).

- Given: 'hash' = hash function.
- **Public key:** $\mathbf{k} = \text{key for trapdoor permutation F (allows to compute F).}$

Short Integer Solution (SIS)

Ajtai '96 (the foundational article of Lattice-based crypto).

Say I have m > n vectors a_i in \mathbb{Z}_q^n .

Problem: find short $x = (x_1, ..., x_m)$ in \mathbb{Z}_q^m such that $\sum x_i a_i = 0$. Here, **short** means of small norm: $||x|| \leq \beta$.

- linear system.
- Typically, Euclidian norm, with representatives in [-q/2,q/2].
- norm $\leq \beta/\sqrt{2}$, due to collisions. E.g. $\beta > \sqrt{n \log q}$ and $m \geq n \log q$.

• The crucial point is the norm constraint β . Otherwise this is just a

Solution must exist as long as there are at least qⁿ vectors of

SIS and lattices

Equivalent formulation:

SIS problem. Given a uniform matrix $A \in \mathbb{Z}_q^{n \times m}$, find $x \in \mathbb{Z}_q^m$ with and $||x|| \le \beta$ such that Ax = 0.

For A as above, define $\mathcal{L}^{\perp}(A) =$

This is a (q-ary) lattice!

SIS = finding a short vector in $\mathcal{L}^{\perp}(A)$.

Better! Ajtai '96: Solving SIS (for uniformly random *A*) implies solving GapSVP_{$\beta\sqrt{n}$} in dimension *n* for any lattice!

 \rightarrow "Worst-case to average-case" reduction. Note *m* irrelevant.

$$= \{x \in \mathbb{Z}_q^m : Ax = 0\} (\text{in } \mathbb{Z}_q).$$

(Cryptographic) hash function

Hash function *H*: $\{0,1\}^* \rightarrow \{0,1\}^n$.

such that H(x) = y.

= H(y).

family of functions. Parametrized by a "key".

(See also Random Oracle Model.)

- **Preimage resistance:** for uniform $y \in \{0,1\}^n$, hard to find x
- **Collision resistance:** hard to find $x \neq y \in \{0,1\}^*$ such that H(x)

- **Note:** collision is ill-defined for a single hash function. (why?)
- \rightarrow To formally define hash functions, usually assume they are a

(Cryptographic) hash function

In theory, collision-resistance \Rightarrow preimage resistance.

many preimages.)

relevant.

about collision resistance.

- Argument: if the hash function is "compressing" enough, whp the preimage computed by a preimage algorithm, on input H(x), will be distinct from x. (Because most points will have

In practice, preimage resistance should cost 2ⁿ, while collision resistance should cost $2^{n/2}$. \rightarrow Previous reduction is not so

Right now we are more in the world of theory, so we'll only care

Ajtai's hash function

Pick random $A \in \mathbb{Z}_q^{n \times m}$. Define:

 H_A :

Finding a collision for random A yields a SIS solution with $\beta = \sqrt{m}$. Indeed, $H_A(x) = H_A(x)$ yields A(y)-

n ~ 100, *mn* ~ 100000...

$$\{0,1\}^m \to \mathbb{Z}_q^n$$

 $x \mapsto Ax$

$$-x$$
) = 0 with $y-x \in \{-1,0,1\}^m$.

Example: $q = n^2$, $m = 2n \log q$ (compression factor 2), need roughly

Inhomogeneous SIS problem

find $x \in \mathbb{Z}_q^m$ with and $||x|| \leq \beta$ such that Ax = t.

ISIS \Leftrightarrow finding a preimage for the hash function $x \mapsto Ax$.

! x is required to be short.

collision resistance.

- **ISIS problem.** Given a uniform matrix $A \in \mathbb{Z}_q^{n \times m}$, and $t \in \mathbb{Z}_q^n$,

 \Rightarrow ISIS implies preimage resistance for x \mapsto Ax, while SIS implies

Adding a trapdoor

ISIS problem. Given a uniform matrix $A \in \mathbb{Z}_q^{n \times m}$, and $t \in \mathbb{Z}_q^n$, find $x \in \mathbb{Z}_a^m$ with and $||x|| \leq \beta$ such that Ax = t.

SIS = finding a short vector in $\mathcal{L}^{\perp}(A)$.

ISIS = finding a *close* vector in $\mathcal{L}^{\perp}(A)$.

 \Rightarrow a good basis of $\pounds(A)$ yields a "trapdoor" for SIS and ISIS.

 \Rightarrow it gives a trapdoor for x \mapsto Ax, turning it into a trapdoor permutation.

Falcon-style signature

Public key: A = matrix for which F_A : $x \mapsto Ax$ is preimage-resistant.* **Secret key:** trapdoor **t** for F_A = good basis of $\mathcal{L}^{\perp}(A)$.*

- Sign(m): short $\sigma = F_{A^{-1}}(hash(m))$, computed using t.
- Verify(m,σ): check $F_A(\sigma) = hash(m)$, and check σ is short.

Given only A, forging a signature

- = finding a short preimage of hash(*m*) for the function $x \mapsto Ax$
- = solving ISIS for random target.

But this is not enough for the signature scheme to be secure. (Why?)

*Falcon uses NTRU lattices.

GPV/Falcon-style Hash-and-Sign lattice-based signature

EUF-CMA: existential unforgeability under chosen message attacks

The adversary wins iff verify_{pk}(M^*, σ^*) = True, and $M^* \notin \{M_i\}$.

The signature scheme is **secure** if no PPT adversary wins, except with negligible probability.

Arguing security for Hash-and-Sign signatures

General idea:

- Without signature oracle, trapdoor permutation security \Rightarrow unforgeability. So all we need is to argue the signature oracle does not leak information.
- To do that, argue (message, signature) pairs can be simulated without sk. Generally: show that (x,F(x)) is indistinguishable from $(F^{-1}(y),y)$.
- Roughly, in our lattice-based scheme, this means showing:*
 - "(x,Ax) where x ← short"
 - is indistinguishable from:
 - "($F^{-1}_{A}(y), y$) where $y \leftarrow$ uniform"

*Falcon uses a form of rejection sampling to enforce this.

More about security

A Fiat-Shamir lattice signature

Reminder: Schnorr protocol

- Let $\mathbb{G} = \langle g \rangle \sim \mathbb{Z}_p$ and $y \in \mathbb{G}$. I know $x \in \mathbb{Z}_p$ such that $y = g^x$.
- Corresponding language is trivial! $\forall y \exists x, y = g^x$. But proof of knowledge still makes sense.

Prover P

This is a proof of knowledge for knowing the discrete $\log x$ of y.

know $\mathbf{x} \in \mathbb{Z}_p$ such that $\mathbf{y} = \mathbf{g}^{\mathbf{x}}$. Vial! $\forall \mathbf{y} \exists \mathbf{x}, \mathbf{y} = \mathbf{g}^{\mathbf{x}}$. But proof of

Verifier V

Fiat-Shamir: sigma protocol \rightarrow signature

NIZK knowledge proof: "I know a witness w for R(x,w)" and can prove it non-interactively without revealing anything about w.

This is an identification scheme.

Sigma protocol \rightarrow can integrate message into challenge randomness.

This yields a signature scheme! Public key: *x*

Secret key: w

Sign(m): signature = NIZK proof with challenge = hash(commit,m) Verify signature = verify proof.

That is the Fiat-Shamir transform.

 \Rightarrow all we need is a lattice-based sigma protocol.

Schnorr signature

Schnorr protocol:

Schnorr signature: Public key: $y = g^x$ Secret key: xSign(m): signature $\sigma = (r,s)$ with r =Verify(σ,m): accept iff $r = g^s y^{H(r,m)}$.

th
$$r = g^k$$
 for $k \leftarrow \mathbb{Z}_p$, $s = k - xH(r,m)$.

Security reduces to Discrete Log, in the Random Oracle Model.

Homomorphic hash function

- Let's look at \mathbb{H} : x \mapsto g^x as a (strange) hash function.
- It is preimage-resistant (from hardness of discrete log problem).
- It is homomorphic: $\mathbb{H}(x+y) = \mathbb{H}(x)\mathbb{H}(y)$.

Rewritten Schnorr protocol

Prover P

This is correct as long as III is homomorphic. Don't need $\mathbb{H} = x \mapsto g^x$ specifically.

...do you know a lattice-based "hash function" that is homomorphic? Ajtai's hash function!

• Let $\mathbb{G} = \langle g \rangle \sim \mathbb{Z}_p$ and $X \in \mathbb{G}$. I know $X \in \mathbb{Z}_p$ such that $X = \mathbb{H}(X)$.

Verifier V

Lattice-based "Schnorr" protocol

Prover P

shortness conditions.

Let $\mathbb{H}: \mathbb{Z}_p^m \to \mathbb{Z}_p^n$ such that $\mathbb{H}(x) = Ax$. I know short x such that $X = \mathbb{H}(x)$.

Verifier V

- This is exactly Schnorr, using Ajtai's hash function in place of $x \mapsto g^x$.
- *Remark.* Because domain(\mathbb{H}) = short vectors, needed to add some

Analysis of modified Schnorr protocol

- (Perfect) Completeness. Follows directly from homorphism of **H**.
- (Special) Knowledge soundness. Extractor for original Schnorr: gets $K = g^k$, asks two challenges $e \neq e'$, gets back s, s' with $K = \mathbb{H}(s) + eX = \mathbb{H}(s') + e'X$. Implies $\mathbb{H}(s-s')$ = (e'-e)X. Yields X = $\mathbb{H}((s-s')(e'-e)^{-1}) \Rightarrow$ preimage of X.

This argument no longer works. (Why?)

Honest-verifier zero knowledge. Simulator for original Schnorr: draw $e \leftarrow \mathbb{Z}_p$, $s \leftarrow \mathbb{Z}_p$, then K = $\mathbb{H}(s) + eX$. Return transcript (K,e,s). Note K, e still uniform and independent \rightarrow distribution is identical to real transcript.

This argument no longer works. (Why?)

Lyu-09: fixing the modified Schnorr