———

V 4
lrz2ce PSL %
E h S RESEARCH UNIVERSITY PARIS
ECOLE NOEMALE
SUPERTEUERR

iInventeurs du monde numeérique

Techniques in Cryptography and Cryptanalysis

S3rice Minaud

email: brice.minaud@ens.fr

MPRI, 2025

Fully Homorphic Encryption

Arbitrary
Function

Encrypted output
Client Server

T

Image of the function No encryption/
on original inputs! decryption key!

Public-Key Encryption Scheme

Over:
~ Keyspace K.
> Plaintext domain P.
> Ciphertext domain C.

Define a triplet of PPT algorithms:

~ KeyGen: on input 1A, generates an encryption key ek, and a
decryption key sk.

> Enc: on input meP and ek, produce an encryption ceC of m.
> Dec: on input ceC and sk, produce a decryption mePu{_L} of c.

IND-CCAT1: indistinguishability under Chosen-Ciphertext Attacks

Adversary Challenger

Repeat
freely

IND-CCAZ2: indistinguishability under adaptive Chosen-Ciphertext Attacks

Adversary Challenger

Repeat
freely

Same
as st
step

Public-key encryption: “proper” definition

Public-Key Encryption.

Defined by triplet of alogrithms (KeyGen, Enc, Dec) over message
space M, ciphertext space C, key space K.

- KeyGen: on input 1A, generates an encryption key ek, and a
decryption key sk.

> Enc: on input meP and ek, produce an encryption ceC of m.

> Dec: on input ceC and sk, produce a decryption mePu{L} of c.

Correctness: for all M € M,
Deck(Enck(M)) = M.
Security: IND-CCA (for instance).

Caveat: “security” above only covers confidentiality, not integrity.

Homomorphic Schemes

Domains
Plaintext domain M, ciphertext domain C and

Algorithms

KeyGen: on input 1* ouputs ek, sk, evk.
* ek may be public.
* sk Is private.
* evKk is public (e.g. bootstrapping key).
Enc(ek,.): M—C.
Dec(sk,.): C»M u {L}.

» KeyGen and Enc are PPT.
* Eval and Dec may be deterministic (and often are).

Next few slides adapted from Renaud Sirdey (CEA).

Intuition

For “any” function f, we want something like:
Dec(Eval(f,Enc(myi),...,Enc(mk))=f(mj1,...,mx).

Eval(f,) Eval(f,Enc(m))

Ciphertext
—_—m——_—_—p>

Enc(m

domain ®
Enc(-) | Dec(-)

O

m

Cleartext
domain

f(-) f(m)

Intuition

For “any” function f, we want something like:
Dec(Eval(f,Enc(myi),...,Enc(mk))=f(mj1,...,mx).

* We want (at least) CPA security.
l.e. reduction to a hard problem P.

* We want (at most) polynomial overhead.
If fis in “O(g(n))” then Eval(f,) is in “O(poly(A)g(n))”.

* And... compactness,
l.e. size(Eval(f,-)) should not depend on size(f).

Questions

Can you imagine a (trivial) non-compact FHE scheme?

Can a deterministic FHE scheme be secure?

10

Answer(s) to 2nd question

If “secure” means “CPA”: no!
IND-CPA implies non-determinism, even for normal PKE.

If “secure” means something weaker: still no for FHE!
— Assume the scheme has plaintext domain Z..

— Get cy=Enc(0) and ci=Enc(1).
— Assume we have c=Enc(x).
— Eval(-<t/2;c) and returns either cO or c1.
Then we can decrypt by dichomotic search...

FHE security

CPA is achieved by all mainstream FHE.

CCA1 is achievable.
— In theory or in restricted cases (open question for research).

CCA2 is not achievable.
— Malleability contradicts CCAZ2.

But there are also new notions and new security problems with FHE.

12

Quick reminder: ElGamal Encryption

G =<g>|G|=p

Secret key: x € Zp
Public key: h = g

Enc(m) = (g", m - hr), where r «g 7,
Dec(k,c) = c/k*
Security reduces to DDH assumption over G.

Multiplicatively homomorphic: given (k,c) = Enc(m), (k',c') = Enc(m’),
(kk',cc') is an encryption of mm'.

“Additively homorphic” ElGamal

ElGamal is multiplicatively homomorphic.

To build additively homomorphic scheme, use:
MyEncrypt(m) = ElGamal-encrypt(gm)

Works because m ~» gm is homomorphism from (Z,,+) to (G, -), and
morphisms compose.

Problem: how to define MyDecrypt?

ElGamal-decrypt(MyEncrypt(m)) = gm
But getting m from g™ = Discrete Logarithm problem...”

*Still doable if m has low entropy, cf. voting protocols.

Making Discrete Logarithm easy

Let N = pg RSA modulus.
Let G = ZnN2. Let g = N+1.

Discrete log over G In base g: Given gx mod N2, find x.

This is actually easy!

Indeed via the binomial formula (binome de Newton in French):
(N+1)x =1 + XN mod N2

The Palllier cryptosystem

Let N = pgq RSA modulus.
Let G = ZnN2. Let g = N+1.

KeyGen. Public Key: N, Secret Key: ¢(N).

Encryption. Message m € Zn, randomness r «g Zn
Enc(m) = gmrN mod N2

Decryption. Ciphertext ¢ € Zn?
c¥N) = gmeN)rNé(N) mod N2

= gm¢N) mod N2
= Dec(c) = DL(c#MN)/p(N)

Security of Paillier cryptosystem

Decisional composite residuosity assumption (DCRA)

Cannot distinguish N mod N2 where r «g¢ Zn from uniform element of Zn2.

Paillier encryption is a “one-time pad” of gm with rN
— CPA security follows immediately from DCRA.

DCRA = distinguish wether an element is an N-th power or not. Easy if
factorization of N = pqg is known (same as quadratic residuosity).

CCA security: requires non-standard assumptions, or small tweaks.

Question

* What are the homomorphic properties of the scheme?

Can try it here: https://www.linksight.nl/en/content/homomorphic-encryption/

Approximate GCD problem

AGCD problem.
For large prime p and large integer B, distinguish:

- oracle that outputs x = gp + r for uniform g < B, and r « p.

- oracle that outputs uniform x < pB.

(For security, set p = 21+logi B = 241094, r = 24))

19

A lattice attack

| et:
X=qgp +r
X =q'p+r
Then:
gXx-gx =qg'r-qgr « X
= Given Xo, ..., Xt, let:
ALl T
— ()
B = — Ly

—.XL

Then (qQo,...,qt)B = (24*1g0,qoX1-q1Xao,...,dort-qtro) IS small.

= short vector in the lattice spanned by rows of B.
Adapted from Martin Albrecht, 2020.

20

Approximate GCD problem

AGCD problem.
For large prime p and large integer B, distinguish:

- oracle that outputs x = gqp + r for uniform q < B, and r « p.

- oracle that outputs uniform x < pB.

(For security, set p = 21+logi B = 241094, r = 24))

Security:
Efficient SVP algorithm = efficient AGCD algorithm.
Conversely, efficient AGCD algorithm = efficient algorithm for LWE”.

*[CS16] https://eprint.iacr.org/2016/837

21

A simple cryptosystem

* KeyGen
A large prime p.

 Encryption of m € {0,1}:
Randomly choose a large g and r and let
C. = qQp+2r+m.
* Decryption
m := (c mod p) mod 2.

This is CPA-secure assuming the hardness of the AGCD problem.

22

Questions

* |s decryption of fresh ciphertexts correct?
* What are the homomorphic properties of the scheme?
* Under what condition does decryption remain correct?

Learning with Errors (LWE)

Regev '05. Milestone result.
Pick s uniformly in z:.

Oracle Os: returns (a,b) for a uniform in z2, b uniform in z,.
Oracle Os: returns (a,a-s+e) for a uniform in z, e drawn from y.

Typically, x is a discrete Gaussian distribution with std deviation aq.

LWE (bounded samples). Let 4 e z~" and »,s € z2 be drawn
uniformly at random, and e € z» drawn according to .

Distinguish between (A, As + €), and (A, b).

24

Search and Decision variants

LWE (decisional). Let s € z2 be drawn uniformly at random.

Given access to either Og or Os, distinguish between the two.

LWE (search). Let s € z2 be drawn uniformly at random. Given
access to either Os, find s.

Proposition 1: the two problems are equivalent up to polynomial
reductions (“hybrid” technique).

Proposition 2: given an efficient algorithm that solves SIS with
parameters n, m, q, 3, there is an efficient algorithm that solves

LWE with the same parameters, assuming (roughly) af « 1.

25

Secret-key encryption using LWE

Pick a secret s uniformly in z:.
Secret key: s.
Encrypt: to encrypt one bit m: give (@,a-s+m|q/2 | +e).

Decrypt: compute a-s to retrieve m| q/2 | +e, output m=1 iff closer
to |g/2] than to O.

IND-CPA security sketch: (a,a-s+e€) is indistinguishable from
uniform, hence so is (@,a-s+m|q/2 | +e).

26

A public sampler for LWE

To make previous scheme public-key, we’d like a public “sampler’
for LWE. Should not require knowing the secret s.

Setup:
- Pick a secret s uniformly in z:.
- Publish m LWE(q,n, x¥) samples for large enough m (value TBD).

That is, publish (A,As+e) for mxn matrix A.

Now to get a fresh LWE sample:
- Pick x uniformly in {0,1}n.
- Publish (XA, x(As+e)).

With the right parameters, this yields a distribution statistically
close to LWE(qg,n,x’), where if x is Gaussian with variance o2, x' is

(Gaussian with variance moao?2.

Argument: Leftover Hash Lemma. Example: m = 2n log g suffices.

Remark: recognize the Ajtai hash function from SIS.

27

Public-key™ Regev encryption

Regev '05: Regev encryption.

Idea: same as secret-key scheme, but with public sampler. Can be seen as
generic SK—PK

transform w/

Pick a secret s uniformly in z2, A uniformly in z». .
homomorphism!

Public key: (A, b = As + e).
Secret key: s.

Encrypt: to encrypt one bit m: draw x in {0,1}7, output:
(XA, Xb + m|qg/2]).

Decrypt: upon receipt of ciphertext (c,d), output O if d-c-s is closer
to O thanto [g/2], 1 otherwise.

Proof argument. Step 1: public key is indistinguishable from
uniform. Step 2: assuming uniform public key, ciphertexts are
statistically close to uniform.

*malleability = not IND-CCA. 28

Questions

* |s decryption of fresh ciphertexts correct?
* What are the homomorphic properties of the scheme?
* Under what condition does decryption remain correct?

*Notation: (X1

Magic trick 1: multiplicative homomorphism

An encryption of one bit m is essentially (up to leftover hash lemma):
Encim) = (@, a-s+ mlqg/2] + e) =(a,b).

Let ¢ = (a,b) be the ciphertext, and s' = (-s,1) , decryption is essentially:
c.s'=mlqg/2] +e

Given two ciphertexts ¢ and c', define:”

mult(c,c') = |2/q c®c’]

To decrypt, compute:
mult(c,c')-(s'®s’) = 2/q (c®c’)-(s'®s")
= 2/q (c-s’)(c"s’)
= qg/2 mm'+me' + m'e + 2/g ee’
=qg/2mm' +e".

30

Full homomorphism?

Additive homomorphism:
add(c,c')=c + ¢’
Decrypted with s;
add(c,c')-s' = (m+m') g/2 + noise.

Multiplicative homomorphism:
mult(c,c') = [2/g c®c’]
Decrypted with s" = s'®s":
mult(c,c')-s" = mm' qg/2 + noise.

But ciphertext size increases quadratically, cannot really go on...

31

Magic trick 1 (part 2): relinearization via key switching

Sample fresh secret key f.

“Encrypt” every sis; with t:
let (ajj,bi) be such that
bij = aj-f + SiS; + noise = ajj-f + SiS;
= SiSj = bjj - ajj-t

Idea: to decrypt mult(c,c'), use bjj - ajj-f in place of s;s;:
mult(c,c’)-(s'®s') = mult(c,c’)-(sis)1=i j<n

= mult(c,c’)-(bjj - aij- t)1=i j<n
= mult(c,c')-(b - At) where b=vector with entries (bj),
= mult(c,c')-((b|A)(1,-1)) A=matrix with rows (aj)

= ((b|A Tmul’c (c,c')-(1,-1)

= redefine mult'(c,c') = (b|A)Tmult(c,c").
= this gives encryption of mm' under key t' = (1,-t).

32

Are we fully homomorphic yet?

Encrypt (sis))1<ij<n With secret t = s. Add (b|A) to public key.

Additive homomorphism:
add(c,c') =c + ¢’

Multiplicative homomorphism:
mult(c,c') = 2/g (b|A)T(c®c')

Size of ciphertext is unchanged, everything decrypts under s.

But the noise increases with every operation.

Correctness is lost if the noise exceeds g/2.

33

Somewhat Homomorphic Encryption

Right now: only limitation is noise increase.

What we have Is;:

Somewhat Homomorphic Encryption.

v circuit C, 3 FHE scheme powerful enough to compute C.

How?

Sketch: for given C, can upper-bound max noise at the output.
— Pick initial noise of fresh ciphertexts small enough that C is
guaranteed to compute correcitly.

The deeper C is (especially multiplicative depth), the smaller the noise-
to-modulus ration, & the more expensive every FHE operation...

34

Fully Homomorphic Encryption

Somewhat Homomorphic Encryption (SWHE).

v circuit C, 3 FHE scheme that can compute C.

The dream:

Fully Homomorphic Encryption (FHE).

3 FHE scheme, v circuit C, FHE can compute C.

— Fixed cost for FHE regardless of C.
— Unbounded computation, without need to know C in advance.

35

“Bootstrapping” SWHE into FHE

Groundbreaking idea by Craig Gentry (2009).
Add to public key: K' = Encrne(KrHe) [“circular security”]

c = EncrHe(M) high-noise ciphertext, want to reduce noise
re-encrypt <A
EncrHe(C) low-noise ciphertext = fresh ciphertext of ¢
decrypt
within FHE |
(using K') Encrre(M) fixed-noise ciphertext (“low” noise)

noise = noise generated by decryption
circuit of FHE = fixed noise

SWFHE that can correctly compute its own decryption circuit

+ at least 1 operation = FHE.

36

Going back to the computation model

I r-:l)‘ ‘. :' .‘ I ".:1). ‘. :' - . ro:I)‘ '. :' .‘
WEEDEATA MR MR

Encrypted inputs

Encrypted output

Client

Arbitrary
Function

37

Algorithms

#include <stdio.h>

unsigned long fib(unsigned short n)

{
1f (n <= 1)
return 1;
else

return fib(n-1) + fib(n-2);

¥

iht main()

{

orintf("result: %Lu\n",fi1b(5));

return 0;

In theory: Turing machines.

Usually RAM machines.

Q ORAM

Models of computation

Circuits

A

A
X2

Conversion

A A
—~

Pure circuits: no notion of memory.

¢ FHE

38

ORAM vs FHE/MPC/ZK

Algorithms (with RAM) Circuits

Q ORAM

Q Fully Homorphic Encryption*

Q Multi-Party Computation”

> FHE with RAM function:
https://eprint.iacr.org/2022/1703

H Q Neural networks
- Conversely, ORAM w/ O(1)

communication overhead via FHE:
https://eprint.iacr.org/2019/736

Q 7k-SNARKS

No notion of “memory”.”

*except when combined with ORAM (in a non-trivial way).

39

https://eprint.iacr.org/2022/1703
https://eprint.iacr.org/2019/736

The “strange” FHE computer

Some basic implications of computing in the circuit model...

> No proper “if”’/no proper branching.

> No notion of memory.
Everything potentially computed on is a circuit input. No notion of pointer.

> Always performs worst-case complexity.

See e.g. https://github.com/CEA-LIST/Cingulata

40

Main FHE flavors

- BFV,BGV:

— No efficient bootstrapping.
— Multiplicative depth dependency.

 CKKS:

— No support for non linear ops (beyond poly. Approx).
— No efficient bootstrapping.
— Multiplicative depth dependency.

. TFHE (aka CGGI):

ZANIA

— Small plaintext domain (32 values max).
— No batching.

Slide content by Renaud Sirdey (CEA). Some sample performance for TFHE on ML tasks:
https://www.zama.ai/post/making-fhe-faster-for-ml-beating-our-previous-paper-benchmarks-with-concrete-ml

1 HEAAN

CRYPTO LAB

4|

https://www.zama.ai/post/making-fhe-faster-for-ml-beating-our-previous-paper-benchmarks-with-concrete-ml

x
*

More maaqic tricks
9 . J‘(\

> Hide to the server what circuit is computed.
Use universal circuit. Then encode desired circuit as data (FHE ciphertexts).

> Hide to the client what circuit was computed.
Simplest way: noise flooding.

> Reduce client — server ciphertext expansion to nothing!
Use transciphering: at setup, server receives K = Encrre(AES-key).”
Then client can send all ciphertexts in the form ¢ = AES-encrypt(m).
Server computes Encrre(c), then decrypts within FHE using K.
= Server gets Encrre(m).

*Best realized with specialized symmetric encryption schemes (not AES).

42

