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Meta information
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“Techniques in Cryptography and Cryptanalysis”: will cover (a choice 
of) important areas of cryptography.

- Zero-knowledge proofs 

- Oblivious algorithms 

- Lattices

✔︎ done

📍 we are here

2nd period
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Big promises Ad-hoc schemes General schemes

Course contents:

‣ 1. Motivation (big promises).

‣ 2. Oblivious sorting.

‣ 3. Oblivious RAM.
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Outsourcing storage
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Client Server

Scenario: Client outsources storage of sensitive data to Server.


Examples: 
‣ Company outsourcing customer/transaction info.

‣ Private messaging service.

‣ Trusted processor accessing RAM.

Data upload

Data access
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Outsourcing storage
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Client Server

Scenario: Client outsources storage of sensitive data to Server.

Data upload

Data access

Adversary: honest-but-curious server.

Security goal: privacy of data and queries.


Server = adversary



Privacy of data: just encrypt?
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Symmetric Encryption.

Message space M, ciphertext space C, key space K.

Setup: Pick key K ←$ K.

Encryption: encryption of M ∈ M is C = EncK(M) ∈ C.

Decryption: decryption of C is M = DecK(C).

Perfect secrecy (sketch):

Let M0 and M1 be two arbitrary messages.

Perfect secrecy: EncK(M0) = EncK(M1).

The equality is an equality of distributions. The randomness is over 
the uniform choice of K.
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Adversary Challenger

Pick M1, M2. M1, M2

Pick b ←$ {0,1}

Pick K ← {0,1}k.

C* = EncK(Mb)

Compute b’.

IND-CCA: indistinguishability under Chosen-Ciphertext Attacks

Pick M’i. M’i

EncK(M’i)Repeat

freely Pick Ci. Ci

DecK(Ci)

Pick M”i, C’i…Same 
as 1st 
step

…

…with C’i ≠ C*



Symmetric encryption: “proper” definition
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Symmetric Encryption.

Message space M, ciphertext space C, key space K.

Setup: Pick key K ←$ K.

Encryption: encryption of M ∈ M is C = EncK(M) ∈ C.

Decryption: decryption of C is M = DecK(C).

Correctness: for all M ∈ M,

 DecK(EncK(M)) = M.


Security: IND-CCA (for instance).

Caveats: 
- Deterministic scheme cannot be IND-CCA. Need randomness, or 
nonces (→ mode of operation).

- “Security” above only covers confidentiality, not integrity.
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Naive solution

9

Client Server

Data upload

Data access

Naive solution: encrypt all data using symmetric encryption.


How can you fetch (or update) specific files?

???

✓ Secure
× Not functional
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Naive solution, attempt #2
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Client Server

Data upload

Data access

Naive solution 2: encrypt each file individually.


What about security?

The server learns your access pattern.

✓ Functional
× Not secure



Some perspective: computing on encrypted data
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Client Server

Encrypted inputs

Encrypted output

Arbitrary
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Decrypt

Fully 
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Client Server

Encrypted inputs

Functional key

Encrypt

F
Functional 
Encryption

Plain 
output

GenerateFFunction

Inputs

SNARKs: prove arbitrary statements on encrypted data.



Is it okay to leak access pattern?

(No.)



Does leaking access pattern matter?
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Client Server

1

2

3

4

Read address 3


3

3



Example: range queries
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Range = [40,100]

Client Server

45
1
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3

45
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What can the server learn from the above leakage?

Imagine hospital storing patient information.


Sometimes searches for all patients with ages between a and b.

Connection with machine learning.



VC Theory

C



VC Theory
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Foundational paper: Vapnik and Chervonenkis, 1971.

Uniform convergence result.


Now a foundation of learning theory, especially PAC (probably 
approximately correct) learning.


Wide applicability.


Fairly easy to state/use.

(You don't have to read the original article in Russian.)



Warm-up
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Set X with probability distribution D.

Let C ⊆ X. Call it a concept.

X

C

Sample complexity:

to measure Pr(C) within ε, 
you need O(1/ε2) samples.

Pr(C ) ⇡ #points in C

#points total
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Approximating a Concept Set
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X

Now: set 𝓒 of concepts.

Goal: approximate their probabilities simultaneously.

The set of samples drawn 
from X is an ε-sample iff for 
all C in 𝓒:
����Pr(C )� #points in C

#points total

����  ✏
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ε-sample Theorem
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X

Union bound: yields a 
sample complexity that 
depends on |𝓒|.

How many samples do we need to get an ε-sample whp?

V & C 1971: 
If 𝓒 has VC dimension d, 
then the number of points to 
get an ε-sample whp is

O(
d

✏2 log
d

✏
).
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Does not depend on |𝓒|!



VC Dimension
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Remaining Q: what is the VC dimension?

A set of points is shattered by 𝓒 iff:

 every subset of S is equal to C∩S for some C in 𝓒.

Example. Take 2 points in X=[0,1]. Concepts 𝓒 = all ranges.

0 1

Subsets: OK. Range A.
A

OK. Range B.

B

OK. Range C.

C

OK. Range D.

D

2 points = 
SHATTERED



VC Dimension
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Example. Take 3 points in X=[0,1]. Concepts 𝓒 = all ranges.

0 1
Subset: Problem.

3 points = NOT SHATTERED

VC dimension of 𝓒 = largest cardinality of a set of points in X 
that is shattered by 𝓒.

E.g. VC dimension of ranges is 2.

What typically matters is just that VC dim is finite. 
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Direct statistical attack
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1 N

Less probable More probable
Assume a uniform distribution on range queries.

Idea: for each record...

1. Count frequency at which the record is hit.

  → gives estimate of probability it’s hit by uniform query. 
2. deduce estimate of its value by “inverting” f.

values

f

Induces a distribution f on the prob. that a given value is hit.



Direct statistical attack
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1 N

Step 1: for all records, estimate prob of the record being hit.

This is an ε-sample!

X = ranges         𝓒 ={{ranges ∋ x}: x ∈ [1,N]}


  so we need O(ε-2 log ε-1) queries.

Step 2: because f is quadratic, “inverting” f adds a square.

f

values

After O(ε-4 log ε-1) queries, the value of all records is 
recovered within εN.



Order Reconstruction
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Problem Statement

26

Range = [40,100]

Client Server
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3
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This time we don't assume i.i.d. queries, or knowledge of their 
distribution.

What can the server learn from the above leakage?



Range Query Leakage
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Query A matches records a, b, c.

Query B matches records b, c, d.

→ we learn that records b, c are between a and d.


We learn something about the order of records.

Then this is the only configuration (up to symmetry)!

0 N
A

a b c d

B



Range Query Leakage
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Query A matches records a, b, c.

Query B matches records b, c, d.

Query C matches records c, d.

Then the only possible order is a, b, c, d (or d, c, b, a)!

0 N
A

a b c d

B
C

Challenges:

‣ How do we extract order information? (What algorithm?)

‣ How do we quantify and analyze how fast order is learned 

as more queries are observed?



Challenge 1: the Algorithm
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Short answer: there is already an algorithm!

X: linearly ordered set. Order is unknown.


You are given a set S containing some intervals in X.

A PQ tree is a compact (linear in |X|) representation of the set 
of all permutations of X that are compatible with S.

Long answer: PQ-trees.

Can be updated in linear time.



Challenge 2a: quantify order learning

30

Strongest goal: full database reconstruction = recovering the 
exact value of every record.

More general: approximate database reconstruction = recovering 
all values within εN.


ε = 0.05 is recovery within 5%. ε = 1/N is full recovery.

(“Sacrificial” recovery: values very close to 1 and N are excluded.)



Challenge 2b: analyze query complexity
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Intuition: if no query has an endpoint between a and b, then a 
and b can't be separated. 

→ ε-approximate reconstruction is impossible.

0 N
A

a b c dεN

You want a query endpoint to hit every interval ≥ εN. 
Conversely with some other conditions it's enough.

Heavy sweeping of details under rug.



VC Theory saves the day (again)
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➞ Number of points to get an ε-net whp: O

⇣
d

✏
log

d

✏

⌘
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The set of samples drawn from X is an ε-net iff for all C in 𝓒:
Pr(C ) � ✏ ) C contains a sample
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ε-samples: the ratio of 
points hitting each concept 
is close to its probability.

What we want now: if a 
concept has high enough 
probability, it is hit by at 
least one point.



Access pattern leakage: conclusion
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Full order reconstruction: O(N log N) queries.
Approximate order reconstruction (within εN): O(ε-1 log ε-1) queries!

(NB: this is optimal.)

Say patient age has N possible values (e.g. N = 100)...

Very rough summary : 
highly structured queries

⇒ low VC dimension


⇒ learn data with few queries

Age data: can infer value from order (if all ages are present)...

In this setting, encryption was ultimately useless.



It actually works, by the way
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Other examples
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Suppose you implement AES using lookup tables (for S-boxes).


If adversary can observe queries to tables, AES is broken.

If adversary can observe cache misses from access to AES S-box 
tables, also broken.

Two issues: 
‣ Leaking access pattern can be (very) damaging.

‣ Many settings leak access pattern, completely or partially.


Cloud storage, trusted enclaves, cache attacks (incl. 
hypervisors), etc. See also: side-channel attacks.
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Oblivious algorithms
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Naive solution, attempt #2

37

Client Server

Data access

Naive solution 2: encrypt each file individually.

The server learns the client's access pattern. 

Remark: the “client” could be an algorithm.

✓ Functional
× Not secure



Magic Claim
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Client Server

Read/write query


Query response

ORAM

algorithm

Server stores N files. 

Client fetches file i.


Security: Server learns nothing about i.


Efficiency: ORAM algorithm only queries O(log N) files.

...

1

2

3

i ?

i

Bonus feature: server performs no computation. Acts like a RAM.



Oblivious algorithm: definition
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Oblivious algorithm: an algorithm A is oblivious iff for any two 
inputs x and y, the memory accesses of A on input x, and A on 
input y, are indistinguishable.



Oblivious Sorting



Sorting algorithms

41

Oblivious algorithm: an algorithm A is oblivious iff for any two 
inputs x and y, the memory accesses of A on input x, and A on 
input y, are indistinguishable.

Which of the following algorithms are oblivious? 
(assuming inputs are arrays of fixed size.)

1. Bubble Sort.


2. Quick Sort.


3. Merge Sort.

✔︎ yes

✘ no

✘ no



Sorting obliviously

42

Basic operation: sorting two elements.


Compare and swap: on input (x,y), if x < y, output (x,y), else 
output (y,x).

x y

min(x,y) max(x,y)

x y

max(x,y) min(x,y)



Bubble Sort

43

x y z t



Sorting network
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Comparator network: A comparator network is an algorithm that 
consists in a sequence of compare-and-swaps (“comparators”) 
between fixed inputs.

Sorting network: A sorting network is a comparator network that 
correctly sorts its input (for all possible inputs).

Remark: testing whether a comparator network is a sorting network 
is co-NP-complete.

Can be represented in this form:



Size and depth
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The size of a comparator network is its number of comparators.


The depth (or “critical path”) of a comparator network is the maximum 
number of comparators that an input value can go through.

It is also the number of steps in a parallel computation of the network.

Example: comparator network of size 4 and depth 3.

→ Bubble sort is a sorting network of size O(n2) and depth O(n).



Can we do better?
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Proposition: A sorting network must have size Ω(n log n).

Proof. A network with k comparators can permute its input 
sequence in at most 2k different ways.


For a sorting network, we must have 2k ≥ n!


By Stirling’s formula, this yields k = Ω(n log n).

Bitonic sort: size O(n log2 n).


Most efficient in practice.



The 0-1 principle
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0-1 Principle: a comparator network (on n inputs) is a sorting 
network iff it correctly sorts all 2n possible binary inputs.

Proof. Let f be a non-decreasing function: x ≤ y implies f(x) ≤ f(y).

Claim: If a comparator network has input (x1,…,xn) and outputs 
(y1,…,yn), then on input (f(x1),…,f(xn)), it must output (f(y1),…,f(yn)).

Proof of the claim: induction on comparators.

Now assume a comparator network is not a sorting network. Then 
there exist an input (x1,…,xn) and some indices i, j, such that xi < xj 
but they are in the opposite order in the output.

Define f(x) = 0 if x ≤ xi, 1 otherwise. We have f(xi) = 0 and f(xj) = 1, but 
their order is reversed by the network when inputting (f(x1),…,f(xn)). 
Hence the network does not correctly sort all binary sequences.



Bitonic sequences

48

Bitonic sequence: A sequence of values is bitonic iff:

‣ It is increasing, then decreasing.

‣Or it is a circular shift of the previous case.

Example: bitonic sequences of 0 and 1’s are those of the form 
0a1b0c and 1a0b1c.



Half-cleaner
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Half-cleaner: A half-cleaner is a comparator network for an even 
number of inputs n, composed of comparators


(1,n/2+1), (2,n/2+2), …, (n/2,n)

Half-cleaner for n = 8:



Half-cleaner

50

Key property of a half-cleaner: if the input is bitonic, then both 
halves of the output are bitonic. Moreover, one of the two halves 
must be all 0’s or all 1’s. That half is called clean.

0 1 1 00 1 0 0

0 0 1 10 0 0 1

clean bitonic



Bitonic sorter
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Bitonic sorter Bitonic sorter

Half-cleaner

The bitonic sorter correctly sorts all bitonic inputs.

Bitonic sorter recursive construction:



Batcher’s sort
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Batcher’s sort  Batcher’s sort
for reverse order

Bitonic sorter

Batcher’s sort correctly sorts all binary inputs, hence all inputs.

Batcher’s sort recursive construction:



Efficiency
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A half-cleaner has size H(n) = n/2.


The bitonic sorter has size S(n) = H(n) + 2S(n/2) = O(n log n).


Batcher’s sort has size B(n) = S(n) + 2B(n/2) = O(n log2 n).

 Ajtai, Komlós, Szemerédi (STOC ’83): there exists a sorting 
network of size O(n log n).


Unfortunately, completely impractical.

The depth of Batcher’s sort is O(log2 n): in a parallel computation 
model, only need O(log2 n) steps.


→ Sorting algorithms used in GPUs.



Oblivious RAM

Read/write query


Query response




Generalizing
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So far…


Traditional efficient sorting algorithms were not oblivious.


→ created new efficient oblivious sorting algorithm.

Can we do this generically?

Take any algorithm → create oblivious version, with low overhead.

Disclaimer: does not hide number of accesses.

This is what Oblivious RAM (ORAM) does.



Reminder: Oblivious RAM
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Client Server

Read/write query


Query response


Query q
ORAM

algorithm
C

Response

C(q)

Client wants to do queries q1, q2, …, qn.


Each qi is either:

‣ read(a): read data block at address a;

‣write(a,d): write data block d at address a.

Small

Memory

Large

Memory



Reminder: Oblivious RAM
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Client Server

Read/write query


Query response


Query q
ORAM

algorithm
C

Response

C(q)

ORAM algorithm C (or ORAM “compiler”): transforms each query q 
by the client into one or several read/write queries C(q) to server.


Correctness: C’s response is the correct answer to query q. 


Obliviousness: for any two sequences of queries q = (q1,…,qk) and 
r = (r1,…,rk) of the same length, C(q) = (C(q1),…,C(qk)) and C(r) = 
(C(r1),…,C(rk)) are indistinguishable.

Small

Memory

Large

Memory



Trivial ORAM
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Client Server

Read/write query


Query response


Query q
ORAM

algorithm
C

Response

C(q)

Trivial ORAM: read and re-encrypt every item in server memory.


Security: trivial.


Efficiency: every client query costs O(n) real accesses

→ overhead is O(n).

A non-trivial ORAM must have:

‣Client storage o(n).

‣Query overhead o(n).



Some observations
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Suppose client wants to do queries q1, q2, …, qn.

Each qi is to read or write a block of memory.

q1 q2 q3 q4 q5 q6 q7 q8 … qn

For each qi, the ORAM has to do some access(es) to the server 
memory.

Assume the client does not store any memory block.

1

q1 and q2 must access at least 1 data 
block in common.



Some observations

60

(q1,q2) and (q3,q4) must access at least 
2 data blocks in common.

2

q1 q2 q3 q4 q5 q6 q7 q8 … qn

1 1



Some observations
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etc...

2

q1 q2 q3 q4 q5 q6 q7 q8 … qn

1 1

2

1 1

4

...



Some observations
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q1 q2 q3 q4 q5 q6 q7 q8 … qn

1 1 1 1

2 2

4

...

At least this many accesses are 
assigned to this node.

For each memory access done by qj, let's "assign" that access to 
the node qi ⋀ qj, where qi is the last time the same address was 
accessed (i < j).



Some observations
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2

q1 q2 q3 q4 q5 q6 q7 q8 … qn

1 1

2

1 1

4

...

→ Memory accesses in every node are now unique to that node.

For each memory access done by qj, let's "assign" that access to 
the node qi ⋀ qj, where qi is the last time the same address was 
accessed (i < j).



≥ n/2

...

≥ n/2

≥ n/2

Some observations
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2

q1 q2 q3 q4 q5 q6 q7 q8 … qn

1 1

2

1 1

4

...

Wait... how many memory accesses are we doing?
(Say n = 2k for some k.)

For n client queries, ORAM will need to do 
Ω(n log n) accesses to the server.



A lower bound
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Goldreich & Ostrovsky ’96 (again): 
Secure ORAM must have overhead Ω(log n).

G&O's proof under assumptions:

‣Client memory O(1).

‣ Statistically secure ORAM.

‣ “Balls and bins” model.

What we just saw: stronger proof by Larsen & Nielsen ’18.

(Computational security, less restrictive cell probe model, online).



Proof sketch (Goldreich-Ostrovsky proof)
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1 2 3 4 … n …

Each item i = colored ball. At start:

Each server access, ORAM can do O(c) operations: exchange ball, 
put ball, take ball, nothing.

Suppose client wants to make queries for balls b1, …, bq.

→ ORAM makes accesses a1, …, af(q). (Includes Setup accesses.)

Statistical security → access sequence (ai) must be compatible with 
all nq possible query sequences (bi).

But only O(c)f(q) possible sequences of balls held by client, hence 
O(c)f(q) query sequences compatible with given access sequence.

O(c)f(q) ≥ nq


f(q) = q⋅Ω(log n)
⇒

⇒

Client: c = O(1) balls Server: n balls + extra room



Roadmap
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Query overhead: how many queries to the server are made in C(q) 
for each client query q, amortized (= on average).


Here, n = max memory size = max number of items (address,data).

1. Square-root ORAM


2. Hierarchical ORAM


3. Tree ORAM

Õ(n1/2)

O(polylog n)

Family of constructions

O(polylog n)

Overhead

Simple

Best in theory

Best in practice

polylog(x) = poly(log(x)) = O(logc(x)) for some constant c.

Feature

Other efficiency metrics: client memory size, number of roundtrips in 
C(q), time complexity of C…



Square-root ORAM
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Let s < n. (Later, will fix s ≈ n1/2.)

Want to store n items. Create room for n+2s items:

n s s

real items dummy items

stash

The main memory stores n+s items:

- Real items: with addresses in [1,n], real data.

- Dummy items: with addresses in [n+1,n+s], random data.


For now, stash contains s items with all-zero address and data.

main memory

Goldreich and Ostrovsky ’96.



Setup
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n s s

real items dummy items

stash

1. Client chooses permutation π over [1,n+s].

    Item i will be stored at location π(i) in the main memory.

2. Client encrypts everything, and sends to server.

main memory

Server view:

n+s encrypted items s enc. items

Remark: we are assimilating client with ORAM algorithm.



Lookup
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Set t = 1. (number of dummy items read so far)


To access (= read/write) item i, client does:

1. Read the whole stash.

If item i was not found in stash: 

2. Read/rewrite location π(i) in main memory.

3. Add item i to stash, rewrite whole stash to server.


If item i was found in stash: 
2. Read/rewrite location π(n+t) in main memory. t ← t+1.

3. Rewrite whole stash to server.

main memory stash

π(i) 
real location of item i

π(n+t) 
location of fresh 

dummy item



Refresh
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Lookup can fail in two ways: stash is full, or run out of fresh dummy 
items (t > s).

Can only happen after s iterations.

Solution: after s iterations of lookup, perform refresh:

‣Client chooses new permutation π’.

‣Moves item i to location π’(i) in main memory.

‣ Empties stash.

→ equivalent to fresh setup with π’.

→ can do s iterations again…

How do you move item i to location  π’(i) obliviously?

Oblivious sorting!



Refresh via oblivious sort
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n real items (some outdated), s dummies real items, empty items

Server memory after s lookups…

Oblivious sort with π-1

n real items (some duplicates) s dummies empty items

main memory stash

Erase outdated duplicates

n real items + some empty s dummies empty items

Oblivious sort with π’

n+s items sorted with π’ empty items
main memory stash



Security
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Setup: server sees: 

n+s encrypted items s enc. items
main memory stash

Lookup: server sees: 

main memory stash

access to uniformly random fresh location full rewrite

Refresh: server sees:

1 oblivious sort, 1 linear scan, 1 oblivious sort.

Remark: computationally secure. Essentially statistically secure, 
except for encryption, and pseudo-random permutation π.



Efficiency
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Overhead. 
Lookup costs O(s).

Refresh costs O(n polylog n), happens every s lookups.

Total overhead (amortized):


O( s + n/s ⋅polylog(n) )

Setting s = n1/2 log n, and using Batcher sort:


O( n1/2 log n )

Client memory: O(1).

Need encryption key + key for pseudo-random π + few items during 
operations.

Remark: memory measured in number of items. Item size assumed to be 
Ω(n) bits, which is also Ω(𝜆) if n ≥ 𝜆.

Server memory: O(n).



Hierarchical ORAM



Hierarchical ORAM
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Goldreich and Ostrovsky ’96:

‣ Square-root ORAM, overhead Õ(n1/2).

‣ Secure ORAM must have overhead Ω(log n).

But also: hierarchical ORAM, overhead O(log3 n).

→ Spawned whole construction family of ORAMs.

Interesting because:

‣ First ORAM with polylog overhead.

‣Basis for the recent construction of optimal ORAM with 

overhead O(log n).

Open problem for 20+ years, solved by Asharov et al. ’18, based on 
Patel et al. ’18.



Hashing
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Hash function H: {0,1}* → [1,n].

Want to store n items into n buckets according to H.

1 2 3 4 … n

…

items

buckets

…hash H

Buckets of size log n suffice for negligible probability of overflow.

Proof: Probability that given bucket receives more than k items is 
exp(-Ω(k2)) by Chernoff bound. Union bound over all buckets:


n⋅exp(-C⋅log2 n)) = n1 - C⋅log n = negl(n).



Oblivious hashing
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Want to do the assignment obliviously…

Suppose we have items + empty buckets all in server memory.

1 2 3 4 … n

…

items

buckets

…hash H

Assignment can be done obliviously in n log2 n operations.

1. obliviously sort items according to H.

2. Put each item into own bucket.

3. Scan all buckets, pushing content of each bucket into 
next bucket if next bucket has same hash value.

4. Obliviously sort buckets to delete empty buckets.

Sketch:



Setup
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size 2

size 4

size 2log n = n

level 1

level 2

…

level log n

Server memory arranged into log n levels.

Each level k is an (oblivious) hash table for 2k items.

At start:

All items are in last level.

Other levels contain dummies.

H1

H2

Hlog n

oblivious hash tables



Lookup
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To access item item i:

1. Access each level k at location Hk(i) until item is found.

2. Access remaining levels at uniformly random location.

3. Insert item at level 1. (Potentially with new value.)


Remark: whenever accessing level 1, entire level is read + rewritten.

2 items

4 items

n items

level 1

level 2

…

level log n

H1

H2

Hlog n



Reshuffling
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To maintain invariant that level k stores ≤ 2k items:

Invariant is preserved: 
Level k receives at most 2k-1 items every 2k-1 lookups.

And empties its content every 2k lookups.

Every 2k lookups, the (non-dummy) items of level k are shuffled 
into level k+1, using fresh hash function.

If an item appears twice, newest version (from earliest level) is kept.

Remark: last level is never full, because it can hold n items, and there 
are no duplicate items in the same level.



Security

82

Setup: server sees log n hash tables:

Lookup: server sees: 

Key fact: no item is ever read twice from the same level with the 
same hash function.

full rewrite
+ oblivious reshuffles at predetermined times.

size 2 size 4 …size 8

size 2 size 4 …size 8

uniformly random reads



Efficiency
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Overhead. 
Level k is reshuffled every 2k lookups.

Each reshuffle costs: O( 2k log2 n ).

→ Amortized cost for level k: O( log2 n ).

→ Total amortized cost of reshuffles: O( log3 n ).

→ Total amortized overhead: O( log3 n ) + O( log2 n ) = O( log3 n ).

Client memory: O(1).

Server memory: O(n log n).

Server memory can be reduced to O(n) using cuckoo hashing.



Cuckoo hashing
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“Bucket” hashing had total storage O(n log n), and lookup O(log n).

Cuckoo hashing has storage (2+ε)n = O(n), and lookup 2 = O(1).

Initial design mainly motivated by real-time systems…

Idea:

…

1 2 3 … nitems

hashes H1, H2

m=O(n) cells

Each item i can go into one of two cells H1(i) or H2(i).



The cuckoo graph
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Picture graph with cells = nodes, item i = edge H1(i) - H2(i).


cell
item



The cuckoo graph
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Picture graph with cells = nodes, item i = edge H1(i) - H2(i).

Orient edge towards where item is stored.

To insert item i: try cell H1(i). If occupied, move occupying item into 
its other possible cell. Repeat until unoccupied cell is reached.



The cuckoo graph
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Picture graph with cells = nodes, item i = edge H1(i) - H2(i).

Orient edge towards where item is stored.

To insert item i: try cell H1(i). If occupied, move occupying item into 
its other possible cell. Repeat until unoccupied cell is reached.



Why does that work? (sketch)
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Theorem: assignment is possible iff every connected component 
has at most one cycle.

→ Expected insertion time is O(1)!

Moreover, with n edges and m = (2+ε)n nodes…

‣ The previous fact holds with high probability.

‣ Expected size of a connected component is O(1).

Remark: Probability of failure can be made negligible by adding a stash.

possible impossible



Tree ORAM



Tree ORAM
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Hierarchical ORAM family leads to recent optimal construction.

But huge constants. Never used in practice.

What is actually used:

Tree ORAM

Overhead: O(log3 n).

Worst-case (no need to amortize).


In practice: easy to implement, efficient.

We will see Simple ORAM, member of the Tree ORAM family.

by Shi et al. ’11



The tree
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each node:

log n blocks,


each with 𝛼 items

Server-side memory is a full binary tree with log(n/𝛼) levels.

Each node contains log n blocks.

Each block contains 𝛼 = O(1) (possibly dummy) items.



Setup
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Items are grouped into blocks of 𝛼 items, item i into block b = ⎣i/𝛼⎦.


At start: 
Each block b is stored in a uniformly random leaf Pos(b).

“Position map” Pos() is stored on the client.

Invariant: block b will always be stored on the branch to Pos(b).

42 31



Lookup
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To access item i from block b:

1. Read every node along branch to Pos(b). Remove b when found.

2. Update Pos(b) to new uniform leaf.

3. Insert b at root. (Possibly with new value.)

42 31

Branch to Pos(2)

new Pos(2)

2



Eviction
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After every lookup

1. Pick branch to uniformly random leaf.

2.Push every block in the branch as far down as possible (preserving 
that block b must remain on branch to Pos(b)).

4

2

31

Branch to uniform leaf

2

new Pos(2)

2



Security
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Setup: server sees full binary tree of height log (n/𝛼).

Each node is encrypted, same size.

Lookup + eviction: server sees: 

Full read/rewrite along 2 branches to uniformly random leaves.



Why does that work? (sketch)
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Setup, no overflow: same argument as bucket hashing.
Works as long as no node overflows.

Lookup + eviction, no overflow (sketch):

Let K be the number of blocks per node (we had K = log n).

Pick arbitrary node x at level L.

For x to overflow, number of blocks whose Pos is below x must be at 
least K.

→ For one of the two children of x, number of blocks whose Pos is 
below that child c must be at least K/2.

→ This implies event [Pos of new block is below c] happens K/2 
times, without event [eviction branch includes c] happening at all.

Both events have the same probability (namely 2-L).

Deduce overflow probability is ≤ 2-K/2. Negligible for K = ω(log n).

Remark: we cheat a little by setting K = log n.



Efficiency of basic construction
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Overhead. 
Each lookup, read two branches, total O(log2 n) items.

Client memory: O(n/𝛼). (oops)

Server memory: O(n log n).



The position map
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The client stores position Pos: [1,n/𝛼] → [1,n/𝛼], size n/𝛼 = Θ(n).

Still a large gain, if item size is much larger than log(n/𝛼) bits.

To reduce client memory:

Store position map on server. Obliviously!

“Recursive” construction:

Client needs new position map for server-side position map…

Key fact: it is 𝛼 times smaller!

Repeat this recursively log𝛼(n) times. In the end:

‣Client position map becomes size O(1).𝛼

‣ Server stores log𝛼(n) position maps, each 𝛼 × smaller than last.

‣ Each lookup, log𝛼(n) roundtrips to query each position map.



Efficiency of recursive construction
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Overhead. 
Each lookup, O(log n) recursive calls, ecah of size O(log2 n).

→ O(log3 n) overhead.

Client memory: O(1).

Server memory: O(n log n).



Variants
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Original Tree ORAM had more complex eviction strategy and 
analysis, better efficiency.

Path ORAM:

- Client has a small stash of blocks.

- Blocks are evicted along the same branch as item was read.

- Can use nodes as small as K = 4 blocks!



Searchable Encryption

...



Outsourcing storage, with search
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Client Server

Search query


Query response


Encrypted search:

‣Client stores encrypted database on server.

‣Client can perform search queries.

‣ Privacy of data and queries is retained.


Example: private email storage.

Dynamic SSE: also allows update queries.

Small

Memory

Large

Memory



Searchable Symmetric Encryption
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Two databases:

‣Document database:


Encrypted documents di for i ≤ D.

‣ (Reverse) index database DB:


Pairs (w,i) for each keyword w and each document index i such 
that di contains w.


DB = {(w,i) : w ∈ di} 



A simple solution
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Put everything into ORAM.

‣ Secure.


(Up to leaking lengths of anwers.)

‣ Inefficient.


(In certain cases, such as Enron email dataset or English 
Wikipedia, some studies suggests trivial ORAM would be most 
efficient.)

Idea of Searchable Encryption: allow some leakage. Gain in 
efficiency.



How to capture leakage
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ORAM security: accesses can be simulated by a simulator knowing 
only the number of accesses.

‣ Formally: secure iff there exists a simulator, which on input 

number of accesses, outputs a set of accesses indistinguishable 
from real algorithm.

Searchable encryption security: accesses can be simulated by a 
simulator knowing only the output of a leakage function L.

‣ Formally: secure iff there exists a simulator, which on input the 

output of the leakage function, outputs a set of accesses 
indistinguishable from real algorithm.

(Leakage function takes as input the database and all operations.)



Security Model

106

Client Server
Query q

q

AdversaryReal world

Ideal world

L Simulator
L(q,DB)

q

Adversary


