Lattices

Brice Minaud

email: brice.minaud@ens.fr
website: www.di.ens.fr/brice.minaud/init-crypto.html

Initiation a la Cryptologie, ENS/MPRI, 2019-2020

Meta information

Exam: Monday, May 25, 2pm to Wednesday 27, S5pm.
Register here:

https://www.di.ens.fr/david.pointcheval/cours.html

All other info for this course, including past lectures/TAs:

https://www.di.ens.fr/brice.minaud/init-crypto.html

(This time there is no difference with last week.)

https://www.di.ens.fr/david.pointcheval/cours.html
https://www.di.ens.fr/brice.minaud/init-crypto.html

Reminder: hard problems in post-quantum world

Post-quantum candidate hard problems:
* Lattices.
* Code-based crypto.
* |sogenies.

* Symmetric crytpo (— signatures).
* Multivariate crypto.

Lattices are the mainstream candidate. Other PQ
approaches for Public-Key crypto “only” motivated
by PQ. Lattice-based crypto stands on its own:

sor & ~5
RN ey

Lattices, codes,...
» Simplicity (of schemes, not analysis). (conjectured)

» Security from worst-case hardness.

* Very expressive/verstatile, much beyond PKE/sig.

Lattices

® * ® ‘_
—@ ®
® ®
®
®
® ® "
® ®
® ®
® ®
® @
_? @ ? ®

Lattices

Lattice. A lattice & Is:

* An additive subgroup of Rn.

* Discrete (not dense).

In practice, in crypto, & often:

* Spans R, a.k.a. “full-rank”.

* Typically ¢ Zn.
« Often “g-ary”: all ge; = (0,...,0,9,0,...,0)’s are in &Z. That is, the

lattice wraps around mod q. Can be regarded as in Z’;.

Concretely, & can be defined by a basis B € 7™
< =B7"

In pictures

A

Basis B.
Basis B’.

Dual lattice

Dual lattice. The dual &* of a lattice & € Rn is:

L*={xeRn:vyeZ txyel}

Properties of the dual:
* |t Is a lattice.

e |t characterizes the lattice <&: &£** = &.

o |If B is a basis of &, (1B)-! is a basis of <.

Hermite Normal Form

A lattice can be charaterized by a basis in Hermite Normal Form.

HNF basis is unigue and easy to compute from any basis —
“neutral” description of the lattice.

Hermite Normal Form. A basis B € 7 of a (full-rank) lattice is HNF iff:

* [t Is upper triangular, with > 0 diagonal elements.

* Elements to the right of a diagonal element m;; are =0 and < m;;;.

Hard problems in lattices

Define the usual Z% norm on Rn.

Define 4.(Z) to be the smallest vector independent from

(D), ... d (D).

Shortest Vector Problem (SVP). Given a basis B of a lattice &, find the

smallest non-zero lattice vector. L.e., find x e Z s.t. || x|| = 4,(&).
t O
YITTe .
— o
o o
o
o o
© o
o o
© S
o o
. o
o -
? © ? o

Hard problems in lattices

Shortest Vector Problem (SVP,). Given a basis B of a lattice & ¢ Rn,

find a vector x of norm < y(n) - 4{(&).

® ‘ ® ‘_
'S
® ®
®
®
®
i >
®
®
® @
o—
_? @ ? @

Decisional Shortest Vector Problem (GapSVP,). Given a basis B of

a lattice & ¢ R, decide if (<) < 1 or (&) = y(n).

In pictures

A

Good basis.
Bad basis.

Hard problems in lattices

Bounded Distance Decoding (BDD,). Given a basis B of a lattice & ¢

Rr and teRn, with the promise: 3 xe &, ||t — x| | < 1;(&)/(2y(n)),

find x (necessarily unique for y > 1).

o i 4 O ‘_
-9 ®
O O
L O L ‘t O
> - - >
@ >
® O
O O
O O
O O
O -
_? O ? O

12

How hard are these problems?

* Deep and well-studied area — confidence in hardness.
* No known significant quantum speedup.
* Worst-case to average-case reduction.

* However, not (believed to be) NP-hard.

For typical choice in crypto of y > € Poly(n) with y > \/E
GapSVP is in NPncoNP.

|3

Crypto from lattices

Recall code-based crypto...

Problem: given a generator matrix G (i.e. a basis of C) and some x
such that dist(x-c) < t for some c in C, find c.

> For a random linear code, this is a hard problem!

> Except if you have a trapdoor (the code is secretly a
“permutation” of an efficiently decodable code).

|5

Now with lattices...

Problem: given a random lattice in Zq (given as HNF of a uniform
matrix) and some x such that dist(x-%) < A(Z£)/2y, find c.

ced

X _»°

L A(2)(2)

> This is BDD,! It is a hard problem.

» Except if you have a trapdoor: namely, a good base of the lattice.
You can then apply Babal’s rounding algorithm.

16

The McEliece cryptosystem

Robert McEliece, 1978.

Pick a binary t-correcting Goppa code with generator matrix G.

Public key: G' =S - G - P, where S is a random invertible matrix,
and P is a random permutation matrix.

Secret key: S, G, P.

Encrypt: encode a message m into the code C' (generated by G'),
pick a random error vector e of weight t. The ciphertext c is:
c=m+e

Decrypt: given a ciphertext ¢, decode ¢ using knowledge of the
equivalence between C and C' (via S, P).

|7

The GGH cryptosystem

Golreich, Goldwasser, Halevi 1997.

Pick a good basis G of some lattice L in Zs.

Public key: Hermite Normal Form B of G.

Secret key: G.

Encrypt: encode a message m into the lattice L (generated by B),
pick a small enough random error vector e. The ciphertext c is:
c=m+e

Decrypt: given a ciphertext c, retrieve closest lattice point m using
knowledge of the good basis G (using Babai’s rounding algorithm).

|8

The GGH cryptosystem

» Warning: Like RSA or basic McEliece, this is actually a trapdoor
permutation. It is not a PKE: not IND-CCA secure (why?).

» Some care is needed regarding how the message is encoded into
the lattice.

> In theory: No reduction — “heuristic” security.

> In practice: impossibly large parameters.

19

GGH signatures

Golreich, Goldwasser, Halevi 1997.

Pick a good basis G of some lattice L in Zs.

Public key: Hermite Normal Form B of G.

Secret key: G.

Sign: encode a message m as a point in Zq. The signature of m is
the closest lattice point x (computed using G).

Verify: check that the signature x is close enough to m.

20

GGH signatures

> This time, similarities to Niederreiter signatures in codes.
> Again, no reduction — “heuristic” security.

> In fact, broken asymptotically and in practice! Nguyen-Regev ’06.

> |dea: the value x-m is uniformly distributed in the fundamental
parallelipiped G-[-1/2,1/2]7. Yields a learning problem: the Hidden

Parallelipiped Problem.
21

Modern approach, part |

SIS: short integer solution

Short Integer Solution (SIS)

Ajtai ‘96 (the foundational article of Lattice-based crypto).

Say | have m > n vectors a; in Zg.

Problem: find short x = (x1,...,Xm) In Z’Z; such that Z xa. = 0.

Here, short means of small norm: ||x|| < S.

>~ The crucial point is the norm constraint g. Otherwise this is just a
linear system.

> Typically, Euclidian norm, with representatives in [-q/2,q9/2].

> Solution must exist as long as there are at least g vectors of
norm < f$/4/2, due to collisions. E.g. § > ynloggandm > nlogg.

23

SIS and lattices

Equivalent formulation:

SIS problem. Given a uniform matrix A € szm, find x € Z’;’l" with

and | |x]|| < fsuch that Ax = 0.

For A as above, define Z+(A) = {x € Z7 : Ax = 0}(in Zg).

This is a (g-ary) lattice!

SIS = finding a short vector in ZL(A).

Better! Ajtai '96: Solving SIS (for uniformly random A) implies
solving GapSVPsy/» in dimension n for any lattice!

— “Worst-case to average-case” reduction. Note m irrelevant.

24

(Cryptographic) hash function

Hash function H: {0,1}* — {0,1}".

Preimage resistance: for uniform y € {0,1}7, hard to find x
such that H(x) = y.

Collision resistance: hard to find x # y € {0,1}" such that

Hx) = H().

Note: collision is ill-defined for a single hash function. (why?)

— To formally define hash functions, usually assume they are a
family of functions. Parametrized by a “key”.

(See also Random Oracle Model.)

25

(Cryptographic) hash function

In theory, collision-resistance = preimage resistance.

Argument: if the hash function is “compressing” enough,
whp the preimage computed by a preimage algorithm, on
input H(x), will be distinct from x. (Because most points will
have many preimages.)

In practice, preimage resistance should cost 27, while collision
resistance should cost 2772, = Previous reduction is not so
relevant.

Right now we are more in the world of theory, so we’ll only
care about collision resistance.

26

Ajtai’s hash function

Pick random A & Z’;X’””’. Define:
H,:{0,1}" —= Z,

X Ax

Finding a collision for random A yields a SIS solution with g = \/ﬁ
Indeed, Ha(x) = Ha(x) yields A(y-x) = 0 with y-x € {-1,0,1}m,

Example: g = n2, m = 2n log g (compression factor 2), need
roughly n ~ 100, mn ~ 100000...

27

Modern approach, part Il

LWE: learning with errors

Learning Parity with Noise (LPN)

Say | have m > n vectors a; in Z5,.
| am given a;-s + e; (scalar product) for some secret s, e; € Z2 drawn
from Bernoulli distribution B(y) (i.e. Pr(ei = 1) = #).

Problem: find s.

Oracle Os: returns (a,b) for a uniform in Z7, b uniform in Z,.
Oracle Os: returns (a,a-s+e) for a uniform in Z7, e drawn from B(y).

LPN problem (bounded samples). Let A € Z7”" and b,s € Z be
drawn uniformly at random, and ¢ € Z7' drawn according to B().
Distinguish between (A, As + €), and (A, b).

29

Learning Parity with Noise (LPN)

> Famous problem in learning theory.
> Trivial without the noise.

> Believed to be very hard, even given unbounded samples. Best
algorithm slightly sub-exponential: Blum-Kalai-Wasserman 2003.
Complexity roughly 2n/logn in time and #queries.

> For bounded samples, same as decoding a random linear code.

30

Secret-key encryption using LPN

Attempt #1.

Pick a secret s uniformly in Z5.
Secret key: s.

Encrypt: to encrypt one bit b: give m samples from Ogs if b=0, m
samples from Os if b=1.

Decrypt: use s to distinguish the two oracles.

31

Secret-key encryption using LPN

Attempt #2.

Pick a secret s uniformly in Z5.

Secret key: s.

Encrypt: to encrypt one bit b: give m samples from (a,a-s+b+e).

Decrypt: compute a-s to retrieve b+e, determine e by majority vote.

32

Secret-key encryption using LPN

Attempt #3.

Pick a secret S uniformly in Z5™".

Secret key: S.

Encrypt: to encrypt message m: (a,Sa+C(m)+e) where C(-)
encodes the message into Z’;‘ with error correction.

Decrypt: use S to retrieve C(m)+e, use error correction to remove e.

Additional tweaks: LPN-C cryptosystem (Gilbert et al. ’08).

33

Learning with Errors (LWE)

Regev ’05. Milestone result.
Pick s uniformly in Z,.

Oracle Os: returns (a,b) for a uniform in Z7, b uniform in Z .
Oracle Os: returns (a,a-s+e) for a uniform in Z;, e drawn from .

Typically, y is a discrete Gaussian distribution with std deviation ag.

LWE. Let s € Z be drawn uniformly at random. Given access to
either Og or Os, distinguish between the two.

LWE (bounded samples). Let A € Z’;’]"X” and b, s € Z; be drawn

uniformly at random, and e € Z/ drawn according to y.
Distinguish between (A, As + €), and (A, b).

34

Search and Decision variants

LWE (decisional). Let s € Z, be drawn uniformly at random.

Given access to either Og or Os, distinguish between the two.

LWE (search). Let s € Z, be drawn uniformly at random. Given
access to either Og, find s.

Proposition 1: the two problems are equivalent up to polynomial
reductions (“hybrid” technique).

Proposition 2: given an efficient algorithm that solves SIS with
parameters n, m, q, p, there is an efficient algorithm that solves

LWE with the same parameters, assuming (roughly) af « 1.

35

LWE and BDD

LWE (bounded samples). Let A Z’Z;X" and b, s € Z; be drawn
uniformly at random, and e € Z;/ drawn according to y.

Distinguish between (A, As + e), and (A, b).

Proposition 3: LWE reduces to BDD with y = ¢"""/a.

Consider the lattice & = AZZ generated by A.

The shortest vector is expected to have norm A(A) ~ /(m)g" "™

The standard deviation of e is \/ﬁaq.
(In particular we can expect the closest lattice point to As+e is As.)

Better! Regev '05: Solving LWE (for uniformly random A) implies
quantumly solving GapSVP in dimension n for any lattice!

— “Worst-case to average-case” reduction. Note m irrelevant.
Classical reduction in dim \/E Peikert ’09.

36

Flexibility of LWE

Many variants of LWE reduce to LWE:
- Binary-LWE: s is in {0,1}? (with limited samples).

- Learning with Rounding (LWR): the error is uniform in a small
range instead of Gaussian. Amounts to deterministic rounding!

Can be used for a host of applications:
- Secret-key encryption, PRF.
- PKE, key exchange.

- [dentity-based encryption (see Michel’s course), FHE.

37

Secret-key encryption using LWE

Like LPN:

Pick a secret s uniformly in Z,.

Secret key: s.
Encrypt: to encrypt one bit b: give (a,a-s+blqg/2] +e).

Decrypt: compute a-s to retrieve b| g/2 | +e, output b=1 iff closer
to |g/2] than to O.

IND-CPA security sketch: (a,a-s+e) is indistinguishable from
uniform, hence so is (a,a-s+b|q/2] +e).

38

A public sampler for LWE

To make previous scheme public-key, we’d like a public “sampler”
for LWE. Should not require knowing the secret s.

Setup:

- Pick a secret s uniformly in Z.

- Publish m LWE(q,n, y) samples for large enough m (value TBD).
That is, publish (A,As+e) for mxn matrix A.

Now to get a fresh LWE sample:
- Pick x uniformly in {0,1}".
- Publish (XA, tx(As+e)).

With the right parameters, this yields a distribution statistically close
to LWE(qg,n, x’), where if y is Gaussian with variance o2, y' is

Gaussian with variance moa=.

Argument: Leftover Hash Lemma. Example: m = 2n log g suffices.

Remark: recognize the Ajtai hash function from earlier/subset sum.
39

Public-key encryption™ using LWE

Regev '05: Regev encryption.
Idea: same as secret-key scheme, but with public sampler.

Pick a secret s uniformly in Z%, A uniformly in ZZ‘X”.

Public key: (A, b = As + e).
Secret key: s.

Encrypt: to encrypt one bit k: draw x in {0,1}m, output:
(XA,xb + k[g/2]).

Decrypt: upon receipt of ciphertext (c,d), output O if d-c-s is closer
to 0 thanto [g/2], 1 otherwise.

Proof argument. Step 1: public key is indistinguishable from
uniform. Step 2: assuming uniform public key, ciphertexts are
statistically close to uniform.

*malleability — not IND-CCA.

40

Practical (in)efficiency

Example parameters: g prime =n2, m=2nlogqg, a = 1/(\/5 log? n).
In practice, e.g. n=200.

Terrible efficiency:
- O(n?2) operations for encryption.
- O(n log n) ciphertext for 1 bit of plaintext!

4]

Multi-bit Regev encryption

Idea: use multiple secrets.

Pick a secret matrix S uniformly in ng’”‘, A uniformly in Z7>".
Public key: (A, B = AS + E).
Secret key: S.

Encrypt: to encrypt Z bits k € {0,1}¢: draw x in {0,1}m, output:
(XA, XB +1q9/2] k).

Decrypt: upon receipt of ciphertext (C,D), output k € {0,1}¢ such
that D-C-S is closest to | g/2 | k.

Proof argument: use multiple-secret LWE.

Ciphertext expansion (n/¢ + 1) log q.

Other idea: encode multiple bits per element in Zq4. (use high-order bits.)
42

Key exchange

Setup: pick public A uniformly in Z7=".

a=11sA+ e
b=At+ e’

Alic \.| / Bob
ce Eve

Here, msb = most significant bit.

Both parties get tsAt up to error terms. msb gets rid of error.

Equivalent of DDH: Eve wants to distinguish (A,a,b,k) from (A,$,$,9).

Proof argument: 1st hybrid (A,$,b,k). 2nd hybrid (A,$,$,9). Use LWE
with secret-error switching on A, then (Ala).

43

Practical aspects

Improving efficiency: compressing A

LWE (decisional). Let s € Z be drawn uniformly at random.

Distinguish (a,a-s+e) from (a,b) for uniform a, b, and e « y.

To get one “usable” b you need to publish the corresponding a,
which is n times larger.

It’d be nice if the matrix A of a’s was structured = compressible.

Simple idea: cyclic A. (See cyclic codes...)

Amounts to operating inring Z [X]/(X" — 1) = Ring-LWE.

45

Ring-LWE

Let R = Z [X]/P for some polynomial P (think irreducible).

Ring-LWE (decisional). Let s € R be drawn uniformly at random.

Distinguish (a,a-s+e) from (a,b) for uniform a, b— R, and e + .

The “usable” part b is now the same size as the uniform part a.

Example: Regev encryption

- ciphertext expansion O(1) instead of O(n).

- with proper choice of ring (e.g. arising from cyclotomic
polynomials), a-s can be computed in n log n, not n2, using FFT.

Theoretical concern: reduces to hard ideal lattice problems.
Believed to be as hard as general case, beside a few “trivial”
properties (e.g. SVP = SIVP, collision on Ajtai hash function).

46

Concrete security

For factorization or Discrete Log, essentially one family of attacks.

For LWE and other lattice-based schemes, much more difficult:

- lattice reduction algorithms: LLL, BKZ.

- BKW-type algorithms (connection with LPN).

- ISD algorithms (connection with decoding random code).

- For low errors, such as Arora-Ge and Grobner bases (connection
with multivariate system solving).

— ongoing NIST standardization process to fix concrete
parameters.

47

