———

V 4
lrz2ce PSL %
E h S RESEARCH UNIVERSITY PARIS
ECOLE NOEMALE
SUPERTEUERR

iInventeurs du monde numeérique

Techniques in Cryptography and Cryptanalysis

Oblivious RAM

S3rice Minaud

email: brice.minaud@ens.fr

MPRI, 2024-25




Meta information

- Zero-knowledge proofs v done
- Oblivious RAM ? we are here

- Fully Homomorphic Encryption



Roadmap

o
o

7
9,

Level of generallity

Big promises Ad-hoc schemes General schemes

Course contents:
> 1. Motivation (big promises).

- 2. Oblivious sorting.
> 3. Oblivious RAM.



Outsourcing storage

Data upload

Data access ‘
I ———————————————————————————————————

Client Server

Scenario: Client outsources storage of sensitive data to Server.

Examples:
- Company outsourcing customer/transaction info.
- Private messaging service.

- Trusted processor accessing RAM.



Outsourcing storage

Data upload

Data access

Client Server = adversary

Scenario: Client outsources storage of sensitive data to Server.

Adversary: honest-but-curious server.

Security goal: privacy of data and queries.



Some perspective: computing on encrypted data

SNARKS: prove arbitrary statements on encrypted data.

) S ! g 3 _'1 » b
LWEIT T AVRT T MPReT

Encrypted inputs _ Full
yP P Arbitrary Y :
, Homomorphic
o Function :
Encryption
Encrypted output
Server
Encrypted inputs Functional
Encryption

Functional key
Client Server



Is it okay to leak access pattern?




Does leaking access pattern matter?

Read address 3

Client



Example: range queries

Range = | ]

Imagine hospital storing patient information.

Sometimes searches for all patients with ages between a and b.

What can the server learn from the above leakage?

Connection with machine learning.



VC Theory




VC Theory

Foundational paper: Vapnik and Chervonenkis, 1971.

Uniform convergence result.

Now a foundation of learning theory, especially PAC (probably
approximately correct) learning.

Wide applicabillity.

Fairly easy to state/use.

(You don't have to read the original article in Russian.)



Warm-up

Set X with probability distribution D.
Let C Cc X. Call it a concept.

#points in C
#points total

Pr(C) ~

Sample complexity:
to measure Pr(C) within €,
you need O(1/€2) samples.

12



Approximating a Concept Set

Now: set € of concepts.
Goal: approximate their probabilities simultaneously.

The set of samples drawn
from X is an e-sample iff for
all C in €:

Pr(C) #po.mts in C <
#points total




e-sample Theorem

How many samples do we need to get an e-sample whp?

Union bound: yields a
sample complexity that
depends on [€].

V & C 1971:
If € has VC dimension d,

then the number of points to
get an e-sample whp Is

O(g log g).

€2

Does not depend on |€|!

|14



VC Dimension

Remaining Q: what is the VC dimension?

A set of points is shattered by @€ iff:
every subset of S is equal to CnS for some C in €.

Example. Take 2 points in X=[0,1]. Concepts € = all ranges.

D
A
I I
—_—l —  —

Subsets: OK. Range A.
2 pnoints = O OK. Range B.
s:X::TZ;ED O OK. Range C.

O O OK. Range D.



VC Dimension

Example. Take 3 points in X=[0,1]. Concepts € = all ranges.

Subset: O O Problem.
3 points = NOT SHATTERED

E.g. VC dimension of ranges is 2.

What typically matters is just that VC dim is finite.

|6



Order Reconstruction

(P
Y



Problem Statement

Range = | ]

What can the server learn from the above leakage?

This time we don't assume i.i.d. queries, or knowledge of their
distribution.

|18



Range Query Leakage

Query A matches records 2, b, c.
Query B matches records b, c, d.

a b C d
| i |
—
A —
B

Then this is the only configuration (up to symmetry)!

— we learn that records b, ¢ are between a and d.

We learn something about the order of records.

19



Range Query Leakage

Query A matches records 2, b, c.
Query B matches records b, c, d.
Query C matches records c, d.

a b C d
| i |
]
A —
B
—
C

Then the only possible order is a, b, ¢, d (or d, c, b, a)!

Challenges:
» How do we extract order information? (What algorithm?)

» How do we quantify and analyze how fast order is learned
as more queries are observed?

20



Challenge 1: the Algorithm

Short answer: there is already an algorithm!

Long answer: PQ-trees.

X: linearly ordered set. Order is unknown.

You are given a set S containing some intervals in X.

A PQ tree is a compact (linear in |X|) representation of the set
of all permutations of X that are compatible with S.

Can be updated in linear time.

21



Challenge 2a: quantify order learning

Strongest goal: full database reconstruction = recovering the
exact value of every record.

More general: approximate database reconstruction = recovering
all values within eN.

e = 0.05 is recovery within 5%. € = 1/N is full recovery.

(“Sacrificial” recovery: values very close to 1 and N are excluded.)

22



Challenge 2b: analyze query complexity

a eN b c d
" | |
—

A

Intuition: if no query has an endpoint between a and b, then a
and b can't be separated.

— g-approximate reconstruction is impossible.

You want a query endpoint to hit every interval = eN.
Conversely with some other conditions it's enough.

Heavy sweeping of details under rug.

23



VC Theory saves the day (again)

g-samples: the ratio of
points hitting each concept
IS close to its probability.

What we want now: if a
concept has high enough
probabillity, it is hit by at
least one point.

The set of samples drawn from X is an g-net iff for all C in €:

Pr(C) > ¢ = C contains a sample

| d d
— Number of points to get an e-net whp: O (_ og _)
€ €

24



Access pattern leakage: conclusion

Say patient age has N possible values (e.g. N = 100)...

Full order reconstruction: O(N log N) queries.
Approximate order reconstruction (within eN): O(e-1 log €-1) queries!

(NB: this is optimal.)

Age data: can infer value from order (if all ages are present)...

In this setting, encryption was ultimately useless.

Very rough summary :
highly structured queries

= low VC dimension

= |earn data with few queries
25



Max. bucket diameter
(as a fraction of V)

It actually works, by the way

APPROXORDER experimental results
R = 1000, compared to theoretical e-net bound

0.12 -

©c o o o o

- - - - —

DO TRN @) QO O
| | | | |

0.00

1

=== ¢ 1 log €

N =100

N =1000

N =10000
- /N =100000

100 200 300 400
Number of queries

500

26



Other examples

Suppose you implement AES using lookup tables (for S-boxes).

If adversary can observe queries to tables, AES is broken.

If adversary can observe cache misses from access to AES S-box
tables, also broken.

Two Issues:
- Leaking access pattern can be (very) damaging.
- Many settings leak access pattern, completely or partially.

Cloud storage, trusted enclaves, cache attacks (incl.
hypervisors), etc. See also: side-channel attacks.

27



7).
=
L
el
—
O
O)

IVIOUS a

0e]




Magic Claim

Client

Server stores N items.

Client fetches item /.
Security: Server learns nothing about /.

Efficiency: algorithm only queries O(log N) files.

Bonus feature: server performs no computation. Acts like a RAM.

29



Oblivious algorithm: definition

Oblivious algorithm: an algorithm A is oblivious iff for any two
inputs x and y, the memory accesses of A on input x, and A on
iInput y, are indistinguishable.

30



Oblivious Sorting




Sorting algorithms

Oblivious algorithm: an algorithm A is oblivious iff for any two

iInputs x and y, the memory accesses of A on input x, and A on
iInput y, are indistinguishable.

Which of the following algorithms are oblivious?
(assuming inputs are arrays of fixed size.)

1. Bubble Sort. v yes
2. Quick Sort. X no

3. Merge Sort. X no

32



Sorting obliviously

Basic operation: sorting two elements.

Compare and swap: on input (x,y), if X <y, output (X,y), else
output (y,x).

min(x,y) max(x,y) max(x,y) min(x,y)

33



Bubble Sort

Z

34



Batcher’s sort

¢ ® ¢ 9
@ ® ¢ ®
o —9 o—@
® ®
® ®
®
@
® 9
®

Sorting network of size O(n log? n) that correctly sorts all inputs.

Picture from Wikimedia commons, CC BY-SA 3.0.

35



Oblivious Sorting: conclusion

Batcher's sort: practical sorting network of size O(n log? n).

Bonus: in a parallel computation model, only need O(log? n) steps.

— Sorting algorithms used in GPUSs.

Ajtai, Komlos, Szemeredi (STOC ’83): there exists a sorting
network of size O(n log n).

Unfortunately, completely impractical.

36



Oblivious RAM

A
\4

\4

A



Generalizing

So far...

Traditional efficient sorting algorithms were not oblivious.

— created new efficient oblivious sorting algorithm.

Can we do this generically?

Take any algorithm — create oblivious version, with low overhead.

This is what Oblivious RAM (ORAM) does.

Disclaimer: does not hide number of accesses.

38



Oblivious RAM

Query g C(q)

>

Response
<

Small
Memory  Glient

Client wants to do queries g1, g2, ..., gn.

Each g; is either:
» read(a): read data block at address a;
> write(a,d): write data block d at address a.

>

39



Oblivious RAM, cont'd

Query g C(q)
> >
Response >
< P

Small
Memory  Glient

Server

ORAM algorithm C (or ORAM “compiler”): transforms each query g
by the client into one or several read/write queries C(q) to server.

Correctness: C’s response is the correct answer to query q.

Obliviousness: for any two sequences of queries q = (g1,...,9x) and
r = (r1,...,rx) of the same length, C(q) = (C(q1),...,C(qx)) and C(r) =
(C(r1),...,C(rx)) are indistinguishable.

40



Trivial ORAM

Query g
>

Response
<

Client Server

Trivial ORAM: read and re-encrypt every item in server memory.

Security: trivial.

Efficiency: every client query costs O(n) real accesses
— overhead is O(n).

A non-trivial ORAM must have:
> Client storage o(n).
> Query overhead o(n).

4|



=
<L
o
O
O
O
=

.

)

'lllllll’

~--”



Tree ORAM

Hierarchical ORAM family leads to recent optimal construction.
But huge constants. Never used in practice.

What is actually used:
Tree ORAM by Shi et al. 11

Overhead: O(log3 n).
Worst-case (no need to amortize).

In practice: easy to implement, efficient.

We will see Simple ORAM, member of the Tree ORAM family.

43



The tree each node:

log n blocks,
each with a items

4
4
4
4

\ 4

Server-side memory is a full binary tree with log(n/a) levels.

Each node contains log n blocks.
Each block contains o = O(1) (possibly dummy) items.



Setup

- B B B
B HON | NN N oM N 0O | N

ltems are grouped into blocks of a items, item / into block b = i/ch.

At start:
Each block b is stored in a uniformly random leaf Pos(b).
“Position map” Pos() is stored on the client.

Invariant: block b will always be stored on the branch to Pos(b). .



Branch to Pos(2)

2

new Pos(2)

To access item / from block b:
1. Read every node along branch to Pos(b). Remove b when found.
2. Update Pos(b) to new uniform leaf.

3. Insert b at root. (Possibly with new value.)

46



Eviction

—-.\

~§
~
~§
~

-----.

After every lookup new Pos()

1. Pick branch to uniformly random leaf.

2.Push every block in the branch as far down as possible (preserving
that block b must remain on branch to Pos(b)).

47



Security

Setup: server sees full binary tree of height log (n/a).
Each node is encrypted, same size.

Lookup + eviction: server sees:

-----.

Full read/rewrite along 2 branches to uniformly random leaves.

48



Efficiency of basic construction

Overhead.
Each lookup, read two branches, total O(log? n) items.

Server memory: O(n log n).

Client memory: O(n/a). (oops)

49



The position map

The client stores position Pos: [1,n/a] — [1,n/a], size n/a = ©O(n).
Still a large gain, if item size is much larger than log(n/«a) bits.

To reduce client memory:
Store position map on server. Obliviously!

“Recursive” construction:

Client needs new position map for server-side position map...
Key fact: it is a times smaller!

Repeat this recursively log«(n) times. In the end:
> Client position map becomes size O(1).

- Server stores log.(n) position maps, each a x smaller than last.

>~ Each lookup, log«(n) roundtrips to query each position map.

50



Efficiency of recursive construction

Overhead.
Each lookup, O(log n) recursive calls, ecah of size O(log? n).

— O(log® n) overhead.

Server memory: O(n log n).

Client memory: O(1).

Note: possible to combine ORAM with FHE and MPC.

51



In practice

Original Tree ORAM had more complex eviction strategy and
analysis, better efficiency.

Path ORAM:
- Client has a small stash of blocks.

- Blocks are evicted along the same branch as item was read.
- Can use nodes as small as K = 4 blocks!

Fairly practical: used by Signal for contact discovery. © signal

52



