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Post-Quantum Signatures



Quantum computing

New model of computation. Computes on superposition of 
n-bit strings.


Grover algorithm: given arbitrary (efficient) F: {0,1}n → {0,1}, 
find x such that F(x) = 1 in time O(2n/2).


Shor algorithm: factors integer and computes discrete 
logarithm in polynomial time.

Fine print: existence of efficient quantum computers in the 
forseeable future is still up for debate. “Weak” forms of 
quantum computing already exist.
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Post-Quantum crypto

Today, most of public-key crypto is based on hard problems arising 
from number theory:

• Integer Factorization         RSA

• Discrete Log         Diffie-Hellman, ElGamal…

• Elliptic Curves         ECDSA, pairing-based crypto, including 
                                 most SNARKs…

Broken in quantum polynomial time by Shor’s algorithm.


In short: efficient quantum computers ⇒ global crypto catastrophe. 
(Caveats apply.)


→ Need to anticipate. To have solutions ready, + forward security.


→ Ongoing NIST-organized “selection process” (a.k.a. competition) 
to define new post-quantum standards.
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Post-Quantum crypto

There is nothing wrong with the general outline of building 
encryption or signatures from a hard problem + trapdoor.


‣ Ultimately, post-quantum cryptography is “just” about changing 
the underlying hard problems.

...and evaluating post-quantum resistance.


...and selecting concrete parameters.


...and changing proof models (quantum oracles, post-post 
quantum cryptography...).

...and ensuring side-channel resistance.

...and optimizing classical efficiency.

...and deploying the result.
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Hard problems in post-quantum world

Number Theory

Lattices, codes,… 
(conjectured)

Post-quantum candidate hard problems:

• Lattices.

•Code-based crypto.

• Isogenies.

• Symmetric crypto (→ signatures).

•Multivariate crypto.

Lattices are the mainstream candidate. Other PQ 
approaches for Public-Key crypto “only” motivated 
by PQ. Lattice-based crypto stands on its own:


• Simplicity (of some schemes, not their analysis).


• Security from worst-case hardness (in theory).


• Very expressive/versatile, e.g. FHE etc.
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Timeline for post-quantum transition
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Aug. 2016: NSA surprise call for post-quantum security. (Updated) FAQ:

https://media.defense.gov/2022/Sep/07/2003071836/-1/-1/1/CSI_CNSA_2.0_FAQ_.PDF

Dec. 2016: NIST call for post-quantum signature & key exchange schemes.

https://csrc.nist.gov/projects/post-quantum-cryptography

2022: Second NIST call for post-quantum signatures.

https://csrc.nist.gov/Projects/pqc-dig-sig/standardization/call-for-proposals

By 2035: most public-key cryptography should have transitioned (NIST).

???

2025: ICCS call for post-quantum cryptographic algorithms.

https://niccs.org.cn/en/notice/202502/t20250205_378200.html

http://www.apple.com/uk
http://www.apple.com/uk
http://www.apple.com/uk
http://www.apple.com/uk


What about France and Europe? 🇪🇺
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Lots of French & European expertise on crypto primitives.

‣ Especially symmetric, code-based, lattice-based, isogenies, 

multivariate.

Many (most?) NIST winners are created in Europe.

ANSSI recommends hybrid approaches (w/o specific timeline).

Large national projects on cybersecurity, including post-quantum.



Current outlook for NIST PQ signatures (as of early 2025)
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First call, signature finalists (2022):

‣ Dilithium. [Lattices*]

‣ Falcon. [Lattices*]

‣ Rainbow. [Multivariate, broken]

Alternate signatures:

‣ SPHINCS+. [hash-based]

‣ Picnic. [MPC-in-the-head]

‣ GeMSS. [Multivariate, broken]

Second call for new post-quantum signatures (2023), especially:

‣ Not based on lattices.

‣ With short signatures.

Main Approaches for post-quantum signatures:

Lattices, codes, isogenies, multivariate, hash-based, MPC-in-the-head.


*Structured lattices.



How to build a signature scheme?
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Two main paradigms.

Hash-and-Sign signatures

‣ Similar to RSA signatures.

‣ Based on a trapdoor permutation.

Fiat-Shamir signatures

‣ Similar to Schnorr signatures.

‣ Based on a zero-knowedge proof with Fiat-Shamir transform.

Lattices,


Multivariate,


Codes

Lattices,


Isogenies,


MPC-in-the-head

Hash-based signatures

‣ Similar to SPHINCS/XMSS signatures.

‣ Based on a one-time/few-time signature with Goldreich/Merkle transform.



A Hash-and-Sign lattice signature



Trapdoor permutation
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Sample: outputs key k and trapdoor t.


Forward: given key k and input x, can compute y = F(k,x) in PPT.


Inverse: given trapdoor t and target y, can compute x such that

y = F(k,x) in PPT.

Trapdoor permutation

Security: given target y, cannot compute x such that y = F(k,x) in 
PPT (except with negligible probability of success).

Example: RSA is a trapdoor permutation, with key N = pq, trapdoor 
d = e-1 mod 𝜙(N), F(N,x) = xe mod N, F-1(N,d,y) = yd mod N.



Hash-and-Sign Signatures
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Public key: k = key for trapdoor permutation F (allows to compute F).


Secret key: trapdoor t for F (allows to compute F-1).

Hash-and-Sign signature

• Sign(m): 𝜎 = F-1(hash(m)), computed using t.


• Verify(m,𝜎): check F(𝜎) = hash(m), computed using k.

Given: 'hash' = hash function.

This blueprint* transforms a trapdoor permutation into a signature scheme.

⇒ all we need is a lattice-based trapdoor permutation.

Remark: we need the hash function to map into the range of F.
*only a “blueprint” because it does not necessarily yield a secure signature scheme (cf. later).



Short Integer Solution (SIS)
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Ajtai ’96 (the foundational article of Lattice-based crypto).

Say I have m > n vectors ai in .ℤn
q

Problem: find short x = (x1,…,xm) in  such that .

Here, short means of small norm: ||x|| ≤ 𝛽.

ℤm
q ∑ xiai = 0

‣ The crucial point is the norm constraint 𝛽. Otherwise this is just a 
linear system.


‣ Typically, Euclidian norm, with representatives in [-q/2,q/2].


‣ Solution must exist as long as there are at least qn vectors of 
norm ≤ , due to collisions. E.g.  and .β/ 2 β > n log q m ≥ n log q



SIS and lattices
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Equivalent formulation:

SIS problem. Given a uniform matrix , find  with and 
 such that .

A ∈ ℤn×m
q x ∈ ℤm

q

| |x | | ≤ β Ax = 0

For A as above, define ℒ⊥(A) = (in ℤq).


This is a (q-ary) lattice!


SIS = finding a short vector in ℒ⊥(A).

{x ∈ ℤm
q : Ax = 0}

Better! Ajtai ’96: Solving SIS (for uniformly random A) implies 
solving GapSVP  in dimension n for any lattice!


→ “Worst-case to average-case” reduction. Note m irrelevant.

β n



(Cryptographic) hash function
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Hash function H: {0,1}* → {0,1}n.


Preimage resistance: for uniform y ∈ {0,1}n, hard to find x 
such that H(x) = y.


Collision resistance: hard to find x ≠ y ∈ {0,1}* such that H(x) 
= H(y).

Note: collision is ill-defined for a single hash function. (why?)


→ To formally define hash functions, usually assume they are a 
family of functions. Parametrized by a “key”.


(See also Random Oracle Model.)



(Cryptographic) hash function
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In theory, collision-resistance ⇒ preimage resistance.


Argument: if the hash function is “compressing” enough, whp 
the preimage computed by a preimage algorithm, on input 
H(x), will be distinct from x. (Because most points will have 
many preimages.)

In practice, preimage resistance should cost 2n, while collision 
resistance should cost 2n/2. → Previous reduction is not so 
relevant.

Right now we are more in the world of theory, so we’ll only care 
about collision resistance.



Ajtai’s hash function
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Pick random . Define:
A ∈ ℤn×m
q

HA : {0,1}m → ℤn
q

x ↦ Ax

Finding a collision for random A yields a SIS solution with .


Indeed, HA(x) = HA(x) yields A(y-x) = 0 with y-x ∈ {-1,0,1}m.

β = m

Example: q = n2, m = 2n log q (compression factor 2), need roughly 
n ~ 100, mn ~ 100000…



Inhomogeneous SIS problem
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ISIS problem. Given a uniform matrix , and , 
find  with and  such that .

A ∈ ℤn×m
q t ∈ ℤn

q
x ∈ ℤm

q | |x | | ≤ β Ax = t

ISIS ⇔ finding a preimage for the hash function x ↦ Ax.


⚠ x is required to be short.

⇒ ISIS implies preimage resistance for x ↦ Ax, while SIS implies 
collision resistance.



Adding a trapdoor
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ISIS problem. Given a uniform matrix , and , 
find  with and  such that .

A ∈ ℤn×m
q t ∈ ℤn

q
x ∈ ℤm

q | |x | | ≤ β Ax = t

SIS = finding a short vector in ℒ⊥(A).


ISIS = finding a close vector in ℒ⊥(A).

⇒ a good basis of ℒ⊥(A) yields a “trapdoor” for SIS and ISIS.

⇒ it gives a trapdoor for x ↦ Ax, turning it into a trapdoor permutation.



GPV/Falcon-style Hash-and-Sign lattice-based signature
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Public key: A = matrix for which FA: x ↦ Ax is preimage-resistant.*


Secret key: trapdoor t for FA = good basis of ℒ⊥(A).*

Falcon-style signature

• Sign(m): short 𝜎 = FA-1(hash(m)), computed using t.


• Verify(m,𝜎): check FA(𝜎) = hash(m), and check 𝜎 is short.

Given only A, forging a signature


= finding a short preimage of hash(m) for the function x ↦ Ax


= solving ISIS for random target.

But this is not enough for the signature scheme to be secure. (Why?)

*Falcon uses NTRU lattices.



Adversary Challenger

Compute M*,𝜎*.

EUF-CMA: existential unforgeability under chosen message attacks

Pick Mi. Mi

signsk(Mi)
Repeat

freely
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pk Sample pk, sk.

...

The adversary wins iff verifypk(M*,𝜎*) = True, and M* ∉ {Mi}.

The signature scheme is secure if no PPT adversary wins, except with 
negligible probability.



Arguing security for Hash-and-Sign signatures
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General idea: 

‣ Without signature oracle, trapdoor permutation security ⇒ unforgeability.


So all we need is to argue the signature oracle does not leak information.


‣ To do that, argue (message,signature) pairs can be simulated without sk.

Generally: show that (x,F(x)) is indistinguishable from (F-1(y),y).

Roughly, in our lattice-based scheme, this means showing:*


“(x,Ax) where x ← short”


is indistinguishable from:


“(F-1A(y),y) where y ← uniform”

*Falcon uses a form of rejection sampling to enforce this.



More about security

24



A Fiat-Shamir lattice signature



Reminder: Schnorr protocol
• Let 𝔾 = <g> ~ ℤp and y ∈ 𝔾. I know x ∈ ℤp such that y = gx.

•Corresponding language is trivial! ∀y ∃x, y = gx. But proof of 

knowledge still makes sense.

k ←$ ℤp r = gk

e ←$ ℤpe

s = k - xe

accept iff r = gsye

This is a proof of knowledge for knowing the discrete log x of y.

Prover P Verifier V



Fiat-Shamir: sigma protocol → signature

NIZK knowledge proof: “I know a witness w for R(x,w)” and can prove 
it non-interactively without revealing anything about w.


This is an identification scheme.


Sigma protocol → can integrate message into challenge randomness.


This yields a signature scheme!

Public key: x

Secret key: w

Sign(m): signature = NIZK proof with challenge = hash(commit,m)

Verify signature = verify proof.


That is the Fiat-Shamir transform.

⇒ all we need is a lattice-based sigma protocol.



Schnorr signature

k ←$ ℤp r = gk

e ←$ ℤpe

s = k - xe

accept iff r = gsye

Schnorr signature:

Public key: y = gx

Secret key: x

Sign(m): signature 𝜎 = (r,s) with r = gk for k ←$ ℤp, s = k - xH(r,m).


Verify(𝜎,m): accept iff r = gsyH(r,m).


Security reduces to Discrete Log, in the Random Oracle Model.

Schnorr protocol:



Homomorphic hash function
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Let's look at ℍ: x ↦ gx as a (strange) hash function.


‣ It is preimage-resistant (from hardness of discrete log problem).


‣ It is homomorphic: ℍ(x+y) = ℍ(x)ℍ(y).



Rewritten Schnorr protocol

• Let 𝔾 = <g> ~ ℤp and X ∈ 𝔾. I know x ∈ ℤp such that X = ℍ(x).

k ←$ ℤp K = ℍ(k)

e ←$ ℤpe

s = k - ex

accept iff K = ℍ(s)Xe

Prover P Verifier V

This is correct as long as ℍ is homomorphic.

Don't need ℍ = x ↦ gx specifically.

...do you know a lattice-based “hash function” that is homomorphic?
Ajtai's hash function!



Lattice-based “Schnorr” protocol

Let ℍ:  such that ℍ(x) = Ax. I know short x such that X = ℍ(x).ℤm
p → ℤn

p

short k ← ℤm
p K = ℍ(k)

short e ← ℤpe

s = k - ex

accept iff K = ℍ(s)+eX
and s is short

Prover P Verifier V

This is exactly Schnorr, using Ajtai's hash function in place of x ↦ gx.

Remark. Because domain(ℍ) = short vectors, needed to add some 
shortness conditions.



Analysis of modified Schnorr protocol

‣ (Perfect) Completeness.

Follows directly from homorphism of ℍ.


‣ (Special) Knowledge soundness.

Extractor for original Schnorr: gets  K = gk, asks two challenges 
e≠e’, gets back s, s’ with K = ℍ(s)+eX = ℍ(s')+e'X. Implies ℍ(s-s') 
= (e'-e)X. Yields X =ℍ((s-s’)(e’-e)-1) ⇒ preimage of X.


‣ Honest-verifier zero knowledge.

Simulator for original Schnorr: draw e ←$ ℤp, s ←$ ℤp, then K = 
ℍ(s)+eX. Return transcript (K,e,s). Note K, e still uniform and 
independent → distribution is identical to real transcript.

This argument no longer works. (Why?)

This argument no longer works. (Why?)



Lyu-09: fixing the modified Schnorr
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