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Meta information
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Exam: Monday, May 25, 2pm to Wednesday 27, 5pm.


Register here: 

https://www.di.ens.fr/david.pointcheval/cours.html


All other info for this course, including past lectures/TAs:


https://www.di.ens.fr/brice.minaud/init-crypto.html

(This time there is no difference with last week.)

https://www.di.ens.fr/david.pointcheval/cours.html
https://www.di.ens.fr/brice.minaud/init-crypto.html


Reminder: hard problems in post-quantum world
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Number Theory

Lattices, codes,… 
(conjectured)

Post-quantum candidate hard problems:

• Lattices.

•Code-based crypto.

• Isogenies.

• Symmetric crytpo (→ signatures).

•Multivariate crypto.

Lattices are the mainstream candidate. Other PQ 
approaches for Public-Key crypto “only” motivated 
by PQ. Lattice-based crypto stands on its own:


• Simplicity (of schemes, not analysis).


• Security from worst-case hardness.


• Very expressive/verstatile, much beyond PKE/sig.



Lattices



Lattices
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In practice, in crypto, ℒ often:

• Spans ℝn, a.k.a. “full-rank”.

• Typically ⊆ ℤn.

•Often “q-ary”: all qei = (0,…,0,q,0,…,0)’s are in ℒ. That is, the 

lattice wraps around mod q. Can be regarded as in .ℤn
q

Lattice. A lattice ℒ is:

• An additive subgroup of ℝn.

• Discrete (not dense).

Concretely, ℒ can be defined by a basis :


ℒ = 

B ∈ ℤn×n

Bℤn



In pictures
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Basis B.
Basis B’.



Dual lattice
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Properties of the dual:

• It is a lattice.

• It characterizes the lattice ℒ: ℒ** = ℒ.


• If B is a basis of ℒ, (tB)-1 is a basis of ℒ*.

Dual lattice. The dual ℒ* of a lattice ℒ ⊆ ℝn is:


ℒ* = {x ∈ ℝn : ∀ y ∈ ℒ, txy ∈ ℤ}



Hermite Normal Form
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A lattice can be charaterized by a basis in Hermite Normal Form.


 HNF basis is unique and easy to compute from any basis → 
“neutral” description of the lattice.

Hermite Normal Form. A basis B ∈ ℤnxn of a (full-rank) lattice is HNF iff:

• It is upper triangular, with > 0 diagonal elements.

• Elements to the right of a diagonal element mi,i are ≥0 and < mi,i.



Hard problems in lattices
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Shortest Vector Problem (SVP). Given a basis B of a lattice ℒ, find the 
smallest non-zero lattice vector. I.e., find x ∈ ℒ s.t. .| |x | | = λ1(ℒ)

Define the usual  norm on ℝn.

Define  to be the smallest vector independent from 

.

ℓ2

λi(ℒ)
λ1(ℒ), …, λi−1(ℒ)



Hard problems in lattices
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Shortest Vector Problem (SVP𝛾). Given a basis B of a lattice ℒ ⊆ ℝn, 
find a vector x of norm .≤ γ(n) ⋅ λ1(ℒ)

Decisional Shortest Vector Problem (GapSVP𝛾). Given a basis B of 
a lattice ℒ ⊆ ℝn, decide if  or .λ1(ℒ) ≤ 1 λ1(ℒ) ≥ γ(n)



In pictures
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Good basis.
Bad basis.



Hard problems in lattices
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Bounded Distance Decoding (BDD𝛾). Given a basis B of a lattice ℒ ⊆ 
ℝn and t∈ℝn, with the promise: ∃ x∈ ℒ, , 
find x (necessarily unique for ).

| | t − x | | < λ1(ℒ)/(2γ(n))
γ ≥ 1

t
x



How hard are these problems?
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• Deep and well-studied area → confidence in hardness.


•No known significant quantum speedup.


•Worst-case to average-case reduction.


•However, not (believed to be) NP-hard.


For typical choice in crypto of  with , 
GapSVP is in NP∩coNP.

γ ≥ ∈ Poly(n) γ ≥ n



Crypto from lattices



Recall code-based crypto…
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x
≤ t

Problem: given a generator matrix G (i.e. a basis of C) and some x 
such that dist(x-c) ≤ t for some c in C, find c.

‣ For a random linear code, this is a hard problem!


‣ Except if you have a trapdoor (the code is secretly a 
“permutation” of an efficiently decodable code).

c ∈ C c’ ∈ C



Now with lattices…
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x
≤ λ1(ℒ)/(2𝛾)

Problem: given a random lattice in ℤq (given as HNF of a uniform 
matrix) and some x such that dist(x-ℒ) ≤ λ1(ℒ)/2𝛾, find c.

‣ This is BDD𝛾! It is a hard problem.


‣ Except if you have a trapdoor: namely, a good base of the lattice. 
You can then apply Babai’s rounding algorithm.

c ∈ ℒ c’ ∈ ℒ



The McEliece cryptosystem
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Robert McEliece, 1978.

Pick a binary t-correcting Goppa code with generator matrix G.

Public key: G' = S ∙ G ∙ P, where S is a random invertible matrix, 
and P is a random permutation matrix.

Secret key: S, G, P.

Encrypt: encode a message m into the code C' (generated by G'), 
pick a random error vector e of weight t. The ciphertext c is:


c = m + e

Decrypt: given a ciphertext c, decode c using knowledge of the 
equivalence between C and C' (via S, P).



The GGH cryptosystem
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Golreich, Goldwasser, Halevi 1997.

Pick a good basis G of some lattice L in ℤq.

Public key: Hermite Normal Form B of G.

Secret key: G.

Encrypt: encode a message m into the lattice L (generated by B), 
pick a small enough random error vector e. The ciphertext c is:


c = m + e

Decrypt: given a ciphertext c, retrieve closest lattice point m using 
knowledge of the good basis G (using Babai’s rounding algorithm).



The GGH cryptosystem
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‣ Warning: Like RSA or basic McEliece, this is actually a trapdoor 
permutation. It is not a PKE: not IND-CCA secure (why?).


‣ Some care is needed regarding how the message is encoded into 
the lattice.


‣ In theory: No reduction → “heuristic” security.


‣ In practice: impossibly large parameters.



GGH signatures
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Golreich, Goldwasser, Halevi 1997.

Pick a good basis G of some lattice L in ℤq.

Public key: Hermite Normal Form B of G.

Secret key: G.

Sign: encode a message m as a point in ℤq. The signature of m is 
the closest lattice point x (computed using G).

Verify: check that the signature x is close enough to m.



GGH signatures
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‣ This time, similarities to Niederreiter signatures in codes.


‣ Again, no reduction → “heuristic” security.


‣ In fact, broken asymptotically and in practice! Nguyen-Regev ’06.

‣ Idea: the value x-m is uniformly distributed in the fundamental 
parallelipiped G⋅[-1/2,1/2]n. Yields a learning problem: the Hidden 
Parallelipiped Problem.



SIS: short integer solution
Modern approach, part I



Short Integer Solution (SIS)
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Ajtai ’96 (the foundational article of Lattice-based crypto).

Say I have m > n vectors ai in .ℤn
q

Problem: find short x = (x1,…,xm) in  such that .

Here, short means of small norm: ||x|| ≤ 𝛽.

ℤm
q ∑ xiai = 0

‣ The crucial point is the norm constraint 𝛽. Otherwise this is just a 
linear system.


‣ Typically, Euclidian norm, with representatives in [-q/2,q/2].


‣ Solution must exist as long as there are at least qn vectors of 
norm ≤ , due to collisions. E.g.  and .β/ 2 β > n log q m ≥ n log q



SIS and lattices
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Equivalent formulation:

SIS problem. Given a uniform matrix , find  with 
and  such that .

A ∈ ℤn×m
q x ∈ ℤm

q
| |x | | ≤ β Ax = 0

For A as above, define ℒ⊥(A) = (in ℤq).


This is a (q-ary) lattice!


SIS = finding a short vector in ℒ⊥(A).

{x ∈ ℤm
q : Ax = 0}

Better! Ajtai ’96: Solving SIS (for uniformly random A) implies 
solving GapSVP  in dimension n for any lattice!


→ “Worst-case to average-case” reduction. Note m irrelevant.

β n



(Cryptographic) hash function
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Hash function H: {0,1}* → {0,1}n.


Preimage resistance: for uniform y ∈ {0,1}n, hard to find x 
such that H(x) = y.


Collision resistance: hard to find x ≠ y ∈ {0,1}* such that 
H(x) = H(y).

Note: collision is ill-defined for a single hash function. (why?)


→ To formally define hash functions, usually assume they are a 
family of functions. Parametrized by a “key”.


(See also Random Oracle Model.)



(Cryptographic) hash function
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In theory, collision-resistance ⇒ preimage resistance.


Argument: if the hash function is “compressing” enough, 
whp the preimage computed by a preimage algorithm, on 
input H(x), will be distinct from x. (Because most points will 
have many preimages.)

In practice, preimage resistance should cost 2n, while collision 
resistance should cost 2n/2. → Previous reduction is not so 
relevant.

Right now we are more in the world of theory, so we’ll only 
care about collision resistance.



Ajtai’s hash function
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Pick random . Define:
A ∈ ℤn×m
q

HA : {0,1}m → ℤn
q

x ↦ Ax

Finding a collision for random A yields a SIS solution with .


Indeed, HA(x) = HA(x) yields A(y-x) = 0 with y-x ∈ {-1,0,1}m.

β = m

Example: q = n2, m = 2n log q (compression factor 2), need 
roughly n ~ 100, mn ~ 100000…



LWE: learning with errors
Modern approach, part II



Learning Parity with Noise (LPN)
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Say I have m > n vectors ai in .

I am given ai⋅s + ei (scalar product) for some secret s, ei ∈ ℤ2 drawn 
from Bernoulli distribution B(𝜂) (i.e. Pr(ei = 1) = 𝜂).

ℤn
2

Problem: find s.

LPN problem. Let  be drawn uniformly at random. Given 
access to either O$ or Os, distinguish between the two.

s ∈ ℤn
2

Oracle O$: returns (a,b) for a uniform in , b uniform in .

Oracle Os: returns (a,a⋅s+e) for a uniform in , e drawn from B(𝜂).

ℤn
2 ℤ2

ℤn
2

LPN problem (bounded samples). Let  and  be 
drawn uniformly at random, and  drawn according to B(𝜂).


Distinguish between (A, As + e), and (A, b).

A ∈ ℤm×n
2 b, s ∈ ℤn

2
e ∈ ℤm

2



Learning Parity with Noise (LPN)
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‣ Famous problem in learning theory.


‣ Trivial without the noise.


‣ Believed to be very hard, even given unbounded samples. Best 
algorithm slightly sub-exponential: Blum-Kalai-Wasserman 2003. 
Complexity roughly 2n/log n in time and #queries.


‣ For bounded samples, same as decoding a random linear code.



Secret-key encryption using LPN
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Pick a secret s uniformly in .ℤn
2

Secret key: s.

Encrypt: to encrypt one bit b: give m samples from O$ if b=0, m 
samples from Os if b=1.

Decrypt: use s to distinguish the two oracles.

Attempt #1.



Secret-key encryption using LPN
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Pick a secret s uniformly in .ℤn
2

Secret key: s.

Encrypt: to encrypt one bit b: give m samples from (a,a⋅s+b+e).

Decrypt: compute a⋅s to retrieve b+e, determine e by majority vote.

Attempt #2.



Secret-key encryption using LPN
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Pick a secret S uniformly in .ℤm×n
2

Secret key: S.

Encrypt: to encrypt message m: (a,Sa+C(m)+e) where C(⋅) 
encodes the message into  with error correction.ℤm

2

Decrypt: use S to retrieve C(m)+e, use error correction to remove e.

Attempt #3.

Additional tweaks: LPN-C cryptosystem (Gilbert et al. ’08).



Learning with Errors (LWE)
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Regev ’05. Milestone result.

Pick s uniformly in .ℤn
q

Oracle O$: returns (a,b) for a uniform in , b uniform in .

Oracle Os: returns (a,a⋅s+e) for a uniform in , e drawn from 𝝌.

ℤn
q ℤq

ℤn
q

LWE. Let  be drawn uniformly at random. Given access to 
either O$ or Os, distinguish between the two.

s ∈ ℤn
q

LWE (bounded samples). Let  and  be drawn 
uniformly at random, and  drawn according to 𝝌.


Distinguish between (A, As + e), and (A, b).

A ∈ ℤm×n
q b, s ∈ ℤn

q

e ∈ ℤm
q

Typically, 𝝌 is a discrete Gaussian distribution with std deviation 𝛼q.



Search and Decision variants
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LWE (decisional). Let  be drawn uniformly at random. 
Given access to either O$ or Os, distinguish between the two.

s ∈ ℤn
q

LWE (search). Let  be drawn uniformly at random. Given 
access to either Os, find s.

s ∈ ℤn
q

Proposition 1: the two problems are equivalent up to polynomial 
reductions (“hybrid” technique).

Proposition 2: given an efficient algorithm that solves SIS with 
parameters n, m, q, 𝛽, there is an efficient algorithm that solves 
LWE with the same parameters, assuming (roughly) 𝛼𝛽 ≪ 1.



LWE and BDD
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Proposition 3: LWE reduces to BDD with . 

Consider the lattice ℒ =  generated by A.

The shortest vector is expected to have norm λ1(A) ~ .

The standard deviation of e is .

(In particular we can expect the closest lattice point to As+e is As.)

γ = qn/m /α

Aℤn
q

(m)q(m−n)/m

mαq

LWE (bounded samples). Let  and  be drawn 
uniformly at random, and  drawn according to 𝝌.


Distinguish between (A, As + e), and (A, b).

A ∈ ℤm×n
q b, s ∈ ℤn

q

e ∈ ℤm
q

Better! Regev ’05: Solving LWE (for uniformly random A) implies 
quantumly solving GapSVP in dimension n for any lattice!


→ “Worst-case to average-case” reduction. Note m irrelevant.

Classical reduction in dim , Peikert ’09.n



Flexibility of LWE

37

Many variants of LWE reduce to LWE:


- Binary-LWE: s is in {0,1}n (with limited samples).


- Learning with Rounding (LWR): the error is uniform in a small 
range instead of Gaussian. Amounts to deterministic rounding!


- …

Can be used for a host of applications:


- Secret-key encryption, PRF.


- PKE, key exchange.


- Identity-based encryption (see Michel’s course), FHE.


- …



Secret-key encryption using LWE
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Pick a secret s uniformly in .ℤn
q

Secret key: s.

Encrypt: to encrypt one bit b: give (a,a⋅s+b⌊q/2⌋+e).

Like LPN:

Decrypt: compute a⋅s to retrieve b⌊q/2⌋+e, output b=1 iff closer 
to ⌊q/2⌋ than to 0.

IND-CPA security sketch: (a,a⋅s+e) is indistinguishable from 
uniform, hence so is (a,a⋅s+b⌊q/2⌋+e).



A public sampler for LWE
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Setup: 
- Pick a secret s uniformly in .

- Publish m LWE(q,n,𝝌) samples for large enough m (value TBD). 
That is, publish (A,As+e) for m×n matrix A.

ℤn
q

To make previous scheme public-key, we’d like a public “sampler” 
for LWE. Should not require knowing the secret s.

Now to get a fresh LWE sample: 
- Pick x uniformly in {0,1}n.

- Publish (txA, tx(As+e)).

With the right parameters, this yields a distribution statistically close 
to LWE(q,n,𝝌’), where if 𝝌 is Gaussian with variance 𝜎2, 𝝌’ is 
Gaussian with variance m𝜎2.

Argument: Leftover Hash Lemma. Example: m = 2n log q suffices.

Remark: recognize the Ajtai hash function from earlier/subset sum.



Public-key encryption* using LWE
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Pick a secret s uniformly in , A uniformly in .ℤn
q ℤm×n

q

Secret key: s.
Encrypt: to encrypt one bit k: draw x in {0,1}m, output:


(txA,txb + k⌊q/2⌋).

Regev ’05: Regev encryption. 
Idea: same as secret-key scheme, but with public sampler.

Public key: (A, b = As + e).

Decrypt: upon receipt of ciphertext (c,d), output 0 if d-c⋅s is closer 
to 0 than to ⌊q/2⌋, 1 otherwise.

Proof argument. Step 1: public key is indistinguishable from 
uniform. Step 2: assuming uniform public key, ciphertexts are 
statistically close to uniform.

*malleability → not IND-CCA.



Practical (in)efficiency
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Example parameters: q prime ≅n2, m = 2 n log q, .

In practice, e.g. n≅200.

α = 1/( n log2 n)

Terrible efficiency:

- O(n2) operations for encryption.

- O(n log n) ciphertext for 1 bit of plaintext!



Multi-bit Regev encryption
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Pick a secret matrix S uniformly in , A uniformly in .ℤℓ×n
q ℤm×n

q

Secret key: S.

Encrypt: to encrypt 𝓁 bits k ∈ {0,1}𝓁: draw x in {0,1}m, output:

(txA,txB +⌊q/2⌋k).

Idea: use multiple secrets.

Public key: (A, B = AS + E).

Decrypt: upon receipt of ciphertext (C,D), output k ∈ {0,1}𝓁 such 
that D-C⋅S is closest to ⌊q/2⌋k.

Proof argument: use multiple-secret LWE.

Ciphertext expansion (n/𝓁 + 1) log q.

Other idea: encode multiple bits per element in ℤq. (use high-order bits.)



Key exchange
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Setup: pick public A uniformly in .ℤn×n
q

a = tsA + e

b = At + e’

Eve

Pick t, e’ ←𝝌n.Pick s, e ←𝝌n.

Alice Bob

Compute k = msb(tsb) Compute k = msb(at)

Here, msb = most significant bit.

Both parties get tsAt up to error terms. msb gets rid of error.

Equivalent of DDH: Eve wants to distinguish (A,a,b,k) from (A,$,$,$).

Proof argument: 1st hybrid (A,$,b,k). 2nd hybrid (A,$,$,$). Use LWE 
with secret-error switching on A, then (A|a).



Practical aspects



Improving efficiency: compressing A
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LWE (decisional). Let s  be drawn uniformly at random. 
Distinguish (a,a⋅s+e) from (a,b) for uniform a, b, and e ← 𝝌.

∈ ℤn
q

To get one “usable” b you need to publish the corresponding a, 
which is n times larger.

It’d be nice if the matrix A of a’s was structured → compressible.

Simple idea: cyclic A. (See cyclic codes…)

Amounts to operating in ring  → Ring-LWE.ℤq[X]/(Xn − 1)



Ring-LWE
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Ring-LWE (decisional). Let s  be drawn uniformly at random. 
Distinguish (a,a⋅s+e) from (a,b) for uniform a, b← R, and e ← 𝝌.

∈ R

Let R =  for some polynomial P (think irreducible).ℤq[X]/P

The “usable” part b is now the same size as the uniform part a.

Example: Regev encryption 
- ciphertext expansion O(1) instead of O(n).

- with proper choice of ring (e.g. arising from cyclotomic 
polynomials), a⋅s can be computed in n log n, not n2, using FFT.

Theoretical concern: reduces to hard ideal lattice problems. 
Believed to be as hard as general case, beside a few “trivial” 
properties (e.g. SVP = SIVP, collision on Ajtai hash function).



Concrete security
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For factorization or Discrete Log, essentially one family of attacks.

For LWE and other lattice-based schemes, much more difficult:

- lattice reduction algorithms: LLL, BKZ. 
- BKW-type algorithms (connection with LPN).

- ISD algorithms (connection with decoding random code).

- For low errors, such as Arora-Ge and Gröbner bases (connection 
with multivariate system solving).

→ ongoing NIST standardization process to fix concrete 
parameters.


