PSL太
Corrs

Lattices

Brice Minaud

email: brice.minaud@ens.fr website: www.di.ens.fr/brice.minaud/init-crypto.html

Initiation à la Cryptologie, ENS/MPRI, 2019-2020

Meta information

Exam: Monday, May 25, 2pm to Wednesday 27, 5pm.
Register here:
https://www.di.ens.fr/david.pointcheval/cours.html
All other info for this course, including past lectures/TAs:
https://www.di.ens.fr/brice.minaud/init-crypto.html
(This time there is no difference with last week.)

Reminder: hard problems in post-quantum world

Post-quantum candidate hard problems:

- Lattices.
- Code-based crypto.
- Isogenies.
- Symmetric crytpo (\rightarrow signatures).

Number Theory

Lattices, codes,... (conjectured)

- Security from worst-case hardness.
- Very expressive/verstatile, much beyond PKE/sig.

Lattices

Lattices

Lattice. A lattice \mathscr{L} is:

- An additive subgroup of \mathbb{R}^{n}.
- Discrete (not dense).

In practice, in crypto, \mathscr{L} often:

- Spans \mathbb{R}^{n}, a.k.a. "full-rank".
- Typically $\subseteq \mathbb{Z}^{n}$.
- Often " q-ary": all $q e_{i}=(0, \ldots, 0, q, 0, \ldots, 0)$'s are in \mathscr{L}. That is, the lattice wraps around mod q. Can be regarded as in \mathbb{Z}_{q}^{n}.

Concretely, \mathscr{L} can be defined by a basis $B \in \mathbb{Z}^{n \times n}$:

$$
\mathscr{L}=B \mathbb{Z}^{n}
$$

In pictures

Basis B.
Basis B'.

Dual lattice

Dual lattice. The dual \mathscr{L}^{\star} of a lattice $\mathscr{L} \subseteq \mathbb{R}^{n}$ is:

$$
\mathscr{L}^{*}=\left\{\mathrm{x} \in \mathbb{R}^{n}: \forall \mathrm{y} \in \mathscr{L}, \mathrm{t} \mathrm{x} y \in \mathbb{Z}\right\}
$$

Properties of the dual:

- It is a lattice.
- It characterizes the lattice $\mathscr{L}: \mathscr{L}^{\star *}=\mathscr{L}$.
- If B is a basis of \mathscr{L}, (tB$)^{-1}$ is a basis of \mathscr{L}^{\star}.

Hermite Normal Form

A lattice can be charaterized by a basis in Hermite Normal Form.
HNF basis is unique and easy to compute from any basis \rightarrow "neutral" description of the lattice.

Hermite Normal Form. A basis B $\in \mathbb{Z}^{n \times n}$ of a (full-rank) lattice is HNF iff:

- It is upper triangular, with > 0 diagonal elements.
- Elements to the right of a diagonal element $m_{i, i}$ are ≥ 0 and $<m_{i, i}$.

Hard problems in lattices

Define the usual ℓ^{2} norm on \mathbb{R}^{n}.
Define $\lambda_{i}(\mathscr{L})$ to be the smallest vector independent from $\lambda_{1}(\mathscr{L}), \ldots, \lambda_{i-1}(\mathscr{L})$.

Shortest Vector Problem (SVP). Given a basis B of a lattice \mathscr{L}, find the smallest non-zero lattice vector. I.e., find $\mathrm{x} \in \mathscr{L}$ s.t. $\|x\|=\lambda_{1}(\mathscr{L})$.

Hard problems in lattices
Shortest Vector Problem $\left(\right.$ SVP $\left._{\gamma}\right)$. Given a basis B of a lattice $\mathscr{L} \subseteq \mathbb{R}^{n}$, find a vector x of norm $\leq \gamma(n) \cdot \lambda_{1}(\mathscr{L})$.

Decisional Shortest Vector Problem $\left(\right.$ GapSVP $\left._{\gamma}\right)$. Given a basis B of a lattice $\mathscr{L} \subseteq \mathbb{R}^{n}$, decide if $\lambda_{1}(\mathscr{L}) \leq 1$ or $\lambda_{1}(\mathscr{L}) \geq \gamma(n)$.

In pictures

Good basis.
Bad basis.

Hard problems in lattices

Bounded Distance Decoding $\left(\mathrm{BDD}_{\gamma}\right)$. Given a basis B of a lattice $\mathscr{L} \subseteq$ \mathbb{R}^{n} and $t \in \mathbb{R}^{n}$, with the promise: $\exists \mathrm{x} \in \mathscr{L},||t-x||<\lambda_{1}(\mathscr{L}) /(2 \gamma(n))$, find x (necessarily unique for $\gamma \geq 1$).

How hard are these problems?

- Deep and well-studied area \rightarrow confidence in hardness.
- No known significant quantum speedup.
- Worst-case to average-case reduction.
- However, not (believed to be) NP-hard.

For typical choice in crypto of $\gamma \geq \in \operatorname{Poly}(n)$ with $\gamma \geq \sqrt{n}$, GapSVP is in NPncoNP.

Crypto from lattices

```
-
    10
            \(\cdots\)
                On :
            oso
```


Recall code-based crypto...

Problem: given a generator matrix G (i.e. a basis of C) and some x such that $\operatorname{dist}(x-c) \leq t$ for some c in C, find c.

- For a random linear code, this is a hard problem!
- Except if you have a trapdoor (the code is secretly a "permutation" of an efficiently decodable code).

Now with lattices...

Problem: given a random lattice in \mathbb{Z}_{q} (given as HNF of a uniform matrix) and some x such that $\operatorname{dist}(x-\mathscr{L}) \leq \lambda_{1}(\mathscr{L}) / 2 \gamma$, find c.

- This is BDD_{r} ! It is a hard problem.
- Except if you have a trapdoor: namely, a good base of the lattice. You can then apply Babai's rounding algorithm.

The McEliece cryptosystem

Robert McEliece, 1978.

Pick a binary t-correcting Goppa code with generator matrix G.

Public key: $G^{\prime}=S \cdot G \cdot P$, where S is a random invertible matrix, and P is a random permutation matrix.

Secret key: S, G, P.

Encrypt: encode a message m into the code C^{\prime} (generated by G^{\prime}), pick a random error vector e of weight t. The ciphertext c is:

$$
c=m+e
$$

Decrypt: given a ciphertext c, decode c using knowledge of the equivalence between C and C^{\prime} (via S, P).

The GGH cryptosystem

Golreich, Goldwasser, Halevi 1997.
Pick a good basis G of some lattice L in \mathbb{Z}_{q}.

Public key: Hermite Normal Form B of G.

Secret key: G.
Encrypt: encode a message m into the lattice L (generated by B), pick a small enough random error vector e. The ciphertext c is:

$$
c=m+e
$$

Decrypt: given a ciphertext c, retrieve closest lattice point m using knowledge of the good basis G (using Babai's rounding algorithm).

The GGH cryptosystem

-Warning: Like RSA or basic McEliece, this is actually a trapdoor permutation. It is not a PKE: not IND-CCA secure (why?).

- Some care is needed regarding how the message is encoded into the lattice.
- In theory: No reduction \rightarrow "heuristic" security.
- In practice: impossibly large parameters.

GGH signatures

Golreich, Goldwasser, Halevi 1997.
Pick a good basis G of some lattice L in \mathbb{Z}_{q}.

Public key: Hermite Normal Form B of G.

Secret key: G.

Sign: encode a message m as a point in \mathbb{Z}_{q}. The signature of m is the closest lattice point x (computed using G).

Verify: check that the signature x is close enough to m.

GGH signatures

- This time, similarities to Niederreiter signatures in codes.
- Again, no reduction \rightarrow "heuristic" security.
- In fact, broken asymptotically and in practice! Nguyen-Regev '06.

- Idea: the value $x-m$ is uniformly distributed in the fundamental parallelipiped $G \cdot[-1 / 2,1 / 2]^{n}$. Yields a learning problem: the Hidden Parallelipiped Problem.

Modern approach, part I

SIS: short integer solution

Short Integer Solution (SIS)

Ajtai '96 (the foundational article of Lattice-based crypto).
Say I have $m>n$ vectors a_{i} in \mathbb{Z}_{q}^{n}.

Problem: find short $x=\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{m}\right)$ in \mathbb{Z}_{q}^{m} such that $\sum x_{i} a_{i}=0$. Here, short means of small norm: $\|x\| \leq \beta$.

- The crucial point is the norm constraint β. Otherwise this is just a linear system.
- Typically, Euclidian norm, with representatives in [-q/2,q/2].
- Solution must exist as long as there are at least q^{n} vectors of norm $\leq \beta / \sqrt{2}$, due to collisions. E.g. $\beta>\sqrt{n \log q}$ and $m \geq n \log q$.

SIS and lattices

Equivalent formulation:

SIS problem. Given a uniform matrix $A \in \mathbb{Z}_{q}^{n \times m}$, find $x \in \mathbb{Z}_{q}^{m}$ with and $\|x\| \leq \beta$ such that $A x=0$.

For A as above, define $\mathscr{L} \perp(A)=\left\{x \in \mathbb{Z}_{q}^{m}: A x=0\right\}$ (in $\left.\mathbb{Z}_{q}\right)$.
This is a (q-ary) lattice!
SIS $=$ finding a short vector in $\mathscr{L} \perp(A)$.

Better! Ajtai '96: Solving SIS (for uniformly random A) implies solving GapSVP $\beta \sqrt{n}$ in dimension n for any lattice!
\rightarrow "Worst-case to average-case" reduction. Note m irrelevant.

(Cryptographic) hash function

Hash function $H:\{0,1\}^{*} \rightarrow\{0,1\}^{n}$.
Preimage resistance: for uniform $y \in\{0,1\}^{n}$, hard to find x such that $\mathrm{H}(x)=y$.

Collision resistance: hard to find $x \neq y \in\{0,1\}^{*}$ such that $H(x)=H(y)$.

Note: collision is ill-defined for a single hash function. (why?)
\rightarrow To formally define hash functions, usually assume they are a family of functions. Parametrized by a "key".
(See also Random Oracle Model.)

(Cryptographic) hash function

In theory, collision-resistance \Rightarrow preimage resistance.
Argument: if the hash function is "compressing" enough, whp the preimage computed by a preimage algorithm, on input $\mathrm{H}(x)$, will be distinct from x. (Because most points will have many preimages.)

In practice, preimage resistance should cost 2^{n}, while collision resistance should cost $2^{n / 2}$. \rightarrow Previous reduction is not so relevant.

Right now we are more in the world of theory, so we'll only care about collision resistance.

Ajtai's hash function

Pick random $A \in \mathbb{Z}_{q}^{n \times m}$. Define:

$$
\begin{aligned}
H_{A}:\{0,1\}^{m} & \rightarrow \mathbb{Z}_{q}^{n} \\
x & \mapsto A x
\end{aligned}
$$

Finding a collision for random A yields a SIS solution with $\beta=\sqrt{m}$.
Indeed, $H_{A}(x)=H_{A}(x)$ yields $A(y-x)=0$ with $y-x \in\{-1,0,1\}^{m}$.

Example: $q=n^{2}, m=2 n \log q$ (compression factor 2), need roughly $n \sim 100, m n \sim 100000 \ldots$

Modern approach, part II

LWE: learning with errors

Learning Parity with Noise (LPN)

Say I have $m>n$ vectors a_{i} in \mathbb{Z}_{2}^{n}.
I am given $a_{i} \cdot s+e_{i}$ (scalar product) for some secret $s, e_{i} \in \mathbb{Z}_{2}$ drawn from Bernoulli distribution $\mathrm{B}(\eta)$ (i.e. $\left.\operatorname{Pr}\left(e_{i}=1\right)=\eta\right)$.

Problem: find s.

Oracle $\mathrm{O}_{\$}$: returns (a, b) for a uniform in \mathbb{Z}_{2}^{n}, b uniform in \mathbb{Z}_{2}.
Oracle O_{s} : returns ($a, a \cdot s+e$) for a uniform in \mathbb{Z}_{2}^{n}, e drawn from $\mathrm{B}(\eta)$.
LPN problem. Let $s \in \mathbb{Z}_{2}^{n}$ be drawn uniformly at random. Given access to either $\mathrm{O}_{\$}$ or O_{s}, distinguish between the two.

LPN problem (bounded samples). Let $A \in \mathbb{Z}_{2}^{m \times n}$ and $b, s \in \mathbb{Z}_{2}^{n}$ be drawn uniformly at random, and $e \in \mathbb{Z}_{2}^{m}$ drawn according to $\mathrm{B}(\eta)$. Distinguish between $(A, A s+e)$, and (A, b).

Learning Parity with Noise (LPN)

- Famous problem in learning theory.
- Trivial without the noise.
- Believed to be very hard, even given unbounded samples. Best algorithm slightly sub-exponential: Blum-Kalai-Wasserman 2003. Complexity roughly $2^{n / \log n}$ in time and \#queries.
- For bounded samples, same as decoding a random linear code.

Secret-key encryption using LPN

Attempt \#1.

Pick a secret s uniformly in \mathbb{Z}_{2}^{n}.
Secret key: s.
Encrypt: to encrypt one bit b : give m samples from $O_{\$}$ if $b=0, m$ samples from O_{s} if $\mathrm{b}=1$.

Decrypt: use s to distinguish the two oracles.

Secret-key encryption using LPN

Attempt \#2.

Pick a secret s uniformly in \mathbb{Z}_{2}^{n}.
Secret key: s.
Encrypt: to encrypt one bit b: give m samples from ($a, a \cdot s+b+e$).

Decrypt: compute $a \cdot s$ to retrieve $b+e$, determine e by majority vote.

Secret-key encryption using LPN

Attempt \#3.

Pick a secret S uniformly in $\mathbb{Z}_{2}^{m \times n}$.
Secret key: S.
Encrypt: to encrypt message m : $(a, S a+C(m)+e)$ where $C(\cdot)$ encodes the message into \mathbb{Z}_{2}^{m} with error correction.

Decrypt: use S to retrieve $C(m)+e$, use error correction to remove e.

Additional tweaks: LPN-C cryptosystem (Gilbert et al. '08).

Learning with Errors (LWE)

Regev '05. Milestone result.
Pick s uniformly in \mathbb{Z}_{q}^{n}.
Oracle $\mathrm{O}_{\$}$: returns (a, b) for a uniform in \mathbb{Z}_{q}^{n}, b uniform in \mathbb{Z}_{q}.
Oracle O_{s} : returns $(a, a \cdot s+e)$ for a uniform in \mathbb{Z}_{q}^{n}, e drawn from χ.
Typically, χ is a discrete Gaussian distribution with std deviation αq.

LWE. Let $s \in \mathbb{Z}_{q}^{n}$ be drawn uniformly at random. Given access to either $\mathrm{O}_{\$}$ or O_{s}, distinguish between the two.

LWE (bounded samples). Let $A \in \mathbb{Z}_{q}^{m \times n}$ and $b, s \in \mathbb{Z}_{q}^{n}$ be drawn uniformly at random, and $e \in \mathbb{Z}_{q}^{m}$ drawn according to χ.

Distinguish between $(A, A s+e)$, and (A, b).

Search and Decision variants

LWE (decisional). Let $s \in \mathbb{Z}_{q}^{n}$ be drawn uniformly at random. Given access to either $\mathrm{O}_{\$}$ or O_{s}, distinguish between the two.

LWE (search). Let $s \in \mathbb{Z}_{q}^{n}$ be drawn uniformly at random. Given access to either O_{s}, find s .

Proposition 1: the two problems are equivalent up to polynomial reductions ("hybrid" technique).

Proposition 2: given an efficient algorithm that solves SIS with parameters n, m, q, β, there is an efficient algorithm that solves LWE with the same parameters, assuming (roughly) $\alpha \beta \ll 1$.

LWE and BDD

LWE (bounded samples). Let $A \in \mathbb{Z}_{q}^{m \times n}$ and $b, s \in \mathbb{Z}_{q}^{n}$ be drawn uniformly at random, and $e \in \mathbb{Z}_{q}^{m}$ drawn according to χ. Distinguish between $(A, A s+e)$, and (A, b).

Proposition 3: LWE reduces to BDD with $\gamma=q^{n / m} / \alpha$.
Consider the lattice $\mathscr{L}=A \mathbb{Z}_{q}^{n}$ generated by A.
The shortest vector is expected to have norm $\left.\lambda_{1}(A) \sim \sqrt{(} m\right) q^{(m-n) / m}$.
The standard deviation of e is $\sqrt{m} \alpha q$.
(In particular we can expect the closest lattice point to $A s+e$ is $A s$.)
Better! Regev '05: Solving LWE (for uniformly random A) implies quantumly solving GapSVP in dimension n for any lattice!
\rightarrow "Worst-case to average-case" reduction. Note m irrelevant.
Classical reduction in $\operatorname{dim} \sqrt{n}$, Peikert '09.

Flexibility of LWE

Many variants of LWE reduce to LWE:

- Binary-LWE: s is in $\{0,1\}^{n}$ (with limited samples).
- Learning with Rounding (LWR): the error is uniform in a small range instead of Gaussian. Amounts to deterministic rounding!
- ...

Can be used for a host of applications:

- Secret-key encryption, PRF.
- PKE, key exchange.
- Identity-based encryption (see Michel's course), FHE.

Secret-key encryption using LWE

Like LPN:

Pick a secret s uniformly in \mathbb{Z}_{q}^{n}.
Secret key: s.
Encrypt: to encrypt one bit b: give $(a, a \cdot s+b\lfloor q / 2\rfloor+e)$.
Decrypt: compute $a \cdot s$ to retrieve $b\lfloor q / 2\rfloor+e$, output $b=1$ iff closer to $\lfloor q / 2\rfloor$ than to 0 .

IND-CPA security sketch: $(a, a \cdot s+e)$ is indistinguishable from uniform, hence so is $(a, a \cdot s+b\lfloor q / 2\rfloor+e)$.

A public sampler for LWE

To make previous scheme public-key, we'd like a public "sampler" for LWE. Should not require knowing the secret s.

Setup:

- Pick a secret s uniformly in \mathbb{Z}_{q}^{n}.
- Publish $m \operatorname{LWE}(q, n, \chi)$ samples for large enough m (value TBD).

That is, publish $(A, A s+e)$ for $m \times n$ matrix A.
Now to get a fresh LWE sample:

- Pick x uniformly in $\{0,1\}^{n}$.
- Publish (${ }^{t} x A,{ }^{t} x(A s+e)$).

With the right parameters, this yields a distribution statistically close to $\operatorname{LWE}\left(q, n, \chi^{\prime}\right)$, where if χ is Gaussian with variance σ^{2}, χ ' is
Gaussian with variance $m \sigma^{2}$.
Argument: Leftover Hash Lemma. Example: $m=2 n \log q$ suffices. Remark: recognize the Ajtai hash function from earlier/subset sum.

Public-key encryption* using LWE

Regev '05: Regev encryption.

Idea: same as secret-key scheme, but with public sampler.

Pick a secret s uniformly in \mathbb{Z}_{q}^{n}, A uniformly in $\mathbb{Z}_{q}^{m \times n}$.
Public key: $(A, b=A s+e)$.

Secret key: s.

Encrypt: to encrypt one bit k : draw x in $\{0,1\}^{m}$, output:

$$
(\mathrm{t} x A, \mathrm{t} x b+k\lfloor q / 2\rfloor) .
$$

Decrypt: upon receipt of ciphertext (c, d), output 0 if $d-c \cdot s$ is closer to 0 than to 【q/2〕, 1 otherwise.

Proof argument. Step 1: public key is indistinguishable from uniform. Step 2: assuming uniform public key, ciphertexts are statistically close to uniform.

Practical (in)efficiency

Example parameters: q prime $\cong n^{2}, m=2 n \log q, \alpha=1 /\left(\sqrt{n} \log ^{2} n\right)$. In practice, e.g. $\mathrm{n} \cong 200$.

Terrible efficiency:

- O(n^{2}) operations for encryption.
- O($n \log n$) ciphertext for 1 bit of plaintext!

Multi-bit Regev encryption

Idea: use multiple secrets.
Pick a secret matrix S uniformly in $\mathbb{Z}_{q}^{\ell \times n}, A$ uniformly in $\mathbb{Z}_{q}^{m \times n}$.
Public key: $(A, B=A S+E)$.
Secret key: S.
Encrypt: to encrypt ℓ bits $k \in\{0,1\}^{\ell}$: draw x in $\{0,1\}^{m}$, output:

$$
\left({ }^{\mathrm{t}} x A, \mathrm{t}_{x} B+\lfloor q / 2\rfloor k\right) .
$$

Decrypt: upon receipt of ciphertext (C, D), output $k \in\{0,1\}^{\ell}$ such that $D-C \cdot S$ is closest to $\lfloor q / 2\rfloor k$.

Proof argument: use multiple-secret LWE.
Ciphertext expansion $(n / \ell+1) \log q$.
Other idea: encode multiple bits per element in \mathbb{Z}_{q}. (use high-order bits.)

Key exchange

Setup: pick public A uniformly in $\mathbb{Z}_{q}^{n \times n}$.

Here, msb = most significant bit.
Both parties get tsAt up to error terms. msb gets rid of error.
Equivalent of DDH: Eve wants to distinguish (A,a,b,k) from (A,\$,\$,\$).
Proof argument: $1^{\text {st }}$ hybrid ($A, \$, b, k$). $2^{\text {nd }}$ hybrid ($A, \$, \$, \$$). Use LWE with secret-error switching on A, then $(A \mid a)$.

Practical aspects

Improving efficiency: compressing A

LWE (decisional). Let $s \in \mathbb{Z}_{q}^{n}$ be drawn uniformly at random.
Distinguish $(a, a \cdot s+e)$ from (a, b) for uniform a, b, and $e \leftarrow \chi$.

To get one "usable" b you need to publish the corresponding a, which is n times larger.

It'd be nice if the matrix A of a's was structured \rightarrow compressible.

Simple idea: cyclic A. (See cyclic codes...)
Amounts to operating in ring $\mathbb{Z}_{q}[X] /\left(X^{n}-1\right) \rightarrow$ Ring-LWE.

Ring-LWE

Let $\mathrm{R}=\mathbb{Z}_{q}[X] / P$ for some polynomial P (think irreducible).

Ring-LWE (decisional). Let $s \in R$ be drawn uniformly at random. Distinguish $(a, a \cdot s+e)$ from (a, b) for uniform $a, b \leftarrow R$, and $e \leftarrow \chi$.

The "usable" part b is now the same size as the uniform part a.

Example: Regev encryption

- ciphertext expansion O(1) instead of O(n).
- with proper choice of ring (e.g. arising from cyclotomic polynomials), a•s can be computed in $n \log n$, not n^{2}, using FFT.

Theoretical concern: reduces to hard ideal lattice problems. Believed to be as hard as general case, beside a few "trivial" properties (e.g. SVP = SIVP, collision on Ajtai hash function).

Concrete security

For factorization or Discrete Log, essentially one family of attacks.
For LWE and other lattice-based schemes, much more difficult:

- lattice reduction algorithms: LLL, BKZ.
- BKW-type algorithms (connection with LPN).
- ISD algorithms (connection with decoding random code).
- For low errors, such as Arora-Ge and Gröbner bases (connection with multivariate system solving).
\rightarrow ongoing NIST standardization process to fix concrete parameters.

