
MPRI, 2025

Brice Minaud

email: brice.minaud@ens.fr

Techniques in Cryptography and Cryptanalysis

Fully Homorphic Encryption

https://static.appointmentreminder.com/web/images/v3/svg/Colou...

1 sur 1 04/12/2019 à 11:22

Client Server

Encrypted inputs

Encrypted output

Arbitrary
Function

Encrypt
Inputs

Decrypt
Output

No encryption/
decryption key!

Image of the function
on original inputs!

2

Public-Key Encryption Scheme

Over:

‣ Keyspace K.

‣ Plaintext domain P.

‣ Ciphertext domain C.

Define a triplet of PPT algorithms:

‣ KeyGen: on input 1λ, generates an encryption key ek, and a

decryption key sk.

‣ Enc: on input m∈P and ek, produce an encryption c∈C of m.

‣ Dec: on input c∈C and sk, produce a decryption m∈P∪{⊥} of c.

3

Adversary Challenger

Pick M1, M2. M1, M2

Pick b ←$ {0,1}

Pick K ← {0,1}k.

C* = EncK(Mb)

Compute b’.

IND-CCA1: indistinguishability under Chosen-Ciphertext Attacks

Pick M’i. M’i

EncK(M’i)Repeat

freely Pick Ci. Ci

DecK(Ci)

4

Adversary Challenger

Pick M1, M2. M1, M2

Pick b ←$ {0,1}

Pick K ← {0,1}k.

C* = EncK(Mb)

Compute b’.

IND-CCA2: indistinguishability under adaptive Chosen-Ciphertext Attacks

Pick M’i. M’i

EncK(M’i)Repeat

freely Pick Ci. Ci

DecK(Ci)

Pick M”i, C’i…Same
as 1st
step

…

…with C’i ≠ C*

5

Public-key encryption: “proper” definition

Public-Key Encryption.

Defined by triplet of alogrithms (KeyGen, Enc, Dec) over message
space M, ciphertext space C, key space K.

‣ KeyGen: on input 1λ, generates an encryption key ek, and a

decryption key sk.

‣ Enc: on input m∈P and ek, produce an encryption c∈C of m.

‣ Dec: on input c∈C and sk, produce a decryption m∈P∪{⊥} of c.

Correctness: for all M ∈ M,

 DecK(EncK(M)) = M.

Security: IND-CCA (for instance).

Caveat: “security” above only covers confidentiality, not integrity.

6

Homomorphic Schemes

7

Domains
Plaintext domain M, ciphertext domain C and function class F.

Algorithms
KeyGen: on input 1λ ouputs ek, sk, evk.

• ek may be public.

• sk is private.

• evk is public (e.g. bootstrapping key).

Enc(ek,.): M→C.

Dec(sk,.): C→M ∪ {⊥}.

Eval(evk,.): F×C*→C.

• KeyGen and Enc are PPT.

• Eval and Dec may be deterministic (and often are).

Next few slides adapted from Renaud Sirdey (CEA).

Intuition

8

For “any” function f, we want something like:

Dec(Eval(f,Enc(m1),…,Enc(mk))=f(m1,…,mk).

Ciphertext
domain

Cleartext
domain

m

Enc(m) Eval(f,Enc(m))

f(m)

Eval(f,⋅)

Enc(⋅) Dec(⋅)

f(⋅)

Intuition

9

For “any” function f, we want something like:

Dec(Eval(f,Enc(m1),…,Enc(mk))=f(m1,…,mk).

• We want (at least) CPA security.

I.e. reduction to a hard problem P.

• We want (at most) polynomial overhead.

If f is in “O(g(n))” then Eval(f,⋅) is in “O(poly(λ)g(n))”.

• And… compactness,

I.e. size(Eval(f,⋅)) should not depend on size(f).

Questions

10

Can you imagine a (trivial) non-compact FHE scheme?

Can a deterministic FHE scheme be secure?

Answer(s) to 2nd question

11

• If “secure” means “CPA”: no!

IND-CPA implies non-determinism, even for normal PKE.

• If “secure” means something weaker: still no for FHE!

– Assume the scheme has plaintext domain Zt.

– Get c0=Enc(0) and c1=Enc(1).

– Assume we have c=Enc(x).

– Eval(⋅≤t/2;c) and returns either c0 or c1.

Then we can decrypt by dichomotic search…

FHE security

12

• CPA is achieved by all mainstream FHE.

• CCA1 is achievable.

– In theory or in restricted cases (open question for research).

• CCA2 is not achievable.

– Malleability contradicts CCA2.

• But there are also new notions and new security problems with FHE.

Quick reminder: ElGamal Encryption

𝔾 = <g>, |𝔾| = p

Secret key: x ∈ ℤp

Public key: h = gx

Enc(m) = (gr, m・hr), where r ←$ ℤp

Dec(k,c) = c/kx

Security reduces to DDH assumption over 𝔾.

Multiplicatively homomorphic: given (k,c) = Enc(m), (k',c') = Enc(m'),

(kk',cc') is an encryption of mm'.

“Additively homorphic” ElGamal

ElGamal is multiplicatively homomorphic.

To build additively homomorphic scheme, use:

MyEncrypt(m) = ElGamal-encrypt(gm)

Works because m ↦ gm is homomorphism from (ℤp,+) to (𝔾,・), and
morphisms compose.

Problem: how to define MyDecrypt?

ElGamal-decrypt(MyEncrypt(m)) = gm

But getting m from gm = Discrete Logarithm problem...*

*Still doable if m has low entropy, cf. voting protocols.

Making Discrete Logarithm easy

Let N = pq RSA modulus.

Let 𝔾 = ℤN2. Let g = N+1.

Discrete log over 𝔾 in base g: Given gx mod N2, find x.

This is actually easy!

Indeed via the binomial formula (binôme de Newton in French):

(N+1)x = 1 + xN mod N2

The Paillier cryptosystem

Let N = pq RSA modulus.

Let 𝔾 = ℤN2. Let g = N+1.

KeyGen. Public Key: N, Secret Key: 𝜙(N).

Encryption. Message m ∈ ℤN, randomness r ←$ ℤN

Enc(m) = gmrN mod N2

Decryption. Ciphertext c ∈ ℤN2

c𝜙(N) = gm𝜙(N)rN𝜙(N) mod N2

= gm𝜙(N) mod N2

 ⇒ Dec(c) = DL(c𝜙(N))/𝜙(N)

Security of Paillier cryptosystem

Decisional composite residuosity assumption (DCRA)
Cannot distinguish rN mod N2 where r ←$ ℤN from uniform element of ℤN2.

Paillier encryption is a “one-time pad” of gm with rN

→ CPA security follows immediately from DCRA.

DCRA = distinguish wether an element is an N-th power or not. Easy if
factorization of N = pq is known (same as quadratic residuosity).

CCA security: requires non-standard assumptions, or small tweaks.

Question

18

• What are the homomorphic properties of the scheme?

Can try it here: https://www.linksight.nl/en/content/homomorphic-encryption/

Approximate GCD problem

19

AGCD problem.

For large prime p and large integer B, distinguish:

- oracle that outputs x = qp + r for uniform q < B, and r ≪ p.

- oracle that outputs uniform x < pB.

(For security, set p ≈ 2𝜆 + log 𝜆, B ≈ 2𝜆 log 𝜆, r ≈ 2𝜆.)

A lattice attack

20

Let:

x = qp + r

x' = q'p + r'

Then:

q'x - qx' = q'r - qr' ≪ x

⇒ Given x0, …, xt, let:

Then (q0,…,qt)B = (2𝜆+1q0,q0x1-q1x0,…,q0rt-qtr0) is small.
⇒ short vector in the lattice spanned by rows of B.

Adapted from Martin Albrecht, 2020.

Approximate GCD problem

21

AGCD problem.

For large prime p and large integer B, distinguish:

- oracle that outputs x = qp + r for uniform q < B, and r ≪ p.

- oracle that outputs uniform x < pB.

(For security, set p ≈ 2𝜆 + log 𝜆, B ≈ 2𝜆 log 𝜆, r ≈ 2𝜆.)

Security:
Efficient SVP algorithm ⇒ efficient AGCD algorithm.

Conversely, efficient AGCD algorithm ⇒ efficient algorithm for LWE*.

*[CS16] https://eprint.iacr.org/2016/837

A simple cryptosystem

22

• KeyGen

A large prime p.

• Encryption of m ∈ {0,1}:

Randomly choose a large q and r and let

c: = qp+2r+m.

• Decryption

m := (c mod p) mod 2.

This is CPA-secure assuming the hardness of the AGCD problem.

Questions

23

• Is decryption of fresh ciphertexts correct?

• What are the homomorphic properties of the scheme?

• Under what condition does decryption remain correct?

Learning with Errors (LWE)

Regev ’05. Milestone result.

Pick s uniformly in .ℤn
q

Oracle O$: returns (a,b) for a uniform in , b uniform in .

Oracle Os: returns (a,a⋅s+e) for a uniform in , e drawn from 𝝌.

ℤn
q ℤq

ℤn
q

LWE. Let be drawn uniformly at random. Given access to
either O$ or Os, distinguish between the two.

s ∈ ℤn
q

LWE (bounded samples). Let and be drawn
uniformly at random, and drawn according to 𝝌.

Distinguish between (A, As + e), and (A, b).

A ∈ ℤm×n
q b, s ∈ ℤn

q

e ∈ ℤm
q

Typically, 𝝌 is a discrete Gaussian distribution with std deviation 𝛼q.

24

Search and Decision variants

LWE (decisional). Let be drawn uniformly at random.
Given access to either O$ or Os, distinguish between the two.

s ∈ ℤn
q

LWE (search). Let be drawn uniformly at random. Given
access to either Os, find s.

s ∈ ℤn
q

Proposition 1: the two problems are equivalent up to polynomial
reductions (“hybrid” technique).

Proposition 2: given an efficient algorithm that solves SIS with
parameters n, m, q, 𝛽, there is an efficient algorithm that solves
LWE with the same parameters, assuming (roughly) 𝛼𝛽 ≪ 1.

25

Secret-key encryption using LWE

Pick a secret s uniformly in .ℤn
q

Secret key: s.

Encrypt: to encrypt one bit m: give (a,a⋅s+m⌊q/2⌋+e).

Decrypt: compute a⋅s to retrieve m⌊q/2⌋+e, output m=1 iff closer
to ⌊q/2⌋ than to 0.

IND-CPA security sketch: (a,a⋅s+e) is indistinguishable from
uniform, hence so is (a,a⋅s+m⌊q/2⌋+e).

26

A public sampler for LWE

Setup:
- Pick a secret s uniformly in .

- Publish m LWE(q,n,𝝌) samples for large enough m (value TBD).
That is, publish (A,As+e) for m×n matrix A.

ℤn
q

To make previous scheme public-key, we’d like a public “sampler”
for LWE. Should not require knowing the secret s.

Now to get a fresh LWE sample:
- Pick x uniformly in {0,1}n.

- Publish (txA, tx(As+e)).

With the right parameters, this yields a distribution statistically
close to LWE(q,n,𝝌’), where if 𝝌 is Gaussian with variance 𝜎2, 𝝌’ is
Gaussian with variance m𝜎2.

Argument: Leftover Hash Lemma. Example: m = 2n log q suffices.

Remark: recognize the Ajtai hash function from SIS.

27

Public-key* Regev encryption

Pick a secret s uniformly in , A uniformly in .ℤn
q ℤm×n

q

Secret key: s.
Encrypt: to encrypt one bit m: draw x in {0,1}m, output:

(txA,txb + m⌊q/2⌋).

Regev ’05: Regev encryption.
Idea: same as secret-key scheme, but with public sampler.

Public key: (A, b = As + e).

Decrypt: upon receipt of ciphertext (c,d), output 0 if d-c⋅s is closer
to 0 than to ⌊q/2⌋, 1 otherwise.

Proof argument. Step 1: public key is indistinguishable from
uniform. Step 2: assuming uniform public key, ciphertexts are
statistically close to uniform.

*malleability → not IND-CCA. 28

Can be seen as
generic SK→PK

transform w/
homomorphism!

Questions

29

• Is decryption of fresh ciphertexts correct?

• What are the homomorphic properties of the scheme?

• Under what condition does decryption remain correct?

Magic trick 1: multiplicative homomorphism

An encryption of one bit m is essentially (up to leftover hash lemma):

Enc(m) = (a, a⋅s + m⌊q/2⌋ + e) = (a,b).

30

Let c = (a,b) be the ciphertext, and s' = (-s,1) , decryption is essentially:

c⋅s' = m⌊q/2⌋ + e

Given two ciphertexts c and c', define:*

mult(c,c') = ⎣2/q c⊗c’⎤

To decrypt, compute:

mult(c,c')⋅(s'⊗s') ≈ 2/q (c⊗c’)⋅(s'⊗s')
 = 2/q (c⋅s')(c'⋅s')

 ≈ q/2 mm' + me' + m'e + 2/q ee'

 = q/2 mm' + e".

*Notation: (x1,…,xm)⊗(y1,…,yn) = (x1y1,…,x1yn, x2y1,…,x2yn, … … …, xmy1,…,xmyn).

Full homomorphism?

31

Additive homomorphism:
add(c,c') = c + c'

Decrypted with s':

add(c,c')⋅s' = (m+m') q/2 + noise.

Multiplicative homomorphism:
mult(c,c') = ⎣2/q c⊗c’⎤

Decrypted with s" = s'⊗s':

mult(c,c')⋅s" = mm' q/2 + noise.

But ciphertext size increases quadratically, cannot really go on...

Magic trick 1 (part 2): relinearization via key switching

32

Sample fresh secret key t.

“Encrypt” every sisj with t:

let (aij,bij) be such that

bij = aij⋅t + sisj + noise ≈ aij⋅t + sisj

⇒ sisj ≈ bij - aij⋅t

Idea: to decrypt mult(c,c'), use bij - aij⋅t in place of sisj :

mult(c,c')⋅(s'⊗s') = mult(c,c')⋅(sisj)1≤i,j≤n
 ≈ mult(c,c')⋅(bij - aij⋅t)1≤i,j≤n

 = mult(c,c')⋅(b - At)

 = mult(c,c')⋅((b|A)(1,-t))
 = ((b|A)Tmult(c,c'))⋅(1,-t)

⇒ redefine mult'(c,c') = (b|A)Tmult(c,c').

⇒ this gives encryption of mm' under key t' = (1,-t).

where b=vector with entries (bij),
 A=matrix with rows (aij)

Are we fully homomorphic yet?

33

Encrypt (sisj)1≤i,j≤n with secret t = s. Add (b|A) to public key.

Additive homomorphism:
add(c,c') = c + c'

Multiplicative homomorphism:
mult(c,c') = 2/q (b|A)T(c⊗c')

Size of ciphertext is unchanged, everything decrypts under s.

But the noise increases with every operation.

Correctness is lost if the noise exceeds q/2.

Somewhat Homomorphic Encryption

34

Right now: only limitation is noise increase.

What we have is:
Somewhat Homomorphic Encryption.

∀ circuit C, ∃ FHE scheme powerful enough to compute C.

How?

Sketch: for given C, can upper-bound max noise at the output.

→ Pick initial noise of fresh ciphertexts small enough that C is
guaranteed to compute correctly.

The deeper C is (especially multiplicative depth), the smaller the noise-
to-modulus ration, & the more expensive every FHE operation...

Fully Homomorphic Encryption

35

Somewhat Homomorphic Encryption (SWHE).

∀ circuit C, ∃ FHE scheme that can compute C.

Fully Homomorphic Encryption (FHE).

∃ FHE scheme, ∀ circuit C, FHE can compute C.

The dream:

→ Fixed cost for FHE regardless of C.

→ Unbounded computation, without need to know C in advance.

“Bootstrapping” SWHE into FHE

36

Groundbreaking idea by Craig Gentry (2009).

Add to public key: K' = EncFHE(KFHE) [“circular security”]

c = EncFHE(m) high-noise ciphertext, want to reduce noise

EncFHE(c)
re-encrypt

low-noise ciphertext = fresh ciphertext of c
decrypt

within FHE
(using K') EncFHE(m) fixed-noise ciphertext (“low” noise)

noise = noise generated by decryption
circuit of FHE = fixed noise

SWFHE that can correctly compute its own decryption circuit
+ at least 1 operation ⇒ FHE.

Going back to the computation model

https://static.appointmentreminder.com/web/images/v3/svg/Colou...

1 sur 1 04/12/2019 à 11:22

Client

Encrypted inputs

Encrypted output

Arbitrary
Function

Encrypt
Inputs

Decrypt
Output

37

Models of computation

38

Algorithms

In theory: Turing machines.
Usually RAM machines.

Circuits

x1 x2 x3 x4

AND NOT

OR

OR

Pure circuits: no notion of memory.

ORAM FHE

Conversion

ORAM vs FHE/MPC/ZK

39

Algorithms (with RAM) Circuits

ORAM Fully Homorphic Encryption*

Multi-Party Computation*

zk-SNARKS

No notion of “memory”.*

*except when combined with ORAM (in a non-trivial way).

Neural networks

‣ FHE with RAM function:
https://eprint.iacr.org/2022/1703

‣ Conversely, ORAM w/ O(1)
communication overhead via FHE:

https://eprint.iacr.org/2019/736

https://eprint.iacr.org/2022/1703
https://eprint.iacr.org/2019/736

The “strange” FHE computer

40

Some basic implications of computing in the circuit model...

‣ No proper “if”/no proper branching.

‣ No notion of memory.

Everything potentially computed on is a circuit input. No notion of pointer.

‣Always performs worst-case complexity.

See e.g. https://github.com/CEA-LIST/Cingulata

Main FHE flavors

41

• BFV, BGV:
– Large plaintext domain.
– Heavy SIMD //-ism => competitive amortized performances.
– Some support for non linear ops (beyond polynomial approx.).
– No efficient bootstrapping.
– Multiplicative depth dependency.
– Multikey and threshold variants.

• CKKS:
– Approximate computations (no message scaling).
– Large plaintext domain.
– Heavy SIMD //-ism => competitive amortized performances.
– No support for non linear ops (beyond poly. Approx).
– No efficient bootstrapping.
– Multiplicative depth dependency.
– Weaker than BFV or BGV with respect to passive attackers.
– Multikey and threshold variants.

• TFHE (aka CGGI):
– Efficient bootstrapping.
– Functionnal bootstrapping => easy non linear ops.
– Multiplicative-depth independance.
– Small plaintext domain (32 values max).
– No batching.
– Multikey and threshold variants are WIP.

Slide content by Renaud Sirdey (CEA). Some sample performance for TFHE on ML tasks:

https://www.zama.ai/post/making-fhe-faster-for-ml-beating-our-previous-paper-benchmarks-with-concrete-ml

https://www.zama.ai/post/making-fhe-faster-for-ml-beating-our-previous-paper-benchmarks-with-concrete-ml

More magic tricks

42

‣ Hide to the server what circuit is computed.
Use universal circuit. Then encode desired circuit as data (FHE ciphertexts).

‣ Hide to the client what circuit was computed.
Simplest way: noise flooding.

‣Reduce client → server ciphertext expansion to nothing!
Use transciphering: at setup, server receives K = EncFHE(AES-key).*
Then client can send all ciphertexts in the form c = AES-encrypt(m).
Server computes EncFHE(c), then decrypts within FHE using K.
⇒ Server gets EncFHE(m).

*Best realized with specialized symmetric encryption schemes (not AES).

