
MPRI, 2023

Brice Minaud

email: brice.minaud@ens.fr

Techniques in Cryptography and Cryptanalysis

Part 2: Oblivious Algorithms

Meta information

2

“Techniques in Cryptography and Cryptanalysis”: will cover (a choice
of) important areas of cryptography.

- Zero-knowledge proofs

- Oblivious algorithms

- Lattices

✔︎ done

📍 we are here

2nd period

Roadmap

3

Le
ve

l o
f g

en
er

ai
lit

y 10
0 %

Big promises Ad-hoc schemes General schemes

Course contents:

‣ 1. Motivation (big promises).

‣ 2. Oblivious sorting.

‣ 3. Oblivious RAM.

https://static.appointmentreminder.com/web/images/v3/svg/Colou...

1 sur 1 04/12/2019 à 11:22

Outsourcing storage

4

Client Server

Scenario: Client outsources storage of sensitive data to Server.

Examples:
‣ Company outsourcing customer/transaction info.

‣ Private messaging service.

‣ Trusted processor accessing RAM.

Data upload

Data access

https://static.appointmentreminder.com/web/images/v3/svg/Colou...

1 sur 1 04/12/2019 à 11:22

Outsourcing storage

5

Client Server

Scenario: Client outsources storage of sensitive data to Server.

Data upload

Data access

Adversary: honest-but-curious server.

Security goal: privacy of data and queries.

Server = adversary

Privacy of data: just encrypt?

6

Symmetric Encryption.

Message space M, ciphertext space C, key space K.

Setup: Pick key K ←$ K.

Encryption: encryption of M ∈ M is C = EncK(M) ∈ C.

Decryption: decryption of C is M = DecK(C).

Perfect secrecy (sketch):

Let M0 and M1 be two arbitrary messages.

Perfect secrecy: EncK(M0) = EncK(M1).

The equality is an equality of distributions. The randomness is over
the uniform choice of K.

7

Adversary Challenger

Pick M1, M2. M1, M2

Pick b ←$ {0,1}

Pick K ← {0,1}k.

C* = EncK(Mb)

Compute b’.

IND-CCA: indistinguishability under Chosen-Ciphertext Attacks

Pick M’i. M’i

EncK(M’i)Repeat

freely Pick Ci. Ci

DecK(Ci)

Pick M”i, C’i…Same
as 1st
step

…

…with C’i ≠ C*

Symmetric encryption: “proper” definition

8

Symmetric Encryption.

Message space M, ciphertext space C, key space K.

Setup: Pick key K ←$ K.

Encryption: encryption of M ∈ M is C = EncK(M) ∈ C.

Decryption: decryption of C is M = DecK(C).

Correctness: for all M ∈ M,

 DecK(EncK(M)) = M.

Security: IND-CCA (for instance).

Caveats:
- Deterministic scheme cannot be IND-CCA. Need randomness, or
nonces (→ mode of operation).

- “Security” above only covers confidentiality, not integrity.

https://static.appointmentreminder.com/web/images/v3/svg/Colou...

1 sur 1 04/12/2019 à 11:22

Naive solution

9

Client Server

Data upload

Data access

Naive solution: encrypt all data using symmetric encryption.

How can you fetch (or update) specific files?

???

✓ Secure
× Not functional

https://static.appointmentreminder.com/web/images/v3/svg/Colou...

1 sur 1 04/12/2019 à 11:22

Naive solution, attempt #2

10

Client Server

Data upload

Data access

Naive solution 2: encrypt each file individually.

What about security?

The server learns your access pattern.

✓ Functional
× Not secure

Some perspective: computing on encrypted data

11

https://static.appointmentreminder.com/web/images/v3/svg/Colou...

1 sur 1 04/12/2019 à 11:22

Client Server

Encrypted inputs

Encrypted output

Arbitrary
Function

Encrypt

Decrypt

Fully
Homomorphic

Encryption

Inputs

Output

https://static.appointmentreminder.com/web/images/v3/svg/Colou...

1 sur 1 04/12/2019 à 11:22

Client Server

Encrypted inputs

Functional key

Encrypt

F
Functional
Encryption

Plain
output

GenerateFFunction

Inputs

SNARKs: prove arbitrary statements on encrypted data.

Is it okay to leak access pattern?

(No.)

Does leaking access pattern matter?

13

Client Server

1

2

3

4

Read address 3

3

3

Example: range queries

14

Range = [40,100]

Client Server

45
1

83
3

45
1

6
2

83
3

28
4

What can the server learn from the above leakage?

Imagine hospital storing patient information.

Sometimes searches for all patients with ages between a and b.

Connection with machine learning.

VC Theory

C

VC Theory

16

Foundational paper: Vapnik and Chervonenkis, 1971.

Uniform convergence result.

Now a foundation of learning theory, especially PAC (probably
approximately correct) learning.

Wide applicability.

Fairly easy to state/use.

(You don't have to read the original article in Russian.)

Warm-up

17

Set X with probability distribution D.

Let C ⊆ X. Call it a concept.

X

C

Sample complexity:

to measure Pr(C) within ε,
you need O(1/ε2) samples.

Pr(C) ⇡ #points in C

#points total
<latexit sha1_base64="DjnHOxRz4I3ci4soPVaWmu0s1+E=">AAAC1XicbVFNixNBEO2MX2v82KwevTRmF1bQMCOCHheD4DGC2SxkQqj01CTN9sfQXRM3DnMTr/4Of41X99/Yk01gN2tBw+NVVVe9V7NCSU9xfNmK7ty9d//B3sP2o8dPnu53Dp6dels6gUNhlXVnM/CopMEhSVJ4VjgEPVM4mp33m/xoic5La77SqsCJhrmRuRRAgZp2+unAHfdf8RSKwtkLnuYORJV2U8ILqgorDXkuDT/sH9b1Lk+WQNX1tNONe/E6+G2QbECXbWIwPWh9TzMrSo2GhALvx0lc0KQCR1IorNtp6bEAcQ5zHAdoQKOfVGu1NT8KTMZz68IzxNfs9Y4KtPcrPQuVGmjhd3MN+b/cuKT8w6SSpigJjbgalJcqyOSNdTyTDgWpVQAgnAy7crGA4BcFg9vto+tzFqiWSEGJQ4PfhNUaTFalOWipVhnmUCoKfvp8i29s6cFs1+SfDIRjBrNLZ6SZc2t4k37j0cmcN1Vc2wxf8zCAl35dQgt0HM1SOmsak4PO7ZftcK1k9za3wenbXhL3ki/vuicfN3fbYy/YS3bMEvaenbDPbMCGTLDf7A/7yy6jUVRHP6KfV6VRa9PznN2I6Nc/0+vmnQ==</latexit><latexit sha1_base64="DjnHOxRz4I3ci4soPVaWmu0s1+E=">AAAC1XicbVFNixNBEO2MX2v82KwevTRmF1bQMCOCHheD4DGC2SxkQqj01CTN9sfQXRM3DnMTr/4Of41X99/Yk01gN2tBw+NVVVe9V7NCSU9xfNmK7ty9d//B3sP2o8dPnu53Dp6dels6gUNhlXVnM/CopMEhSVJ4VjgEPVM4mp33m/xoic5La77SqsCJhrmRuRRAgZp2+unAHfdf8RSKwtkLnuYORJV2U8ILqgorDXkuDT/sH9b1Lk+WQNX1tNONe/E6+G2QbECXbWIwPWh9TzMrSo2GhALvx0lc0KQCR1IorNtp6bEAcQ5zHAdoQKOfVGu1NT8KTMZz68IzxNfs9Y4KtPcrPQuVGmjhd3MN+b/cuKT8w6SSpigJjbgalJcqyOSNdTyTDgWpVQAgnAy7crGA4BcFg9vto+tzFqiWSEGJQ4PfhNUaTFalOWipVhnmUCoKfvp8i29s6cFs1+SfDIRjBrNLZ6SZc2t4k37j0cmcN1Vc2wxf8zCAl35dQgt0HM1SOmsak4PO7ZftcK1k9za3wenbXhL3ki/vuicfN3fbYy/YS3bMEvaenbDPbMCGTLDf7A/7yy6jUVRHP6KfV6VRa9PznN2I6Nc/0+vmnQ==</latexit><latexit sha1_base64="DjnHOxRz4I3ci4soPVaWmu0s1+E=">AAAC1XicbVFNixNBEO2MX2v82KwevTRmF1bQMCOCHheD4DGC2SxkQqj01CTN9sfQXRM3DnMTr/4Of41X99/Yk01gN2tBw+NVVVe9V7NCSU9xfNmK7ty9d//B3sP2o8dPnu53Dp6dels6gUNhlXVnM/CopMEhSVJ4VjgEPVM4mp33m/xoic5La77SqsCJhrmRuRRAgZp2+unAHfdf8RSKwtkLnuYORJV2U8ILqgorDXkuDT/sH9b1Lk+WQNX1tNONe/E6+G2QbECXbWIwPWh9TzMrSo2GhALvx0lc0KQCR1IorNtp6bEAcQ5zHAdoQKOfVGu1NT8KTMZz68IzxNfs9Y4KtPcrPQuVGmjhd3MN+b/cuKT8w6SSpigJjbgalJcqyOSNdTyTDgWpVQAgnAy7crGA4BcFg9vto+tzFqiWSEGJQ4PfhNUaTFalOWipVhnmUCoKfvp8i29s6cFs1+SfDIRjBrNLZ6SZc2t4k37j0cmcN1Vc2wxf8zCAl35dQgt0HM1SOmsak4PO7ZftcK1k9za3wenbXhL3ki/vuicfN3fbYy/YS3bMEvaenbDPbMCGTLDf7A/7yy6jUVRHP6KfV6VRa9PznN2I6Nc/0+vmnQ==</latexit><latexit sha1_base64="DjnHOxRz4I3ci4soPVaWmu0s1+E=">AAAC1XicbVFNixNBEO2MX2v82KwevTRmF1bQMCOCHheD4DGC2SxkQqj01CTN9sfQXRM3DnMTr/4Of41X99/Yk01gN2tBw+NVVVe9V7NCSU9xfNmK7ty9d//B3sP2o8dPnu53Dp6dels6gUNhlXVnM/CopMEhSVJ4VjgEPVM4mp33m/xoic5La77SqsCJhrmRuRRAgZp2+unAHfdf8RSKwtkLnuYORJV2U8ILqgorDXkuDT/sH9b1Lk+WQNX1tNONe/E6+G2QbECXbWIwPWh9TzMrSo2GhALvx0lc0KQCR1IorNtp6bEAcQ5zHAdoQKOfVGu1NT8KTMZz68IzxNfs9Y4KtPcrPQuVGmjhd3MN+b/cuKT8w6SSpigJjbgalJcqyOSNdTyTDgWpVQAgnAy7crGA4BcFg9vto+tzFqiWSEGJQ4PfhNUaTFalOWipVhnmUCoKfvp8i29s6cFs1+SfDIRjBrNLZ6SZc2t4k37j0cmcN1Vc2wxf8zCAl35dQgt0HM1SOmsak4PO7ZftcK1k9za3wenbXhL3ki/vuicfN3fbYy/YS3bMEvaenbDPbMCGTLDf7A/7yy6jUVRHP6KfV6VRa9PznN2I6Nc/0+vmnQ==</latexit>

Approximating a Concept Set

18

X

Now: set 𝓒 of concepts.

Goal: approximate their probabilities simultaneously.

The set of samples drawn
from X is an ε-sample iff for
all C in 𝓒:
����Pr(C)� #points in C

#points total

����  ✏
<latexit sha1_base64="UfpOiKm2RL8/P6WTnBh3SDiIqYU=">AAAC63icbVFLbhNBEG0Pv2A+SWDJpoQTKUjEmkFIsIywkFgaCSdBHitq99TYrfRn6K5xYoY5BTvElnNwDg7AFq5Aj2NLiUNJLT29qq7Pe+NCSU9x/KsV3bh56/adjbvte/cfPNzc2n506G3pBA6EVdYdj7lHJQ0OSJLC48Ih12OFR+PTXpM/mqHz0poPNC9wpPnEyFwKToE62fqYKszpC6R9t9d7BvuQ5o6LKu2khOdUFVYa8iAN7PR26nqdJ0tc1XXq5GTaNFH4CVIsvFRN707cjRcB10GyBB22jP7JdutzmllRajQkFPd+mMQFjSruSAqFdTstPRZcnPIJDgM0XKMfVQsNatgNTAa5deEZggV7+UfFtfdzPQ6VmtPUr+ca8n+5YUn561ElTVESGnExKC9VuB0aQSGTDgWpeQBcOBl2BTHlQUQKsrfbu5fnTFHNkMIlDg2eCas1N1mV5lxLNc8w56WiILLPV/jKlp6b1Zrw1vBgcXCgdEaaCVgDTXrfo5M5NFWgbYbPIQyA0i9KaIoO0Myks6YROdy5atkObiXr3lwHhy+6SdxN3r/sHLxZ+rbBnrCnbI8l7BU7YO9Ynw2YYD/Zb/aH/Y109DX6Fn2/KI1ayz+P2ZWIfvwD74bvfQ==</latexit><latexit sha1_base64="UfpOiKm2RL8/P6WTnBh3SDiIqYU=">AAAC63icbVFLbhNBEG0Pv2A+SWDJpoQTKUjEmkFIsIywkFgaCSdBHitq99TYrfRn6K5xYoY5BTvElnNwDg7AFq5Aj2NLiUNJLT29qq7Pe+NCSU9x/KsV3bh56/adjbvte/cfPNzc2n506G3pBA6EVdYdj7lHJQ0OSJLC48Ih12OFR+PTXpM/mqHz0poPNC9wpPnEyFwKToE62fqYKszpC6R9t9d7BvuQ5o6LKu2khOdUFVYa8iAN7PR26nqdJ0tc1XXq5GTaNFH4CVIsvFRN707cjRcB10GyBB22jP7JdutzmllRajQkFPd+mMQFjSruSAqFdTstPRZcnPIJDgM0XKMfVQsNatgNTAa5deEZggV7+UfFtfdzPQ6VmtPUr+ca8n+5YUn561ElTVESGnExKC9VuB0aQSGTDgWpeQBcOBl2BTHlQUQKsrfbu5fnTFHNkMIlDg2eCas1N1mV5lxLNc8w56WiILLPV/jKlp6b1Zrw1vBgcXCgdEaaCVgDTXrfo5M5NFWgbYbPIQyA0i9KaIoO0Myks6YROdy5atkObiXr3lwHhy+6SdxN3r/sHLxZ+rbBnrCnbI8l7BU7YO9Ynw2YYD/Zb/aH/Y109DX6Fn2/KI1ayz+P2ZWIfvwD74bvfQ==</latexit><latexit sha1_base64="UfpOiKm2RL8/P6WTnBh3SDiIqYU=">AAAC63icbVFLbhNBEG0Pv2A+SWDJpoQTKUjEmkFIsIywkFgaCSdBHitq99TYrfRn6K5xYoY5BTvElnNwDg7AFq5Aj2NLiUNJLT29qq7Pe+NCSU9x/KsV3bh56/adjbvte/cfPNzc2n506G3pBA6EVdYdj7lHJQ0OSJLC48Ih12OFR+PTXpM/mqHz0poPNC9wpPnEyFwKToE62fqYKszpC6R9t9d7BvuQ5o6LKu2khOdUFVYa8iAN7PR26nqdJ0tc1XXq5GTaNFH4CVIsvFRN707cjRcB10GyBB22jP7JdutzmllRajQkFPd+mMQFjSruSAqFdTstPRZcnPIJDgM0XKMfVQsNatgNTAa5deEZggV7+UfFtfdzPQ6VmtPUr+ca8n+5YUn561ElTVESGnExKC9VuB0aQSGTDgWpeQBcOBl2BTHlQUQKsrfbu5fnTFHNkMIlDg2eCas1N1mV5lxLNc8w56WiILLPV/jKlp6b1Zrw1vBgcXCgdEaaCVgDTXrfo5M5NFWgbYbPIQyA0i9KaIoO0Myks6YROdy5atkObiXr3lwHhy+6SdxN3r/sHLxZ+rbBnrCnbI8l7BU7YO9Ynw2YYD/Zb/aH/Y109DX6Fn2/KI1ayz+P2ZWIfvwD74bvfQ==</latexit><latexit sha1_base64="UfpOiKm2RL8/P6WTnBh3SDiIqYU=">AAAC63icbVFLbhNBEG0Pv2A+SWDJpoQTKUjEmkFIsIywkFgaCSdBHitq99TYrfRn6K5xYoY5BTvElnNwDg7AFq5Aj2NLiUNJLT29qq7Pe+NCSU9x/KsV3bh56/adjbvte/cfPNzc2n506G3pBA6EVdYdj7lHJQ0OSJLC48Ih12OFR+PTXpM/mqHz0poPNC9wpPnEyFwKToE62fqYKszpC6R9t9d7BvuQ5o6LKu2khOdUFVYa8iAN7PR26nqdJ0tc1XXq5GTaNFH4CVIsvFRN707cjRcB10GyBB22jP7JdutzmllRajQkFPd+mMQFjSruSAqFdTstPRZcnPIJDgM0XKMfVQsNatgNTAa5deEZggV7+UfFtfdzPQ6VmtPUr+ca8n+5YUn561ElTVESGnExKC9VuB0aQSGTDgWpeQBcOBl2BTHlQUQKsrfbu5fnTFHNkMIlDg2eCas1N1mV5lxLNc8w56WiILLPV/jKlp6b1Zrw1vBgcXCgdEaaCVgDTXrfo5M5NFWgbYbPIQyA0i9KaIoO0Myks6YROdy5atkObiXr3lwHhy+6SdxN3r/sHLxZ+rbBnrCnbI8l7BU7YO9Ynw2YYD/Zb/aH/Y109DX6Fn2/KI1ayz+P2ZWIfvwD74bvfQ==</latexit>

ε-sample Theorem

19

X

Union bound: yields a
sample complexity that
depends on |𝓒|.

How many samples do we need to get an ε-sample whp?

V & C 1971:
If 𝓒 has VC dimension d,
then the number of points to
get an ε-sample whp is

O(
d

✏2 log
d

✏
).

<latexit sha1_base64="9lVr7IL6AG/fkO4DW1c5A8k0Rrs=">AAADPXicbVLLihQxFE2Xr7F8TI8u3RQ2wijSVA2CLgfduHMEe2ag0zap1E11mDyKJNXaFPUbfo3gSv/BD3An7sStqYdgdc+FJId7z33kcNNCcOvi+PsouHL12vUbezfDW7fv3N0fH9w7tbo0FGZUC23OU2JBcAUzx52A88IAkamAs/TiVRM/W4OxXKt3blPAQpJcccYpcd61HMdvDjEzhFZZXWEoLBdavT+qIyx0Hu1E6sfT5XgST+PWol2Q9GCCejtZHox+40zTUoJyVBBr50lcuEVFjONUQB3i0kJB6AXJYe6hIhLsomq/VkePvCeLmDb+KBe13v8zKiKt3cjUMyVxK7sda5yXxealYy8WFVdF6UDRrhErReR01OgUZdwAdWLjAaGG+1kjuiJeD+fVHHRZgViDG/yjsqxtHGIDCj5QLSVR2ZMKMyK52GTASCmc19Wyf/gyFZ5ma17YXpCPnSIhFuCwNjzniggBzOHmGrr9s3K4vYcjVC3ZN27G0wWoqm4hFdoCTnOjy2JQvN7Ob4v6AoR5ITo+DNM6RugXJdlei11wejRN4mny9tnk+GW/MnvoAXqIDlGCnqNj9BqdoBmi6BP6jL6ib8GX4EfwM/jVUYNRn3MfDSz48xdm7xhr</latexit><latexit sha1_base64="9lVr7IL6AG/fkO4DW1c5A8k0Rrs=">AAADPXicbVLLihQxFE2Xr7F8TI8u3RQ2wijSVA2CLgfduHMEe2ag0zap1E11mDyKJNXaFPUbfo3gSv/BD3An7sStqYdgdc+FJId7z33kcNNCcOvi+PsouHL12vUbezfDW7fv3N0fH9w7tbo0FGZUC23OU2JBcAUzx52A88IAkamAs/TiVRM/W4OxXKt3blPAQpJcccYpcd61HMdvDjEzhFZZXWEoLBdavT+qIyx0Hu1E6sfT5XgST+PWol2Q9GCCejtZHox+40zTUoJyVBBr50lcuEVFjONUQB3i0kJB6AXJYe6hIhLsomq/VkePvCeLmDb+KBe13v8zKiKt3cjUMyVxK7sda5yXxealYy8WFVdF6UDRrhErReR01OgUZdwAdWLjAaGG+1kjuiJeD+fVHHRZgViDG/yjsqxtHGIDCj5QLSVR2ZMKMyK52GTASCmc19Wyf/gyFZ5ma17YXpCPnSIhFuCwNjzniggBzOHmGrr9s3K4vYcjVC3ZN27G0wWoqm4hFdoCTnOjy2JQvN7Ob4v6AoR5ITo+DNM6RugXJdlei11wejRN4mny9tnk+GW/MnvoAXqIDlGCnqNj9BqdoBmi6BP6jL6ib8GX4EfwM/jVUYNRn3MfDSz48xdm7xhr</latexit><latexit sha1_base64="9lVr7IL6AG/fkO4DW1c5A8k0Rrs=">AAADPXicbVLLihQxFE2Xr7F8TI8u3RQ2wijSVA2CLgfduHMEe2ag0zap1E11mDyKJNXaFPUbfo3gSv/BD3An7sStqYdgdc+FJId7z33kcNNCcOvi+PsouHL12vUbezfDW7fv3N0fH9w7tbo0FGZUC23OU2JBcAUzx52A88IAkamAs/TiVRM/W4OxXKt3blPAQpJcccYpcd61HMdvDjEzhFZZXWEoLBdavT+qIyx0Hu1E6sfT5XgST+PWol2Q9GCCejtZHox+40zTUoJyVBBr50lcuEVFjONUQB3i0kJB6AXJYe6hIhLsomq/VkePvCeLmDb+KBe13v8zKiKt3cjUMyVxK7sda5yXxealYy8WFVdF6UDRrhErReR01OgUZdwAdWLjAaGG+1kjuiJeD+fVHHRZgViDG/yjsqxtHGIDCj5QLSVR2ZMKMyK52GTASCmc19Wyf/gyFZ5ma17YXpCPnSIhFuCwNjzniggBzOHmGrr9s3K4vYcjVC3ZN27G0wWoqm4hFdoCTnOjy2JQvN7Ob4v6AoR5ITo+DNM6RugXJdlei11wejRN4mny9tnk+GW/MnvoAXqIDlGCnqNj9BqdoBmi6BP6jL6ib8GX4EfwM/jVUYNRn3MfDSz48xdm7xhr</latexit><latexit sha1_base64="9lVr7IL6AG/fkO4DW1c5A8k0Rrs=">AAADPXicbVLLihQxFE2Xr7F8TI8u3RQ2wijSVA2CLgfduHMEe2ag0zap1E11mDyKJNXaFPUbfo3gSv/BD3An7sStqYdgdc+FJId7z33kcNNCcOvi+PsouHL12vUbezfDW7fv3N0fH9w7tbo0FGZUC23OU2JBcAUzx52A88IAkamAs/TiVRM/W4OxXKt3blPAQpJcccYpcd61HMdvDjEzhFZZXWEoLBdavT+qIyx0Hu1E6sfT5XgST+PWol2Q9GCCejtZHox+40zTUoJyVBBr50lcuEVFjONUQB3i0kJB6AXJYe6hIhLsomq/VkePvCeLmDb+KBe13v8zKiKt3cjUMyVxK7sda5yXxealYy8WFVdF6UDRrhErReR01OgUZdwAdWLjAaGG+1kjuiJeD+fVHHRZgViDG/yjsqxtHGIDCj5QLSVR2ZMKMyK52GTASCmc19Wyf/gyFZ5ma17YXpCPnSIhFuCwNjzniggBzOHmGrr9s3K4vYcjVC3ZN27G0wWoqm4hFdoCTnOjy2JQvN7Ob4v6AoR5ITo+DNM6RugXJdlei11wejRN4mny9tnk+GW/MnvoAXqIDlGCnqNj9BqdoBmi6BP6jL6ib8GX4EfwM/jVUYNRn3MfDSz48xdm7xhr</latexit>

Does not depend on |𝓒|!

VC Dimension

20

Remaining Q: what is the VC dimension?

A set of points is shattered by 𝓒 iff:

 every subset of S is equal to C∩S for some C in 𝓒.

Example. Take 2 points in X=[0,1]. Concepts 𝓒 = all ranges.

0 1

Subsets: OK. Range A.
A

OK. Range B.

B

OK. Range C.

C

OK. Range D.

D

2 points =
SHATTERED

VC Dimension

21

Example. Take 3 points in X=[0,1]. Concepts 𝓒 = all ranges.

0 1
Subset: Problem.

3 points = NOT SHATTERED

VC dimension of 𝓒 = largest cardinality of a set of points in X
that is shattered by 𝓒.

E.g. VC dimension of ranges is 2.

What typically matters is just that VC dim is finite.

1 3C

vs.

Statistical Reconstruction

Direct statistical attack

23

1 N

Less probable More probable
Assume a uniform distribution on range queries.

Idea: for each record...

1. Count frequency at which the record is hit.

 → gives estimate of probability it’s hit by uniform query.
2. deduce estimate of its value by “inverting” f.

values

f

Induces a distribution f on the prob. that a given value is hit.

Direct statistical attack

24

1 N

Step 1: for all records, estimate prob of the record being hit.

This is an ε-sample!

X = ranges 𝓒 ={{ranges ∋ x}: x ∈ [1,N]}

 so we need O(ε-2 log ε-1) queries.

Step 2: because f is quadratic, “inverting” f adds a square.

f

values

After O(ε-4 log ε-1) queries, the value of all records is
recovered within εN.

Order Reconstruction

P

Q...

...C

+

Problem Statement

26

Range = [40,100]

Client Server

45
1

83
3

45
1

6
2

83
3

28
4

This time we don't assume i.i.d. queries, or knowledge of their
distribution.

What can the server learn from the above leakage?

Range Query Leakage

27

Query A matches records a, b, c.

Query B matches records b, c, d.

→ we learn that records b, c are between a and d.

We learn something about the order of records.

Then this is the only configuration (up to symmetry)!

0 N
A

a b c d

B

Range Query Leakage

28

Query A matches records a, b, c.

Query B matches records b, c, d.

Query C matches records c, d.

Then the only possible order is a, b, c, d (or d, c, b, a)!

0 N
A

a b c d

B
C

Challenges:

‣ How do we extract order information? (What algorithm?)

‣ How do we quantify and analyze how fast order is learned

as more queries are observed?

Challenge 1: the Algorithm

29

Short answer: there is already an algorithm!

X: linearly ordered set. Order is unknown.

You are given a set S containing some intervals in X.

A PQ tree is a compact (linear in |X|) representation of the set
of all permutations of X that are compatible with S.

Long answer: PQ-trees.

Can be updated in linear time.

Challenge 2a: quantify order learning

30

Strongest goal: full database reconstruction = recovering the
exact value of every record.

More general: approximate database reconstruction = recovering
all values within εN.

ε = 0.05 is recovery within 5%. ε = 1/N is full recovery.

(“Sacrificial” recovery: values very close to 1 and N are excluded.)

Challenge 2b: analyze query complexity

31

Intuition: if no query has an endpoint between a and b, then a
and b can't be separated.

→ ε-approximate reconstruction is impossible.

0 N
A

a b c dεN

You want a query endpoint to hit every interval ≥ εN.
Conversely with some other conditions it's enough.

Heavy sweeping of details under rug.

VC Theory saves the day (again)

32

➞ Number of points to get an ε-net whp: O

⇣
d

✏
log

d

✏

⌘

<latexit sha1_base64="bG12hBMKQYLjA5/zK1nlVMJu+Ls=">AAACyHicbVHbahRBEO0dL4njbaOPvjQugQi6zIgYH0NEEF+M4CaBnWWp7amZbdKXobtmwzjsi9/h1/iqP+Df2LPZhdwKGg6nTnVVnZpVSnpKkn+96M7de/e3th/EDx89fvK0v/Ps2NvaCRwJq6w7nYFHJQ2OSJLC08oh6JnCk9nZxy5/skDnpTXfqalwoqE0spACKFDT/vuv2aEs93hWOBBtvmwzrLxU1ix5pmx5C9/pX037g2SYrILfBOkaDNg6jqY7vR9ZbkWt0ZBQ4P04TSqatOBICoXLOKs9ViDOoMRxgAY0+km7WnDJdwOT88K68AzxFXu5ogXtfaNnQamB5v56riNvy41rKj5MWmmqmtCIi0ZFrThZ3rnFc+lQkGoCAOFkmJWLOQRLKHgax7uX+8xRLZDCJg4NngurNZi8zQrQUjU5FlArCj76YoOvTOnBbMbknwyE+3lOtTPSlNwa3qXfeHSy4J2Ka5vjax4a8NqvJDRHx9EspLOmMznsufkyDtdKr9/mJjh+O0yTYfrt3eDgcH23bfaCvWR7LGX77IB9ZkdsxAT7xX6zP+xv9CWqovOouZBGvXXNc3Ylop//AVtr4bk=</latexit><latexit sha1_base64="bG12hBMKQYLjA5/zK1nlVMJu+Ls=">AAACyHicbVHbahRBEO0dL4njbaOPvjQugQi6zIgYH0NEEF+M4CaBnWWp7amZbdKXobtmwzjsi9/h1/iqP+Df2LPZhdwKGg6nTnVVnZpVSnpKkn+96M7de/e3th/EDx89fvK0v/Ps2NvaCRwJq6w7nYFHJQ2OSJLC08oh6JnCk9nZxy5/skDnpTXfqalwoqE0spACKFDT/vuv2aEs93hWOBBtvmwzrLxU1ix5pmx5C9/pX037g2SYrILfBOkaDNg6jqY7vR9ZbkWt0ZBQ4P04TSqatOBICoXLOKs9ViDOoMRxgAY0+km7WnDJdwOT88K68AzxFXu5ogXtfaNnQamB5v56riNvy41rKj5MWmmqmtCIi0ZFrThZ3rnFc+lQkGoCAOFkmJWLOQRLKHgax7uX+8xRLZDCJg4NngurNZi8zQrQUjU5FlArCj76YoOvTOnBbMbknwyE+3lOtTPSlNwa3qXfeHSy4J2Ka5vjax4a8NqvJDRHx9EspLOmMznsufkyDtdKr9/mJjh+O0yTYfrt3eDgcH23bfaCvWR7LGX77IB9ZkdsxAT7xX6zP+xv9CWqovOouZBGvXXNc3Ylop//AVtr4bk=</latexit><latexit sha1_base64="bG12hBMKQYLjA5/zK1nlVMJu+Ls=">AAACyHicbVHbahRBEO0dL4njbaOPvjQugQi6zIgYH0NEEF+M4CaBnWWp7amZbdKXobtmwzjsi9/h1/iqP+Df2LPZhdwKGg6nTnVVnZpVSnpKkn+96M7de/e3th/EDx89fvK0v/Ps2NvaCRwJq6w7nYFHJQ2OSJLC08oh6JnCk9nZxy5/skDnpTXfqalwoqE0spACKFDT/vuv2aEs93hWOBBtvmwzrLxU1ix5pmx5C9/pX037g2SYrILfBOkaDNg6jqY7vR9ZbkWt0ZBQ4P04TSqatOBICoXLOKs9ViDOoMRxgAY0+km7WnDJdwOT88K68AzxFXu5ogXtfaNnQamB5v56riNvy41rKj5MWmmqmtCIi0ZFrThZ3rnFc+lQkGoCAOFkmJWLOQRLKHgax7uX+8xRLZDCJg4NngurNZi8zQrQUjU5FlArCj76YoOvTOnBbMbknwyE+3lOtTPSlNwa3qXfeHSy4J2Ka5vjax4a8NqvJDRHx9EspLOmMznsufkyDtdKr9/mJjh+O0yTYfrt3eDgcH23bfaCvWR7LGX77IB9ZkdsxAT7xX6zP+xv9CWqovOouZBGvXXNc3Ylop//AVtr4bk=</latexit><latexit sha1_base64="bG12hBMKQYLjA5/zK1nlVMJu+Ls=">AAACyHicbVHbahRBEO0dL4njbaOPvjQugQi6zIgYH0NEEF+M4CaBnWWp7amZbdKXobtmwzjsi9/h1/iqP+Df2LPZhdwKGg6nTnVVnZpVSnpKkn+96M7de/e3th/EDx89fvK0v/Ps2NvaCRwJq6w7nYFHJQ2OSJLC08oh6JnCk9nZxy5/skDnpTXfqalwoqE0spACKFDT/vuv2aEs93hWOBBtvmwzrLxU1ix5pmx5C9/pX037g2SYrILfBOkaDNg6jqY7vR9ZbkWt0ZBQ4P04TSqatOBICoXLOKs9ViDOoMRxgAY0+km7WnDJdwOT88K68AzxFXu5ogXtfaNnQamB5v56riNvy41rKj5MWmmqmtCIi0ZFrThZ3rnFc+lQkGoCAOFkmJWLOQRLKHgax7uX+8xRLZDCJg4NngurNZi8zQrQUjU5FlArCj76YoOvTOnBbMbknwyE+3lOtTPSlNwa3qXfeHSy4J2Ka5vjax4a8NqvJDRHx9EspLOmMznsufkyDtdKr9/mJjh+O0yTYfrt3eDgcH23bfaCvWR7LGX77IB9ZkdsxAT7xX6zP+xv9CWqovOouZBGvXXNc3Ylop//AVtr4bk=</latexit>

The set of samples drawn from X is an ε-net iff for all C in 𝓒:
Pr(C) � ✏) C contains a sample

<latexit sha1_base64="GLJ0wq3GFBItt6qZvzQ86d7jvkM=">AAAC0HicbVFbaxNBFJ6st7reUn305WBaqKBhVwR9kmIQfIzFtIVsCJPZs8nQuawzZ9PGJYiv/g5/ja/64r9xNk2gFw8MfHzfmXP7JqWSnpLkbyu6cfPW7Ttbd+N79x88fNTefnzobeUEDoRV1h1PuEclDQ5IksLj0iHXE4VHk5Neox/N0XlpzWdalDjSfGpkIQWnQI3b77K+g73ec8im+AUyLL1U1kB2IKcz4s7ZU8gIz6je6e2AsIa4NB44eK5Lhctxu5N0k1XAdZCuQYetoz/ebn3NcisqjYaE4t4P06SkUc0dSREKxlnlseTihE9xGKDhGv2oXi26hN3A5FBYF54hWLEXf9Rce7/Qk5CpOc38Va0h/6cNKyrejmppyorQiPNGRaWALDRXg1w6FKQWAXDhZJgVxIw7LijcNo53L/aZoZojhU0cGjwVVmtu8joruJZqkWPBK0XLOvPFBl+a0nOzGRM+GB589ECVM9JMIRjTyC89OllAkwXa5vgCQgOo/CqFZugAzVw6a5ojhz03JePgVnrVm+vg8FU3Tbrpp9ed/fdr37bYU/aM7bGUvWH77CPrswET7Cf7xX6zP9FBdBZ9i76fp0at9Z8n7FJEP/4Bzr/jVw==</latexit><latexit sha1_base64="GLJ0wq3GFBItt6qZvzQ86d7jvkM=">AAAC0HicbVFbaxNBFJ6st7reUn305WBaqKBhVwR9kmIQfIzFtIVsCJPZs8nQuawzZ9PGJYiv/g5/ja/64r9xNk2gFw8MfHzfmXP7JqWSnpLkbyu6cfPW7Ttbd+N79x88fNTefnzobeUEDoRV1h1PuEclDQ5IksLj0iHXE4VHk5Neox/N0XlpzWdalDjSfGpkIQWnQI3b77K+g73ec8im+AUyLL1U1kB2IKcz4s7ZU8gIz6je6e2AsIa4NB44eK5Lhctxu5N0k1XAdZCuQYetoz/ebn3NcisqjYaE4t4P06SkUc0dSREKxlnlseTihE9xGKDhGv2oXi26hN3A5FBYF54hWLEXf9Rce7/Qk5CpOc38Va0h/6cNKyrejmppyorQiPNGRaWALDRXg1w6FKQWAXDhZJgVxIw7LijcNo53L/aZoZojhU0cGjwVVmtu8joruJZqkWPBK0XLOvPFBl+a0nOzGRM+GB589ECVM9JMIRjTyC89OllAkwXa5vgCQgOo/CqFZugAzVw6a5ojhz03JePgVnrVm+vg8FU3Tbrpp9ed/fdr37bYU/aM7bGUvWH77CPrswET7Cf7xX6zP9FBdBZ9i76fp0at9Z8n7FJEP/4Bzr/jVw==</latexit><latexit sha1_base64="GLJ0wq3GFBItt6qZvzQ86d7jvkM=">AAAC0HicbVFbaxNBFJ6st7reUn305WBaqKBhVwR9kmIQfIzFtIVsCJPZs8nQuawzZ9PGJYiv/g5/ja/64r9xNk2gFw8MfHzfmXP7JqWSnpLkbyu6cfPW7Ttbd+N79x88fNTefnzobeUEDoRV1h1PuEclDQ5IksLj0iHXE4VHk5Neox/N0XlpzWdalDjSfGpkIQWnQI3b77K+g73ec8im+AUyLL1U1kB2IKcz4s7ZU8gIz6je6e2AsIa4NB44eK5Lhctxu5N0k1XAdZCuQYetoz/ebn3NcisqjYaE4t4P06SkUc0dSREKxlnlseTihE9xGKDhGv2oXi26hN3A5FBYF54hWLEXf9Rce7/Qk5CpOc38Va0h/6cNKyrejmppyorQiPNGRaWALDRXg1w6FKQWAXDhZJgVxIw7LijcNo53L/aZoZojhU0cGjwVVmtu8joruJZqkWPBK0XLOvPFBl+a0nOzGRM+GB589ECVM9JMIRjTyC89OllAkwXa5vgCQgOo/CqFZugAzVw6a5ojhz03JePgVnrVm+vg8FU3Tbrpp9ed/fdr37bYU/aM7bGUvWH77CPrswET7Cf7xX6zP9FBdBZ9i76fp0at9Z8n7FJEP/4Bzr/jVw==</latexit><latexit sha1_base64="GLJ0wq3GFBItt6qZvzQ86d7jvkM=">AAAC0HicbVFbaxNBFJ6st7reUn305WBaqKBhVwR9kmIQfIzFtIVsCJPZs8nQuawzZ9PGJYiv/g5/ja/64r9xNk2gFw8MfHzfmXP7JqWSnpLkbyu6cfPW7Ttbd+N79x88fNTefnzobeUEDoRV1h1PuEclDQ5IksLj0iHXE4VHk5Neox/N0XlpzWdalDjSfGpkIQWnQI3b77K+g73ec8im+AUyLL1U1kB2IKcz4s7ZU8gIz6je6e2AsIa4NB44eK5Lhctxu5N0k1XAdZCuQYetoz/ebn3NcisqjYaE4t4P06SkUc0dSREKxlnlseTihE9xGKDhGv2oXi26hN3A5FBYF54hWLEXf9Rce7/Qk5CpOc38Va0h/6cNKyrejmppyorQiPNGRaWALDRXg1w6FKQWAXDhZJgVxIw7LijcNo53L/aZoZojhU0cGjwVVmtu8joruJZqkWPBK0XLOvPFBl+a0nOzGRM+GB589ECVM9JMIRjTyC89OllAkwXa5vgCQgOo/CqFZugAzVw6a5ojhz03JePgVnrVm+vg8FU3Tbrpp9ed/fdr37bYU/aM7bGUvWH77CPrswET7Cf7xX6zP9FBdBZ9i76fp0at9Z8n7FJEP/4Bzr/jVw==</latexit>

ε-samples: the ratio of
points hitting each concept
is close to its probability.

What we want now: if a
concept has high enough
probability, it is hit by at
least one point.

Access pattern leakage: conclusion

33

Full order reconstruction: O(N log N) queries.
Approximate order reconstruction (within εN): O(ε-1 log ε-1) queries!

(NB: this is optimal.)

Say patient age has N possible values (e.g. N = 100)...

Very rough summary :
highly structured queries

⇒ low VC dimension

⇒ learn data with few queries

Age data: can infer value from order (if all ages are present)...

In this setting, encryption was ultimately useless.

It actually works, by the way

34

0 100 200 300 400 500
Number of queries

0.00

0.02

0.04

0.06

0.08

0.10

0.12
S
ym

m
et

ri
c

va
lu

e/
bu

ck
et

di
am

et
er

(a
s

a
fr
ac

ti
on

of
N

)

Max. sacrificed symmetric value

N = 100

N = 1000

N = 10000

N = 100000

Max. bucket diameter

N = 100

N = 1000

N = 10000

N = 100000

≤°1 log ≤°1≤°1 log ≤°1

ApproxOrder experimental results
R = 1000, compared to theoretical ≤-net bound

0 100 200 300 400 500
Number of queries

0.00

0.02

0.04

0.06

0.08

0.10

0.12

S
ym

m
et

ri
c

va
lu

e/
bu

ck
et

di
am

et
er

(a
s

a
fr
ac

ti
on

of
N

)

Max. sacrificed symmetric value

N = 100

N = 1000

N = 10000

N = 100000

Max. bucket diameter

N = 100

N = 1000

N = 10000

N = 100000

≤°1 log ≤°1≤°1 log ≤°1

ApproxOrder experimental results
R = 1000, compared to theoretical ≤-net bound

0 100 200 300 400 500
Number of queries

0.00

0.02

0.04

0.06

0.08

0.10

0.12

S
ym

m
et

ri
c

va
lu

e/
bu

ck
et

di
am

et
er

(a
s

a
fr
ac

ti
on

of
N

)

Max. sacrificed symmetric value

N = 100

N = 1000

N = 10000

N = 100000

Max. bucket diameter

N = 100

N = 1000

N = 10000

N = 100000

≤°1 log ≤°1≤°1 log ≤°1

ApproxOrder experimental results
R = 1000, compared to theoretical ≤-net bound

0
10

0
20

0
30

0
40

0
50

0
N

um
b
er

of
qu

er
ie

s

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

Symmetricvalue/bucketdiameter
(asafractionofN)

M
ax

.
sa

cr
ifi

ce
d

sy
m

m
et

ri
c

va
lu

e

N
=

10
0

N
=

10
00

N
=

10
00

0

N
=

10
00

00

M
ax

.
bu

ck
et

di
am

et
er

N
=

10
0

N
=

10
00

N
=

10
00

0

N
=

10
00

00

≤°
1

lo
g

≤°
1

≤°
1

lo
g

≤°
1

A
p
p
r
o
x
O

r
d
e
r

ex
pe

ri
m

en
ta

l
re

su
lt
s

R
=

10
00

,
co

m
pa

re
d

to
th

eo
re

ti
ca

l
≤-

ne
t

bo
un

d

Other examples

35

Suppose you implement AES using lookup tables (for S-boxes).

If adversary can observe queries to tables, AES is broken.

If adversary can observe cache misses from access to AES S-box
tables, also broken.

Two issues:
‣ Leaking access pattern can be (very) damaging.

‣ Many settings leak access pattern, completely or partially.

Cloud storage, trusted enclaves, cache attacks (incl.
hypervisors), etc. See also: side-channel attacks.

https://static.appointmentreminder.com/web/images/v3/svg/Colou...

1 sur 1 04/12/2019 à 11:22

Oblivious algorithms

https://static.appointmentreminder.com/web/images/v3/svg/Colou...

1 sur 1 04/12/2019 à 11:22

Naive solution, attempt #2

37

Client Server

Data access

Naive solution 2: encrypt each file individually.

The server learns the client's access pattern.

Remark: the “client” could be an algorithm.

✓ Functional
× Not secure

Magic Claim

38

Client Server

Read/write query

Query response

ORAM

algorithm

Server stores N files.

Client fetches file i.

Security: Server learns nothing about i.

Efficiency: ORAM algorithm only queries O(log N) files.

...

1

2

3

i ?

i

Bonus feature: server performs no computation. Acts like a RAM.

Oblivious algorithm: definition

39

Oblivious algorithm: an algorithm A is oblivious iff for any two
inputs x and y, the memory accesses of A on input x, and A on
input y, are indistinguishable.

Oblivious Sorting

Sorting algorithms

41

Oblivious algorithm: an algorithm A is oblivious iff for any two
inputs x and y, the memory accesses of A on input x, and A on
input y, are indistinguishable.

Which of the following algorithms are oblivious?
(assuming inputs are arrays of fixed size.)

1. Bubble Sort.

2. Quick Sort.

3. Merge Sort.

✔︎ yes

✘ no

✘ no

Sorting obliviously

42

Basic operation: sorting two elements.

Compare and swap: on input (x,y), if x < y, output (x,y), else
output (y,x).

x y

min(x,y) max(x,y)

x y

max(x,y) min(x,y)

Bubble Sort

43

x y z t

Sorting network

44

Comparator network: A comparator network is an algorithm that
consists in a sequence of compare-and-swaps (“comparators”)
between fixed inputs.

Sorting network: A sorting network is a comparator network that
correctly sorts its input (for all possible inputs).

Remark: testing whether a comparator network is a sorting network
is co-NP-complete.

Can be represented in this form:

Size and depth

45

The size of a comparator network is its number of comparators.

The depth (or “critical path”) of a comparator network is the maximum
number of comparators that an input value can go through.

It is also the number of steps in a parallel computation of the network.

Example: comparator network of size 4 and depth 3.

→ Bubble sort is a sorting network of size O(n2) and depth O(n).

Can we do better?

46

Proposition: A sorting network must have size Ω(n log n).

Proof. A network with k comparators can permute its input
sequence in at most 2k different ways.

For a sorting network, we must have 2k ≥ n!

By Stirling’s formula, this yields k = Ω(n log n).

Bitonic sort: size O(n log2 n).

Most efficient in practice.

The 0-1 principle

47

0-1 Principle: a comparator network (on n inputs) is a sorting
network iff it correctly sorts all 2n possible binary inputs.

Proof. Let f be a non-decreasing function: x ≤ y implies f(x) ≤ f(y).

Claim: If a comparator network has input (x1,…,xn) and outputs
(y1,…,yn), then on input (f(x1),…,f(xn)), it must output (f(y1),…,f(yn)).

Proof of the claim: induction on comparators.

Now assume a comparator network is not a sorting network. Then
there exist an input (x1,…,xn) and some indices i, j, such that xi < xj
but they are in the opposite order in the output.

Define f(x) = 0 if x ≤ xi, 1 otherwise. We have f(xi) = 0 and f(xj) = 1, but
their order is reversed by the network when inputting (f(x1),…,f(xn)).
Hence the network does not correctly sort all binary sequences.

Bitonic sequences

48

Bitonic sequence: A sequence of values is bitonic iff:

‣ It is increasing, then decreasing.

‣Or it is a circular shift of the previous case.

Example: bitonic sequences of 0 and 1’s are those of the form
0a1b0c and 1a0b1c.

Half-cleaner

49

Half-cleaner: A half-cleaner is a comparator network for an even
number of inputs n, composed of comparators

(1,n/2+1), (2,n/2+2), …, (n/2,n)

Half-cleaner for n = 8:

Half-cleaner

50

Key property of a half-cleaner: if the input is bitonic, then both
halves of the output are bitonic. Moreover, one of the two halves
must be all 0’s or all 1’s. That half is called clean.

0 1 1 00 1 0 0

0 0 1 10 0 0 1

clean bitonic

Bitonic sorter

51

Bitonic sorter Bitonic sorter

Half-cleaner

The bitonic sorter correctly sorts all bitonic inputs.

Bitonic sorter recursive construction:

Batcher’s sort

52

Batcher’s sort Batcher’s sort
for reverse order

Bitonic sorter

Batcher’s sort correctly sorts all binary inputs, hence all inputs.

Batcher’s sort recursive construction:

Efficiency

53

A half-cleaner has size H(n) = n/2.

The bitonic sorter has size S(n) = H(n) + 2S(n/2) = O(n log n).

Batcher’s sort has size B(n) = S(n) + 2B(n/2) = O(n log2 n).

 Ajtai, Komlós, Szemerédi (STOC ’83): there exists a sorting
network of size O(n log n).

Unfortunately, completely impractical.

The depth of Batcher’s sort is O(log2 n): in a parallel computation
model, only need O(log2 n) steps.

→ Sorting algorithms used in GPUs.

Oblivious RAM

Read/write query

Query response

Generalizing

55

So far…

Traditional efficient sorting algorithms were not oblivious.

→ created new efficient oblivious sorting algorithm.

Can we do this generically?

Take any algorithm → create oblivious version, with low overhead.

Disclaimer: does not hide number of accesses.

This is what Oblivious RAM (ORAM) does.

Reminder: Oblivious RAM

56

Client Server

Read/write query

Query response

Query q
ORAM

algorithm
C

Response

C(q)

Client wants to do queries q1, q2, …, qn.

Each qi is either:

‣ read(a): read data block at address a;

‣write(a,d): write data block d at address a.

Small

Memory

Large

Memory

Reminder: Oblivious RAM

57

Client Server

Read/write query

Query response

Query q
ORAM

algorithm
C

Response

C(q)

ORAM algorithm C (or ORAM “compiler”): transforms each query q
by the client into one or several read/write queries C(q) to server.

Correctness: C’s response is the correct answer to query q.

Obliviousness: for any two sequences of queries q = (q1,…,qk) and
r = (r1,…,rk) of the same length, C(q) = (C(q1),…,C(qk)) and C(r) =
(C(r1),…,C(rk)) are indistinguishable.

Small

Memory

Large

Memory

Trivial ORAM

58

Client Server

Read/write query

Query response

Query q
ORAM

algorithm
C

Response

C(q)

Trivial ORAM: read and re-encrypt every item in server memory.

Security: trivial.

Efficiency: every client query costs O(n) real accesses

→ overhead is O(n).

A non-trivial ORAM must have:

‣Client storage o(n).

‣Query overhead o(n).

Some observations

59

Suppose client wants to do queries q1, q2, …, qn.

Each qi is to read or write a block of memory.

q1 q2 q3 q4 q5 q6 q7 q8 … qn

For each qi, the ORAM has to do some access(es) to the server
memory.

Assume the client does not store any memory block.

1

q1 and q2 must access at least 1 data
block in common.

Some observations

60

(q1,q2) and (q3,q4) must access at least
2 data blocks in common.

2

q1 q2 q3 q4 q5 q6 q7 q8 … qn

1 1

Some observations

61

etc...

2

q1 q2 q3 q4 q5 q6 q7 q8 … qn

1 1

2

1 1

4

...

Some observations

62

q1 q2 q3 q4 q5 q6 q7 q8 … qn

1 1 1 1

2 2

4

...

At least this many accesses are
assigned to this node.

For each memory access done by qj, let's "assign" that access to
the node qi ⋀ qj, where qi is the last time the same address was
accessed (i < j).

Some observations

63

2

q1 q2 q3 q4 q5 q6 q7 q8 … qn

1 1

2

1 1

4

...

→ Memory accesses in every node are now unique to that node.

For each memory access done by qj, let's "assign" that access to
the node qi ⋀ qj, where qi is the last time the same address was
accessed (i < j).

≥ n/2

...

≥ n/2

≥ n/2

Some observations

64

2

q1 q2 q3 q4 q5 q6 q7 q8 … qn

1 1

2

1 1

4

...

Wait... how many memory accesses are we doing?
(Say n = 2k for some k.)

For n client queries, ORAM will need to do
Ω(n log n) accesses to the server.

A lower bound

65

Goldreich & Ostrovsky ’96 (again):
Secure ORAM must have overhead Ω(log n).

G&O's proof under assumptions:

‣Client memory O(1).

‣ Statistically secure ORAM.

‣ “Balls and bins” model.

What we just saw: stronger proof by Larsen & Nielsen ’18.

(Computational security, less restrictive cell probe model, online).

Proof sketch (Goldreich-Ostrovsky proof)

66

1 2 3 4 … n …

Each item i = colored ball. At start:

Each server access, ORAM can do O(c) operations: exchange ball,
put ball, take ball, nothing.

Suppose client wants to make queries for balls b1, …, bq.

→ ORAM makes accesses a1, …, af(q). (Includes Setup accesses.)

Statistical security → access sequence (ai) must be compatible with
all nq possible query sequences (bi).

But only O(c)f(q) possible sequences of balls held by client, hence
O(c)f(q) query sequences compatible with given access sequence.

O(c)f(q) ≥ nq

f(q) = q⋅Ω(log n)
⇒

⇒

Client: c = O(1) balls Server: n balls + extra room

Roadmap

67

Query overhead: how many queries to the server are made in C(q)
for each client query q, amortized (= on average).

Here, n = max memory size = max number of items (address,data).

1. Square-root ORAM

2. Hierarchical ORAM

3. Tree ORAM

Õ(n1/2)

O(polylog n)

Family of constructions

O(polylog n)

Overhead

Simple

Best in theory

Best in practice

polylog(x) = poly(log(x)) = O(logc(x)) for some constant c.

Feature

Other efficiency metrics: client memory size, number of roundtrips in
C(q), time complexity of C…

Square-root ORAM

68

Let s < n. (Later, will fix s ≈ n1/2.)

Want to store n items. Create room for n+2s items:

n s s

real items dummy items

stash

The main memory stores n+s items:

- Real items: with addresses in [1,n], real data.

- Dummy items: with addresses in [n+1,n+s], random data.

For now, stash contains s items with all-zero address and data.

main memory

Goldreich and Ostrovsky ’96.

Setup

69

n s s

real items dummy items

stash

1. Client chooses permutation π over [1,n+s].

 Item i will be stored at location π(i) in the main memory.

2. Client encrypts everything, and sends to server.

main memory

Server view:

n+s encrypted items s enc. items

Remark: we are assimilating client with ORAM algorithm.

Lookup

70

Set t = 1. (number of dummy items read so far)

To access (= read/write) item i, client does:

1. Read the whole stash.

If item i was not found in stash:

2. Read/rewrite location π(i) in main memory.

3. Add item i to stash, rewrite whole stash to server.

If item i was found in stash:
2. Read/rewrite location π(n+t) in main memory. t ← t+1.

3. Rewrite whole stash to server.

main memory stash

π(i)
real location of item i

π(n+t)
location of fresh

dummy item

Refresh

71

Lookup can fail in two ways: stash is full, or run out of fresh dummy
items (t > s).

Can only happen after s iterations.

Solution: after s iterations of lookup, perform refresh:

‣Client chooses new permutation π’.

‣Moves item i to location π’(i) in main memory.

‣ Empties stash.

→ equivalent to fresh setup with π’.

→ can do s iterations again…

How do you move item i to location π’(i) obliviously?

Oblivious sorting!

Refresh via oblivious sort

72

n real items (some outdated), s dummies real items, empty items

Server memory after s lookups…

Oblivious sort with π-1

n real items (some duplicates) s dummies empty items

main memory stash

Erase outdated duplicates

n real items + some empty s dummies empty items

Oblivious sort with π’

n+s items sorted with π’ empty items
main memory stash

Security

73

Setup: server sees:

n+s encrypted items s enc. items
main memory stash

Lookup: server sees:

main memory stash

access to uniformly random fresh location full rewrite

Refresh: server sees:

1 oblivious sort, 1 linear scan, 1 oblivious sort.

Remark: computationally secure. Essentially statistically secure,
except for encryption, and pseudo-random permutation π.

Efficiency

74

Overhead.
Lookup costs O(s).

Refresh costs O(n polylog n), happens every s lookups.

Total overhead (amortized):

O(s + n/s ⋅polylog(n))

Setting s = n1/2 log n, and using Batcher sort:

O(n1/2 log n)

Client memory: O(1).

Need encryption key + key for pseudo-random π + few items during
operations.

Remark: memory measured in number of items. Item size assumed to be
Ω(n) bits, which is also Ω(𝜆) if n ≥ 𝜆.

Server memory: O(n).

Hierarchical ORAM

Hierarchical ORAM

76

Goldreich and Ostrovsky ’96:

‣ Square-root ORAM, overhead Õ(n1/2).

‣ Secure ORAM must have overhead Ω(log n).

But also: hierarchical ORAM, overhead O(log3 n).

→ Spawned whole construction family of ORAMs.

Interesting because:

‣ First ORAM with polylog overhead.

‣Basis for the recent construction of optimal ORAM with

overhead O(log n).

Open problem for 20+ years, solved by Asharov et al. ’18, based on
Patel et al. ’18.

Hashing

77

Hash function H: {0,1}* → [1,n].

Want to store n items into n buckets according to H.

1 2 3 4 … n

…

items

buckets

…hash H

Buckets of size log n suffice for negligible probability of overflow.

Proof: Probability that given bucket receives more than k items is
exp(-Ω(k2)) by Chernoff bound. Union bound over all buckets:

n⋅exp(-C⋅log2 n)) = n1 - C⋅log n = negl(n).

Oblivious hashing

78

Want to do the assignment obliviously…

Suppose we have items + empty buckets all in server memory.

1 2 3 4 … n

…

items

buckets

…hash H

Assignment can be done obliviously in n log2 n operations.

1. obliviously sort items according to H.

2. Put each item into own bucket.

3. Scan all buckets, pushing content of each bucket into
next bucket if next bucket has same hash value.

4. Obliviously sort buckets to delete empty buckets.

Sketch:

Setup

79

size 2

size 4

size 2log n = n

level 1

level 2

…

level log n

Server memory arranged into log n levels.

Each level k is an (oblivious) hash table for 2k items.

At start:

All items are in last level.

Other levels contain dummies.

H1

H2

Hlog n

oblivious hash tables

Lookup

80

To access item item i:

1. Access each level k at location Hk(i) until item is found.

2. Access remaining levels at uniformly random location.

3. Insert item at level 1. (Potentially with new value.)

Remark: whenever accessing level 1, entire level is read + rewritten.

2 items

4 items

n items

level 1

level 2

…

level log n

H1

H2

Hlog n

Reshuffling

81

To maintain invariant that level k stores ≤ 2k items:

Invariant is preserved:
Level k receives at most 2k-1 items every 2k-1 lookups.

And empties its content every 2k lookups.

Every 2k lookups, the (non-dummy) items of level k are shuffled
into level k+1, using fresh hash function.

If an item appears twice, newest version (from earliest level) is kept.

Remark: last level is never full, because it can hold n items, and there
are no duplicate items in the same level.

Security

82

Setup: server sees log n hash tables:

Lookup: server sees:

Key fact: no item is ever read twice from the same level with the
same hash function.

full rewrite
+ oblivious reshuffles at predetermined times.

size 2 size 4 …size 8

size 2 size 4 …size 8

uniformly random reads

Efficiency

83

Overhead.
Level k is reshuffled every 2k lookups.

Each reshuffle costs: O(2k log2 n).

→ Amortized cost for level k: O(log2 n).

→ Total amortized cost of reshuffles: O(log3 n).

→ Total amortized overhead: O(log3 n) + O(log2 n) = O(log3 n).

Client memory: O(1).

Server memory: O(n log n).

Server memory can be reduced to O(n) using cuckoo hashing.

Cuckoo hashing

84

“Bucket” hashing had total storage O(n log n), and lookup O(log n).

Cuckoo hashing has storage (2+ε)n = O(n), and lookup 2 = O(1).

Initial design mainly motivated by real-time systems…

Idea:

…

1 2 3 … nitems

hashes H1, H2

m=O(n) cells

Each item i can go into one of two cells H1(i) or H2(i).

The cuckoo graph

85

Picture graph with cells = nodes, item i = edge H1(i) - H2(i).

cell
item

The cuckoo graph

86

Picture graph with cells = nodes, item i = edge H1(i) - H2(i).

Orient edge towards where item is stored.

To insert item i: try cell H1(i). If occupied, move occupying item into
its other possible cell. Repeat until unoccupied cell is reached.

The cuckoo graph

87

Picture graph with cells = nodes, item i = edge H1(i) - H2(i).

Orient edge towards where item is stored.

To insert item i: try cell H1(i). If occupied, move occupying item into
its other possible cell. Repeat until unoccupied cell is reached.

Why does that work? (sketch)

88

Theorem: assignment is possible iff every connected component
has at most one cycle.

→ Expected insertion time is O(1)!

Moreover, with n edges and m = (2+ε)n nodes…

‣ The previous fact holds with high probability.

‣ Expected size of a connected component is O(1).

Remark: Probability of failure can be made negligible by adding a stash.

possible impossible

Tree ORAM

Tree ORAM

90

Hierarchical ORAM family leads to recent optimal construction.

But huge constants. Never used in practice.

What is actually used:

Tree ORAM

Overhead: O(log3 n).

Worst-case (no need to amortize).

In practice: easy to implement, efficient.

We will see Simple ORAM, member of the Tree ORAM family.

by Shi et al. ’11

The tree

91

each node:

log n blocks,

each with 𝛼 items

Server-side memory is a full binary tree with log(n/𝛼) levels.

Each node contains log n blocks.

Each block contains 𝛼 = O(1) (possibly dummy) items.

Setup

92

Items are grouped into blocks of 𝛼 items, item i into block b = ⎣i/𝛼⎦.

At start:
Each block b is stored in a uniformly random leaf Pos(b).

“Position map” Pos() is stored on the client.

Invariant: block b will always be stored on the branch to Pos(b).

42 31

Lookup

93

To access item i from block b:

1. Read every node along branch to Pos(b). Remove b when found.

2. Update Pos(b) to new uniform leaf.

3. Insert b at root. (Possibly with new value.)

42 31

Branch to Pos(2)

new Pos(2)

2

Eviction

94

After every lookup

1. Pick branch to uniformly random leaf.

2.Push every block in the branch as far down as possible (preserving
that block b must remain on branch to Pos(b)).

4

2

31

Branch to uniform leaf

2

new Pos(2)

2

Security

95

Setup: server sees full binary tree of height log (n/𝛼).

Each node is encrypted, same size.

Lookup + eviction: server sees:

Full read/rewrite along 2 branches to uniformly random leaves.

Why does that work? (sketch)

96

Setup, no overflow: same argument as bucket hashing.
Works as long as no node overflows.

Lookup + eviction, no overflow (sketch):

Let K be the number of blocks per node (we had K = log n).

Pick arbitrary node x at level L.

For x to overflow, number of blocks whose Pos is below x must be at
least K.

→ For one of the two children of x, number of blocks whose Pos is
below that child c must be at least K/2.

→ This implies event [Pos of new block is below c] happens K/2
times, without event [eviction branch includes c] happening at all.

Both events have the same probability (namely 2-L).

Deduce overflow probability is ≤ 2-K/2. Negligible for K = ω(log n).

Remark: we cheat a little by setting K = log n.

Efficiency of basic construction

97

Overhead.
Each lookup, read two branches, total O(log2 n) items.

Client memory: O(n/𝛼). (oops)

Server memory: O(n log n).

The position map

98

The client stores position Pos: [1,n/𝛼] → [1,n/𝛼], size n/𝛼 = Θ(n).

Still a large gain, if item size is much larger than log(n/𝛼) bits.

To reduce client memory:

Store position map on server. Obliviously!

“Recursive” construction:

Client needs new position map for server-side position map…

Key fact: it is 𝛼 times smaller!

Repeat this recursively log𝛼(n) times. In the end:

‣Client position map becomes size O(1).𝛼

‣ Server stores log𝛼(n) position maps, each 𝛼 × smaller than last.

‣ Each lookup, log𝛼(n) roundtrips to query each position map.

Efficiency of recursive construction

99

Overhead.
Each lookup, O(log n) recursive calls, ecah of size O(log2 n).

→ O(log3 n) overhead.

Client memory: O(1).

Server memory: O(n log n).

Variants

100

Original Tree ORAM had more complex eviction strategy and
analysis, better efficiency.

Path ORAM:

- Client has a small stash of blocks.

- Blocks are evicted along the same branch as item was read.

- Can use nodes as small as K = 4 blocks!

Searchable Encryption

...

Outsourcing storage, with search

102

Client Server

Search query

Query response

Encrypted search:

‣Client stores encrypted database on server.

‣Client can perform search queries.

‣ Privacy of data and queries is retained.

Example: private email storage.

Dynamic SSE: also allows update queries.

Small

Memory

Large

Memory

Searchable Symmetric Encryption

103

Two databases:

‣Document database:

Encrypted documents di for i ≤ D.

‣ (Reverse) index database DB:

Pairs (w,i) for each keyword w and each document index i such
that di contains w.

DB = {(w,i) : w ∈ di}

A simple solution

104

Put everything into ORAM.

‣ Secure.

(Up to leaking lengths of anwers.)

‣ Inefficient.

(In certain cases, such as Enron email dataset or English
Wikipedia, some studies suggests trivial ORAM would be most
efficient.)

Idea of Searchable Encryption: allow some leakage. Gain in
efficiency.

How to capture leakage

105

ORAM security: accesses can be simulated by a simulator knowing
only the number of accesses.

‣ Formally: secure iff there exists a simulator, which on input

number of accesses, outputs a set of accesses indistinguishable
from real algorithm.

Searchable encryption security: accesses can be simulated by a
simulator knowing only the output of a leakage function L.

‣ Formally: secure iff there exists a simulator, which on input the

output of the leakage function, outputs a set of accesses
indistinguishable from real algorithm.

(Leakage function takes as input the database and all operations.)

Security Model

106

Client Server
Query q

q

AdversaryReal world

Ideal world

L Simulator
L(q,DB)

q

Adversary

