Oblivious Algorithms

Brice Minaud

email: brice.minaud@ens.fr

MPRI, 2023
“Techniques in Cryptography and Cryptanalysis”: will cover (a choice of) important areas of cryptography.

- Lattices ✔ done
- Zero-knowledge proofs ✔ done
- Oblivious algorithms now
Outsourcing storage

With SNARKs: could outsource computation.

Now: outsource storage. Benefits: availability, space, resilience...

The host server is honest-but-curious.
Setting:

Client stores n data items.

“Key-value store”: each item is pair (address, data).

Client makes read/write operations:
- $\text{read}(a)$: read data at address a; or
- $\text{write}(a,d)$: write data d at address a.

Server sees accessed addresses, and data read/written.
Encryption

First, want to encrypt all data.

Before writing any data, encrypt it with semantically secure (IND-CCA) symmetric encryption.

→ The server learns nothing about the content of any data.

Including whether two data items are equal!
Symmetric encryption: definition

Symmetric Encryption.

Message space \mathbf{M}, ciphertext space \mathbf{C}, key space \mathbf{K}.

Setup: Pick key $K \leftarrow \$ \mathbf{K}$.

Encryption: encryption of $M \in \mathbf{M}$ is $C = \text{Enc}_K(M) \in \mathbf{C}$.

Decryption: decryption of C is $M = \text{Dec}_K(C)$.

Correctness: for all $M \in \mathbf{M}$,

$$\text{Dec}_K(\text{Enc}_K(M)) = M.$$

Security: here, let us say IND-CCA.

Caveats:

- Deterministic scheme cannot be IND-CCA. Need randomness, or nonces.

- “Security” above only covers confidentiality, not integrity.
IND-CCA: indist. under Chosen-Ciphertext Attacks

Adversary

Pick M'_i.

Pick C_i.

Pick M_1, M_2.

Pick M''_i, C'_i... with $C'_i \neq C^*$

Compute b'.

Challenger

Pick $K \leftarrow \{0,1\}^k$.

Pick $b \leftarrow \$ \{0,1\}$

M'_i → \downarrow

$\text{Enc}_K(M'_i)$ → \downarrow

C_i → \downarrow

$\text{Dec}_K(C_i)$ → \downarrow

M_1, M_2 → \downarrow

$\text{Enc}_K(M_b)$ → \downarrow

C^*... → \downarrow

Same as 1st step...
Leakage

Client → Read address 3 → Server

Conclusion: hiding the content of data is easy with encryption.

But the server also sees the address accessed by the client: “access pattern”.

This reveals a lot of information about the client’s activities.
Simple example

Client = hospital, storing patient files.

Client often searches for all patients with age between x and y.

What the server sees:

1. Client accesses files a, b, c.
2. Later, client accesses files b, c, d.

This is the only possible configuration (up to symmetry)!

→ Server learns that age of files b, c is between a and d.
Simple example

1. Client accesses files a, b, c.
2. Client accesses files b, c, d.
3. Client accesses files c, d.

Then the only possible order of ages is a, b, c, d (or d, c, b, a)!

In general: server learns order of records very quickly.

(If ages are in \([0, N]\) and queries are uniform, the order is fully revealed after \(O(N \log N)\) queries.)

If every value in \([0, N]\) appears, position in order reveals value → encryption was useless!
Approximate order learning

\[\varepsilon \text{-Approximate order reconstruction.} \]

Roughly: we learn the order between two records as soon as their values are \(\geq \varepsilon N \) apart. (\(\varepsilon = 1/N \) is full reconstruction)

Assuming uniform queries, this only requires \(O(\varepsilon^{-1} \log \varepsilon^{-1}) \) queries.

\(\rightarrow \) The server learns the order of all records within 5% of \(N \) within a constant number of queries!
Further motivation

Beside storage outsourcing: many situations where memory accesses of a sensitive algorithm can be observed by adversary (fully, or partially).

- **Trusted Enclaves** (e.g. Intel SGX): Client = CPU, Server = RAM. (Original motivation.)

- **Cache attacks** (concurrent processes observing cache misses).

- **Searchable Encryption**.

See: Side-channel attacks.
Oblivious algorithm: an algorithm A is oblivious iff for any two inputs x and y, the memory accesses of A on input x, and A on input y, are indistinguishable.

Next lecture: will see ORAM, a technique to make any algorithm oblivious.
Oblivious RAM

Client stores n data items.

“Key-value store”: each item is pair (address, data).

Client makes read/write operations:

- $\text{read}(a)$: read data at address a; or
- $\text{write}(a,d)$: write data d at address a.

Problem: Client wants to do this without revealing which address is accessed.
Roadmap

1. Oblivious Sorting.

2. General ORAM.
Oblivious Sorting
Oblivious algorithm: an algorithm \(A \) is oblivious iff for any two inputs \(x \) and \(y \), the memory accesses of \(A \) on input \(x \), and \(A \) on input \(y \), are indistinguishable.

Which of the following algorithms are oblivious? (assuming inputs are arrays of fixed size.)

1. Bubble Sort. ✔ yes
2. Quick Sort. ✗ no
3. Merge Sort. ✗ no
Basic operation: sorting two elements.

Compare and swap: on input \((x,y)\), if \(x < y\), output \((x,y)\), else output \((y,x)\).
Bubble Sort
Comparator network: A comparator network is an algorithm that consists in a sequence of compare-and-swaps (“comparators”) between fixed inputs.

Can be represented in this form:

Sorting network: A sorting network is a comparator network that correctly sorts its input (for all possible inputs).

Remark: testing whether a comparator network is a sorting network is co-NP-complete.
Size and depth

The **size** of a comparator network is its number of comparators.

The **depth** (or “critical path”) of a comparator network is the maximum number of comparators that an input value can go through.

It is also the number of steps in a parallel computation of the network.

Example: comparator network of size 4 and depth 3.

→ Bubble sort is a sorting network of size $O(n^2)$ and depth $O(n)$.
Can we do better?

Proposition: A sorting network must have size $\Omega(n \log n)$.

Proof. A network with k comparators can permute its input sequence in at most 2^k different ways.

For a sorting network, we must have $2^k \geq n!$

By Stirling’s formula, this yields $k = \Omega(n \log n)$.

Bitonic sort: size $O(n \log^2 n)$.

Most efficient in practice.
The 0-1 principle

0-1 Principle: a comparator network (on n inputs) is a sorting network iff it correctly sorts all 2^n possible binary inputs.

Proof. Let f be a non-decreasing function: $x \leq y$ implies $f(x) \leq f(y)$.

Claim: If a comparator network has input (x_1,\ldots,x_n) and outputs (y_1,\ldots,y_n), then on input $(f(x_1),\ldots,f(x_n))$, it must output $(f(y_1),\ldots,f(y_n))$.

Proof of the claim: induction on comparators.

Now assume a comparator network is not a sorting network. Then there exist an input (x_1,\ldots,x_n) and some indices i, j, such that $x_i < x_j$ but they are in the opposite order in the output.

Define $f(x) = 0$ if $x \leq x_i$, 1 otherwise. We have $f(x_i) = 0$ and $f(x_j) = 1$, but their order is reversed by the network when inputting $(f(x_1),\ldots,f(x_n))$. Hence the network does not correctly sort all binary sequences.
Bitonic sequence: A sequence of values is *bitonic* iff:

- It is increasing, then decreasing.
- Or it is a circular shift of the previous case.

Example: bitonic sequences of 0 and 1’s are those of the form $0^a1^b0^c$ and $1^a0^b1^c$.
Half-cleaner: A half-cleaner is a comparator network for an even number of inputs n, composed of comparators

$$(1,n/2+1), (2,n/2+2), \ldots, (n/2,n)$$

Half-cleaner for $n = 8$:
Key property of a half-cleaner: if the input is bitonic, then both halves of the output are bitonic. Moreover, one of the two halves must be all 0’s or all 1’s. That half is called clean.
Bitonic sorter

Bitonic sorter recursive construction:

The bitonic sorter correctly sorts all bitonic inputs.
Batcher’s sort

Batcher’s sort recursive construction:

Batcher’s sort

Bitonic sorter

Batcher’s sort for reverse order

Batcher’s sort correctly sorts all binary inputs, hence all inputs.
A half-cleaner has size $H(n) = n/2$.

The bitonic sorter has size $S(n) = H(n) + 2S(n/2) = O(n \log n)$.

Batcher’s sort has size $B(n) = S(n) + 2B(n/2) = O(n \log^2 n)$.

The depth of Batcher’s sort is $O(\log^2 n)$: in a parallel computation model, only need $O(\log^2 n)$ steps.

→ Sorting algorithms used in GPUs.

Ajtai, Komlós, Szemerédi (STOC ’83): there exists a sorting network of size $O(n \log n)$.

Unfortunately, completely impractical.
Oblivious RAM
So far...

Traditional efficient sorting algorithms were not oblivious.

→ created new efficient oblivious sorting algorithm.

Can we do this generically?

Take *any* algorithm → create oblivious version, with low overhead.

This is what Oblivious RAM (ORAM) does.

Disclaimer: does not hide number of accesses.
Reminder: Oblivious RAM

Client wants to do queries \(q_1, q_2, \ldots, q_n \).

Each \(q_i \) is either:

- \textit{read}(a): read data block at address \(a \);
- \textit{write}(a,d): write data block \(d \) at address \(a \).
ORAM algorithm C (or ORAM “compiler”): transforms each query q by the client into one or several read/write queries $C(q)$ to server.

Correctness: C’s response is the correct answer to query q.

Obliviousness: for any two sequences of queries $q = (q_1, \ldots, q_k)$ and $r = (r_1, \ldots, r_k)$ of the same length, $C(q) = (C(q_1), \ldots, C(q_k))$ and $C(r) = (C(r_1), \ldots, C(r_k))$ are indistinguishable.
Trivial ORAM: read and re-encrypt every item in server memory.

Security: trivial.

Efficiency: every client query costs $O(n)$ real accesses \rightarrow overhead is $O(n)$.

A non-trivial ORAM must have:

- Client storage $o(n)$.
- Query overhead $o(n)$.
Some observations

Suppose client wants to do queries q_1, q_2, \ldots, q_n. Each q_i is to read or write a block of memory.

Assume the client does not store any memory block.

For each q_i, the ORAM has to do some access(es) to the server memory.

q_1 and q_2 must access at least 1 data block in common.
Some observations

(q_1, q_2) and (q_3, q_4) must access at least 2 data blocks in common.
Some observations

e tc...

\[q_1 \quad q_2 \quad q_3 \quad q_4 \quad q_5 \quad q_6 \quad q_7 \quad q_8 \quad \ldots \quad q_n \]
Some observations

For each memory access done by q_j, let's "assign" that access to the node $q_i \land q_j$, where q_i is the last time the same address was accessed ($i < j$).

At least this many accesses are assigned to this node.
Some observations

For each memory access done by q_j, let's "assign" that access to the node $q_i \wedge q_j$, where q_i is the last time the same address was accessed ($i < j$).

\rightarrow Memory accesses in every node are now unique to that node.
Some observations

Wait... how many memory accesses are we doing?
(Say $n = 2^k$ for some k.)

For n client queries, ORAM will need to do $\Omega(n \log n)$ accesses to the server.
A lower bound

Goldreich & Ostrovsky ’96 (again):
Secure ORAM must have overhead $\Omega(\log n)$.

G&O's proof under assumptions:
- Client memory $O(1)$.
- Statistically secure ORAM.
- “Balls and bins” model.

What we just saw: stronger proof by Larsen & Nielsen ’18.
(Computational security, less restrictive cell probe model, online).
Proof sketch (Goldreich-Ostrovsky proof)

Each item $i =$ colored ball. At start:

![Diagram showing colored balls and numbered positions]

Client: $c = O(1)$ balls
Server: n balls + extra room

Suppose client wants to make queries for balls b_1, \ldots, b_q.
→ ORAM makes accesses $a_1, \ldots, a_{f(q)}$. (Includes Setup accesses.)

Each server access, ORAM can do $O(c)$ operations: exchange ball, put ball, take ball, nothing.

Statistical security → access sequence (a_i) must be compatible with all n^q possible query sequences (b_i).

But only $O(c)^{f(q)}$ possible sequences of balls held by client, hence $O(c)^{f(q)}$ query sequences compatible with given access sequence.

\[
\Rightarrow \quad O(c)^{f(q)} \geq n^q
\]

\[
\Rightarrow \quad f(q) = q \cdot \Omega(\log n)
\]
Roadmap

Query overhead: how many queries to the server are made in $C(q)$ for each client query q, amortized (= on average).

Here, $n = \text{max memory size} = \text{max number of items (address, data)}$.

<table>
<thead>
<tr>
<th>Family of constructions</th>
<th>Overhead</th>
<th>Feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Square-root ORAM</td>
<td>$\tilde{O}(n^{1/2})$</td>
<td>Simple</td>
</tr>
<tr>
<td>2. Hierarchical ORAM</td>
<td>$O(\text{polylog } n)$</td>
<td>Best in theory</td>
</tr>
<tr>
<td>3. Tree ORAM</td>
<td>$O(\text{polylog } n)$</td>
<td>Best in practice</td>
</tr>
</tbody>
</table>

polylog(x) = poly(log(x)) = $O(\log^c(x))$ for some constant c.

Other efficiency metrics: client memory size, number of roundtrips in $C(q)$, time complexity of C…
Square-root ORAM

Goldreich and Ostrovsky ’96.

Let $s < n$. (Later, will fix $s \approx n^{1/2}$.)

Want to store n items. Create room for $n+2s$ items:

- **Real items**: with addresses in $[1,n]$, real data.
- **Dummy items**: with addresses in $[n+1,n+s]$, random data.

The **main memory** stores $n+s$ items:

For now, **stash** contains s items with all-zero address and data.
1. Client chooses permutation \(\pi \) over \([1,n+s]\).

 Item \(i \) will be stored at location \(\pi(i) \) in the main memory.

2. Client encrypts everything, and sends to server.

Server view:

\(n+s \) encrypted items

\(s \) enc. items

Remark: we are assimilating client with ORAM algorithm.
Set $t = 1$. (number of dummy items read so far)

To access (= read/write) item i, client does:

1. Read the whole stash.

 If item i was not found in stash:
 2. Read/rewrite location $\pi(i)$ in main memory.
 3. Add item i to stash, rewrite whole stash to server.

 If item i was found in stash:
 2. Read/rewrite location $\pi(n+t)$ in main memory. $t \leftarrow t+1$.
 3. Rewrite whole stash to server.
Lookup can fail in two ways: stash is full, or run out of fresh dummy items \((t > s)\).

Can only happen after \(s\) iterations.

Solution: after \(s\) iterations of **lookup**, perform **refresh**:

- Client chooses new permutation \(\pi'\).
- Moves item \(i\) to location \(\pi'(i)\) in main memory.
- Empties stash.

→ equivalent to fresh setup with \(\pi'\).
→ can do \(s\) iterations again…

How do you move item \(i\) to location \(\pi'(i)\) obliviously?

Oblivious sorting!
Refresh via oblivious sort

Server memory after s lookups...

- **main memory**
 - n real items (some outdated), s dummies
 - Real items, empty items

 \[\rightarrow \quad \text{Oblivious sort with } \pi^{-1} \]

 - n real items (some duplicates)
 - s dummies
 - Empty items

 \[\rightarrow \quad \text{Erase outdated duplicates} \]

 - n real items + some empty
 - s dummies
 - Empty items

 \[\rightarrow \quad \text{Oblivious sort with } \pi' \]

 - $n+s$ items sorted with π'
 - Empty items

- **stash**
Setup: server sees:

- main memory
- \(n+s\) encrypted items
- stash
- \(s\) enc. items

Lookup: server sees:

- main memory
- stash
- access to uniformly random fresh location
- full rewrite

Refresh: server sees:

1 oblivious sort, 1 linear scan, 1 oblivious sort.

Remark: \textbf{computationally} secure. Essentially \textbf{statistically} secure, except for encryption, and pseudo-random permutation \(\pi\).
Efficiency

Overhead.

Lookup costs $O(s)$.

Refresh costs $O(n \text{ polylog } n)$, happens every s lookups.

Total overhead (amortized):

$$O(s + n/s \cdot \text{polylog}(n))$$

Setting $s = n^{1/2} \log n$, and using Batcher sort:

$$O(n^{1/2} \log n)$$

Server memory: $O(n)$.

Client memory: $O(1)$.

Need encryption key + key for pseudo-random π + few items during operations.

Remark: memory measured in number of items. Item size assumed to be $\Omega(n)$ bits, which is also $\Omega(\lambda)$ if $n \geq \lambda$.
Hierarchical ORAM
Hierarchical ORAM

Goldreich and Ostrovsky ’96:
- Square-root ORAM, overhead $\tilde{O}(n^{1/2})$.
- Secure ORAM must have overhead $\Omega(\log n)$.

But also: hierarchical ORAM, overhead $O(\log^3 n)$.
→ Spawned whole construction family of ORAMs.

Interesting because:
- First ORAM with polylog overhead.
- Basis for the recent construction of optimal ORAM with overhead $O(\log n)$.

Open problem for 20+ years, solved by Asharov et al. ’18, based on Patel et al. ’18.
Hashing

Hash function $H: \{0,1\}^* \rightarrow [1,n]$.

Want to store n items into n buckets according to H.

1 2 3 4 ... n

Buckets of size $\log n$ suffice for negligible probability of overflow.

Proof: Probability that given bucket receives more than k items is $\exp(-\Omega(k^2))$ by Chernoff bound. Union bound over all buckets:

$$n \cdot \exp(-C \cdot \log^2 n)) = n^{1 - C \cdot \log n} = \text{negl}(n).$$
Oblivious hashing

Want to do the assignment obliviously...

Suppose we have items + empty buckets all in server memory.

Assignment can be done obliviously in $n \log^2 n$ operations.

Sketch:
1. obliviously sort items according to H.
2. Put each item into own bucket.
3. Scan all buckets, pushing content of each bucket into next bucket if next bucket has same hash value.
4. Obliviously sort *buckets* to delete empty buckets.
Setup

Server memory arranged into $\log n$ levels.
Each level k is an (oblivious) hash table for 2^k items.

At start:
All items are in last level.
Other levels contain dummies.
Lookup

To access item i:

1. Access each level k at location $H_k(i)$ until item is found.
2. Access remaining levels at uniformly random location.
3. Insert item at level 1. (Potentially with new value.)

Remark: whenever accessing level 1, entire level is read + rewritten.
Reshuffling

To maintain invariant that level k stores $\leq 2^k$ items:

Every 2^k lookups, the (non-dummy) items of level k are shuffled into level $k+1$, using fresh hash function.

If an item appears twice, newest version (from earliest level) is kept.

Invariant is preserved:
Level k receives at most 2^{k-1} items every 2^{k-1} lookups.
And empties its content every 2^k lookups.

Remark: last level is never full, because it can hold n items, and there are no duplicate items in the same level.
Setup: server sees log n hash tables:

- size 2
- size 4
- size 8
- ...

Lookup: server sees:

- size 2
- size 4
- size 8
- ...

- full rewrite
- uniformly random reads

+ oblivious reshuffles at predetermined times.

Key fact: no item is ever read twice from the same level with the same hash function.
Efficiency

Overhead.

Level k is reshuffled every 2^k lookups.

Each reshuffle costs: $O(2^k \log^2 n)$.

→ Amortized cost for level k: $O(\log^2 n)$.

→ Total amortized cost of reshuffles: $O(\log^3 n)$.

→ Total amortized overhead: $O(\log^3 n) + O(\log^2 n) = O(\log^3 n)$.

Server memory: $O(n \log n)$.

Client memory: $O(1)$.

Server memory can be reduced to $O(n)$ using **cuckoo hashing**.
Cuckoo hashing

“Bucket” hashing had total storage $O(n \log n)$, and lookup $O(\log n)$. Cuckoo hashing has storage $(2+\varepsilon)n = O(n)$, and lookup $2 = O(1)$.

Initial design mainly motivated by real-time systems…

Idea:

- Items $1, 2, 3, \ldots, n$
- Hashes H_1, H_2
- $m = O(n)$ cells

Each item i can go into one of two cells $H_1(i)$ or $H_2(i)$.
The cuckoo graph

Picture graph with cells = nodes, item i = edge $H_1(i) - H_2(i)$.
The cuckoo graph

Picture graph with cells = nodes, item $i = \text{edge } H_1(i) - H_2(i)$. Orient edge towards where item is stored.

To insert item i: try cell $H_1(i)$. If occupied, move occupying item into its other possible cell. Repeat until unoccupied cell is reached.
The cuckoo graph

Picture graph with cells = nodes, item \(i \) = edge \(H_1(i) - H_2(i) \). Orient edge towards where item is stored.

To insert item \(i \): try cell \(H_1(i) \). If occupied, move occupying item into its other possible cell. Repeat until unoccupied cell is reached.
Why does that work? (sketch)

Theorem: assignment is possible iff every connected component has at most one cycle.

Moreover, with n edges and $m = (2+\varepsilon)n$ nodes...

- The previous fact holds with high probability.
- Expected size of a connected component is $O(1)$.

→ Expected insertion time is $O(1)$!

Remark: Probability of failure can be made negligible by adding a stash.
Tree ORAM
Hierarchical ORAM family leads to recent optimal construction. But huge constants. Never used in practice.

What is actually used:

Tree ORAM

by Shi et al. ’11

Overhead: $O(\log^3 n)$.
Worst-case (no need to amortize).

In practice: easy to implement, efficient.

We will see Simple ORAM, member of the Tree ORAM family.
Server-side memory is a full binary tree with $\log(n/\alpha)$ levels.

Each node contains $\log n$ blocks.

Each block contains $\alpha = O(1)$ (possibly dummy) items.
Items are grouped into blocks of α items, item i into block $b = \left\lfloor i/\alpha \right\rfloor$.

At start:
Each block b is stored in a uniformly random leaf $\text{Pos}(b)$.
“Position map” Pos() is stored on the client.

Invariant: block b will always be stored on the branch to $\text{Pos}(b)$.
To access item i from block b:

1. Read every node along branch to Pos(b). Remove b when found.
2. Update Pos(b) to new uniform leaf.
3. Insert b at root. (Possibly with new value.)
After every lookup

1. Pick branch to uniformly random leaf.

2. Push every block in the branch as far down as possible (preserving that block b must remain on branch to $\text{Pos}(b)$).
Security

Setup: server sees full binary tree of height $\log (n/\alpha)$. Each node is encrypted, same size.

Lookup + eviction: server sees:

Full read/rewrite along 2 branches to uniformly random leaves.
Why does that work? (sketch)

Works as long as no node overflows.

Setup, no overflow: same argument as bucket hashing.

Lookup + eviction, no overflow (sketch):
Let K be the number of blocks per node (we had $K = \log n$).

Pick arbitrary node x at level L.

For x to overflow, number of blocks whose Pos is below x must be at least K.

\rightarrow For one of the two children of x, number of blocks whose Pos is below that child c must be at least $K/2$.

\rightarrow This implies event $[\text{Pos of new block is below } c]$ happens $K/2$ times, without event $[\text{eviction branch includes } c]$ happening at all.

Both events have the same probability (namely 2^{-L}).

Deduce overflow probability is $\leq 2^{-K/2}$. Negligible for $K = \omega(\log n)$.

Remark: we cheat a little by setting $K = \log n$.
Efficiency of basic construction

Overhead.
Each lookup, read two branches, total $O(\log^2 n)$ items.

Server memory: $O(n \log n)$.

Client memory: $O(n/\alpha)$. (oops)
The position map

The client stores position Pos: \([1, n/\alpha] \rightarrow [1, n/\alpha]\), size \(n/\alpha = \Theta(n)\).
Still a large gain, if item size is much larger than \(\log(n/\alpha)\) bits.

To reduce client memory:

Store position map on server. Obliviously!

“Recursive” construction:

Client needs new position map for server-side position map…

Key fact: it is \(\alpha\) times smaller!

Repeat this recursively \(\log_\alpha(n)\) times. In the end:

- Client position map becomes size \(O(1)\).
- Server stores \(\log_\alpha(n)\) position maps, each \(\alpha \times\) smaller than last.
- Each lookup, \(\log_\alpha(n)\) roundtrips to query each position map.
Efficiency of recursive construction

Overhead.
Each lookup, $O(\log n)$ recursive calls, each of size $O(\log^2 n)$.
$\rightarrow O(\log^3 n)$ overhead.

Server memory: $O(n \log n)$.

Client memory: $O(1)$.
Variants

Original Tree ORAM had more complex eviction strategy and analysis, better efficiency.

Path ORAM:
- Client has a small stash of blocks.
- Blocks are evicted along the same branch as item was read.
- Can use nodes as small as $K = 4$ blocks!
Searchable Encryption
Outsourcing storage, with search

Encrypted search:
- Client stores encrypted database on server.
- Client can perform search queries.
- Privacy of data and queries is retained.

Example: private email storage.

Dynamic SSE: also allows update queries.
Searchable Symmetric Encryption

Two databases:

- **Document** database:

 Encrypted documents d_i for $i \leq D$.

- (Reverse) **index** database DB:

 Pairs (w, i) for each keyword w and each document index i such that d_i contains w.

 $$DB = \{(w, i) : w \in d_i\}$$
A simple solution

Put everything into ORAM.

- Secure.

 (Up to leaking lengths of answers.)

- Inefficient.

 (In certain cases, such as Enron email dataset or English Wikipedia, some studies suggest trivial ORAM would be most efficient.)

How to capture leakage

ORAM security: accesses can be simulated by a simulator knowing only the number of accesses.

- Formally: secure iff there exists a simulator, which on input number of accesses, outputs a set of accesses indistinguishable from real algorithm.

Searchable encryption security: accesses can be simulated by a simulator knowing only the output of a leakage function L.

- Formally: secure iff there exists a simulator, which on input the output of the leakage function, outputs a set of accesses indistinguishable from real algorithm.

(Leakage function takes as input the database and all operations.)
Security Model

Real world

Client \[\rightarrow\] Adversary

Query \(q \)

Server

Ideal world

Adversary

\[L\] \[\rightarrow\] Simulator

\(L(q, DB) \)
Let’s consider range queries.

- Fundamental for any encrypted DB system.
- Many constructions out there.
- Simplest type of query that can't “just” be handled by an index.

Natural solutions:

Order-Preserving, Order-Revealing Encryption.

- Plaintexts are ordered, ciphertexts are ordered.
- The encryption map preserves order.
Attacks Exploiting ORE*

- **“Sorting” attack**: if every possible value appears in the DB... Just sort the ciphertexts and you learn their value!

- **“CDF-matching” attack**: say the attacker has an approximation of the **Cumulative Distribution Function** of DB values...

*not L/R ORE.
Leakage-Abuse Attacks

“Leakage-abuse attacks” (coined by Cash et al. CCS'15):

- Do not contradict security proofs.
- Can be devastating in practice.

ORE: order information can be used to infer (approximate) values. **Leaking order is too revealing.**

→ “Second-generation” schemes enable range queries without relying on OPE/ORE.
Cryptanalysis and Leakage Abuse

What is the point of these attacks?

- Understand concrete security implications of leakage.
- “Impossibility results” → help guide design.

Approach: consider general settings. Pioneered by [KKNO16].

Here:

› Range queries.
› Passive, persistent adversary. No injections, no chosen queries.
Roadmap

1. Access pattern leakage.

3. Volume leakage.
Access Pattern Leakage
Range Queries

Client

Range = [1, 3]

Server

1 2 3 4

SE schemes supporting range queries are proven secure w.r.t. a leakage function including access pattern leakage.

What can the server learn from the above leakage?

Let N = number of possible values.
Assume a uniform distribution on range queries.
Induces a distribution f on the prob. that a given value is hit.

Idea: for each record...
1. Count frequency at which the record is hit.
 \rightarrow gives estimate of probability it’s hit by uniform query.
2. deduce estimate of its value by “inverting” f.
Step 1: for every record, estimate prob of the record being hit.

Step 2: “invert” \(f \).

Step 3: break the symmetry, i.e. reconcile which values are on the same side of \(N/2 \).

After \(O(N^4 \log N) \) uniform queries, previous alg. recovers the exact value of all records.
KKNO16 Attack

After $O(N^4 \log N)$ uniform queries, previous alg. recovers the exact value of all records.

Remarks:

- Requires **uniform** distribution.
- **Expensive**. In fact, uses up all possible leakage information!
- Lower bound of $\Omega(N^4)$.
Step 0: find suitable “anchor” record.

Step 1: for every record, estimate distance to anchor.

Step 2: “invert” f. \textcolor{red}{\textbf{costs a constant factor!}}

Step 3: break the symmetry, i.e. reconcile which values are on the same side of $N/2$.

After $O(N^2 \log N)$ uniform queries, previous alg. recovers the exact value of all records.
Cheaper KKNO16 attack

After $O(N^2 \log N)$ uniform queries, previous alg. recovers the exact value of all records.

Remarks:
- Requires uniform distribution.
- Requires existence of a favorably placed record.
- Still fairly expensive.
- Lower bound of $\Omega(N^2)$. Can't hope to get below.
Intuition for Scale-Freeness

Step 1: for every record, estimate prob of the record being hit.

Step 2: “invert” f.

Instead of support = integers 1 to N, take reals $[0,1]$.

...so “$N = \infty$”!

The previous algorithm still works!
Strongest goal: **full database reconstruction** = recovering the exact value of every record.

More general: **approximate database reconstruction** = recovering all values within εN.

- $\varepsilon = 0.05$ is recovery within 5%.
- $\varepsilon = 1/N$ is full recovery.

(“Sacrificial” recovery: values very close to 1 and N are excluded.)
Database Reconstruction

[KKNO16]: full reconstruction in $O(N^4 \log N)$ queries!

Here ([GLMP19], [LMP18]):

- $O(\varepsilon^{-4} \log \varepsilon^{-1})$ for approx. reconstruction.
- $O(\varepsilon^{-2} \log \varepsilon^{-1})$ with very mild hypothesis.
- $O(\varepsilon^{-1} \log \varepsilon^{-1})$ for approx. order rec.

<table>
<thead>
<tr>
<th>Full. Rec.</th>
<th>Lower Bound</th>
</tr>
</thead>
<tbody>
<tr>
<td>$O(N^4 \log N)$</td>
<td>$\Omega(\varepsilon^{-4})$</td>
</tr>
<tr>
<td>$O(N^2 \log N)$</td>
<td>$\Omega(\varepsilon^{-2})$</td>
</tr>
<tr>
<td>$O(N \log N)$</td>
<td>$\Omega(\varepsilon^{-1} \log \varepsilon^{-1})$</td>
</tr>
</tbody>
</table>

Full reconstruction in $O(N \log N)$ for dense DBs.

Scale-free: does not depend on size of DB or number of possible values.

→ Recovering all values in DB within 5% costs $O(1)$ queries!
Database Reconstruction

[KKNO16]: full reconstruction in $O(N^4 \log N)$ queries!

Here ([GLMP19], subsuming [LMP18]):

- $O(\varepsilon^{-4} \log \varepsilon^{-1})$ for approx. reconstruction.
- $O(\varepsilon^{-2} \log \varepsilon^{-1})$ with very mild hypothesis.
- $O(\varepsilon^{-1} \log \varepsilon^{-1})$ for approx. order rec.

Full. Rec.
<table>
<thead>
<tr>
<th>$O(N^4 \log N)$</th>
<th>$\Omega(\varepsilon^{-4})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$O(N^2 \log N)$</td>
<td>$\Omega(\varepsilon^{-2})$</td>
</tr>
<tr>
<td>$O(N \log N)$</td>
<td>$\Omega(\varepsilon^{-1} \log \varepsilon^{-1})$</td>
</tr>
</tbody>
</table>

Lower Bound

This talk.

Main tool:
- connection with **statistical learning theory**;
- especially, **VC theory**.
VC Theory
Uniform convergence result.

Now a foundation of learning theory, especially PAC (probably approximately correct) learning.

Wide applicability.

Fairly easy to state/use.

(You don't have to read the original article in Russian.)
Warm-up

Set X with probability distribution D.
Let $C \subseteq X$. Call it a concept.

$$\Pr(C) \approx \frac{\text{#points in } C}{\text{#points total}}$$

Sample complexity:
to measure $\Pr(C)$ within ε, you need $O(1/\varepsilon^2)$ samples.
Approximating a Concept Set

Now: set \mathcal{C} of concepts.
Goal: approximate their probabilities \textit{simultaneously}.

The set of samples drawn from X is an ϵ-sample iff for all C in \mathcal{C}:

$$\left| \Pr(C) - \frac{\text{#points in } C}{\text{#points total}} \right| \leq \epsilon$$
ε-sample Theorem

How many samples do we need to get an ε-sample whp?

Union bound: yields a sample complexity that depends on $|\mathcal{C}|$.

V & C 1971:
If \mathcal{C} has **VC dimension** d, then the number of points to get an ε-sample whp is

$$O\left(\frac{d}{\epsilon^2} \log \frac{d}{\epsilon}\right).$$

Does not depend on $|\mathcal{C}|$!
Remaining Q: *what is the VC dimension?*

A set of points is **shattered** by \mathcal{C} iff:

every subset of S is equal to $C \cap S$ for some C in \mathcal{C}.

Example. Take **2 points** in $X=\{0,1\}$. Concepts $\mathcal{C} =$ all ranges.

Subsets:

- \times
- \times
- \times
- \times

2 points = **SHATTERED**

OK. Range A.

OK. Range B.

OK. Range C.

OK. Range D.
(Example. Take 3 points in $X=[0,1]$. Concepts $\mathcal{C} = $ all ranges.

Subset:

3 points = NOT SHATTERED

VC dimension of $\mathcal{C} = $ largest cardinality of a set of points in X that is shattered by \mathcal{C}.

E.g. VC dimension of ranges is 2.

What typically matters is just that VC dim is finite.
Database Reconstruction, Attempt 2

C vs.
Assume a **uniform distribution** on range queries.

Induces a distribution f on the prob. that a given value is hit.

Idea: for each record...
1. Count frequency at which the record is hit.
 - gives estimate of probability it’s hit by uniform query.
2. deduce estimate of its value by “inverting” f.
KKNO16-like Attack

Step 1: for all records, estimate prob of the record being hit.
This is an ϵ-sample!

$$X = \text{ranges} \quad \quad \mathcal{C} = \{\text{ranges} \ni x\}: x \in [1,N]$$

so we need $O(\epsilon^{-2} \log \epsilon^{-1})$ queries.

Step 2: because f is quadratic, “inverting” f adds a square.

After $O(\epsilon^{-4} \log \epsilon^{-1})$ queries, the value of all records is recovered within ϵN.
On the i.i.d. Assumption

+ **Scale-freeness.** N and DB size irrelevant for query complexity.

- We are assuming **uniformly distributed** queries.

In reality we are assuming:

- Queries are **uniform**.
- The **adversary knows** the query distribution.
- Queries are **independent and identically distributed**.

This is not realistic.

What can we learn without that hypothesis?
Order Reconstruction
Problem Statement

This time we **don't assume** i.i.d. queries, or knowledge of their distribution.

What can the server learn from the above leakage?
Range Query Leakage

Query A matches records a, b, c.
Query B matches records b, c, d.

→ we learn that records b, c are between a and d.

We learn something about the order of records.
Range Query Leakage

Query A matches records a, b, c.
Query B matches records b, c, d.
Query C matches records c, d.

Then the only possible order is a, b, c, d (or d, c, b, a)!

Challenges:

› How do we extract order information? (What algorithm?)
› How do we quantify and analyze how fast order is learned as more queries are observed?
Challenge 1: the Algorithm

Short answer: there is already an algorithm!

Long answer: **PQ-trees**.

X: linearly ordered set. Order is unknown.

You are given a set S containing some intervals in X.

A **PQ tree** is a compact (linear in $|X|$) representation of the set of all permutations of X that are compatible with S.

Can be updated in linear time.

Note: was used in [DR13], didn’t target reconstruction.
PQ Trees

Order is completely **unknown**.
- any permutation of **abc**.

Order is completely **known** (up to reflection).
- **abc** or **cba**.

Combines in the natural way.
- ‘**abcde**’, ‘**abcd**’, ‘**dabce**’, ‘**eabcd**’, ‘**deabc**’, ‘**edabc**’, ‘**cbade**’ etc.
Full Order Reconstruction

We want to quantify order learning...
Challenge 2a: Quantify Order Learning

No information

Full reconstruction

ε-Approximate order reconstruction.

Roughly: we learn the order between two records as soon as their values are $\geq \varepsilon N$ apart. ($\varepsilon = 1/N$ is full reconstruction)

Note: compatible with “ORE-style” CDF matching.
Approximate Order Reconstruction

No information

Full reconstruction

#queries?

Diameter $\leq \varepsilon N$

ε-Approximate reconstruction
Challenge 2b: Analyze Query Complexity

Intuition: if no query has an endpoint between a and b, then a and b can't be separated.

$\rightarrow \varepsilon$-approximate reconstruction is impossible.

You want a query endpoint to hit every interval $\geq \varepsilon N$. Conversely with some other conditions it's enough.

Heavy sweeping of details under rug.
VC Theory Saves the Day (again)

ε-samples: the ratio of points hitting each concept is close to its probability.

What we want now: if a concept has high enough probability, it is hit by at least one point.

The set of samples drawn from X is an ε-net iff for all C in \mathcal{C}:

$$\Pr(C) \geq \epsilon \Rightarrow C \text{ contains a sample}$$

→ Number of points to get an ε-net whp: $O\left(\frac{d}{\epsilon} \log \frac{d}{\epsilon}\right)$
Approximate Order Reconstruction

\[O(N \log N) \text{ queries} \]

No information

\[O(\varepsilon^{-1} \log \varepsilon^{-1}) \text{ queries} \]

\varepsilon\text{-Approximate reconstruction}

\[\varepsilon\text{-Approximate reconstruction} \]

Full reconstruction

Conclusion: learn order very quickly.

Note: some (weak) assumptions are swept under the rug.
Experiments

ApproxOrder experimental results

\[R = 1000, \text{ compared to theoretical } \epsilon\text{-net bound} \]

- **Max. sacrificed symmetric value**
 - \(N = 100 \)
 - \(N = 1000 \)
 - \(N = 10000 \)
 - \(N = 100000 \)

- **Max. bucket diameter**
 - \(N = 100 \)
 - \(N = 1000 \)
 - \(N = 10000 \)
 - \(N = 100000 \)

\[\leq \log \leq \]

ApproxOrder experimental results

\[R = 1000, \text{ compared to theoretical } \epsilon\text{-net bound} \]
- **Resilient**, scale-free attacks.

- Effective in practice in some realistic scenarios.

- Watch out for additional leakage. E.g.:
 - Search pattern.
 - Rank information (e.g. L/R ORE). Damaging for low #queries.
Concluding Remarks
On Range Queries

Access pattern: severe attacks under minimal assumptions.

Please don't use OPE/ORE. Also avoid current encrypted DBs if you don't trust the server and care about privacy.

New solutions needed. E.g. efficient specialized ORAMs.

Even then, need to hide volumes.

Many open problems...
Connection to Machine Learning

› In this talk: VC theory.
› In the article: known query setting = PAC learning.
› Some results for general query classes.

Machine learning in crypto: also used for side channel attacks. Same general setting!

Natural connection between reconstructing secret information from leakage and machine learning.

Seems to be a powerful tool to understand the security implications of leakage. In side channels - use learning algorithms; here - use learning theory.
Volume Leakage
Problem Statement

Client

Range = []

2 matches

Server

1 2 3 4

Attacker only sees volumes = number of records matching each query.

What can the server learn from the above leakage?
Volumes

The attacker wants to learn exact counts.

A volume = number of records matching some range.
KKNO16 Volume Attack

Assume **uniform** queries.

Step 1: recover exact probability of every volume \rightarrow number of queries that have each volume.

Step 2: express and solve equation system linking above data back to DB counts. (Ends up as polynomial factorization.)

After $O(N^4 \log N)$ uniform queries, previous alg. recovers all DB counts.

Remarks:

- Requires **uniform** distribution.

- **Expensive**. In fact, uses up *all possible* leakage information!

- Lower bound of $\Omega(N^4)$.
Elementary Volumes [GLMP18]

Counts: 3, 7, 1, 12

Value: 1, 2, 3, 4

"Elementary" ranges

Elementary volumes = volumes of ranges [1,1], [1,2], [1,3]...
Elementary Volumes

Counts 3 7 1 12

Value 1 2 3 4

Fact:

\[\text{vol}([a,b]) = \text{vol}([1,b]) - \text{vol}([1,a]) \]

so...

- Every volume is = difference of two elementary volumes.
- Knowing set of elementary volumes \(\Leftrightarrow\) knowing counts.

Our goal: finding elementary volumes.
The Attack

Assumption: the volumes of all queries are observed.

Draw an **edge** between volumes **a** and **b** iff \(|b-a|\) is a volume.
Summary

Attack: *elementary volumes* form a clique in the volume graph \rightarrow clique-finding algorithm reveals them.

For structured queries, even just volume leakage can be quite damaging. Attack requires strong assumption.

In the article:

- Pre-processing to avoid clique finding.
- Analysis of parameters + experiments.
- Other attacks.