

Brice Minaud

<u>email:</u> brice.minaud@ens.fr <u>website:</u> www.di.ens.fr/brice.minaud/init-crypto.html

Initiation à la Cryptologie, ENS/MPRI, 2019-2020

Meta information

Exam: Monday, May 25, 2pm to Wednesday 27, 5pm.

Register here:

https://www.di.ens.fr/david.pointcheval/cours.html

All other info for this course, including past lectures/TAs:

https://www.di.ens.fr/brice.minaud/init-crypto.html

(This time there is no difference with last week.)

Reminder: hard problems in post-quantum world

Post-quantum candidate hard problems:

- Lattices.
- Code-based crypto.
- Isogenies.
- Symmetric crytpo (→ signatures).
- Multivariate crypto.

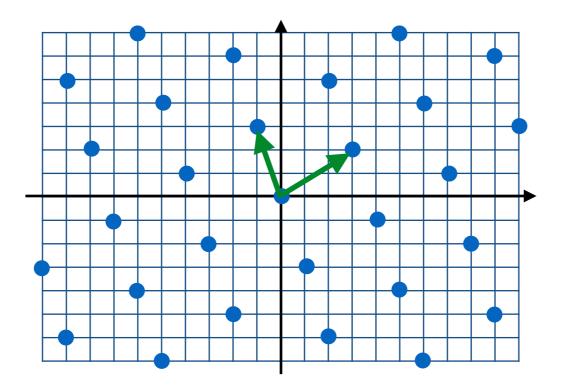
Lattices are the mainstream candidate. Other PQ approaches for Public-Key crypto "only" motivated by PQ. Lattice-based crypto stands on its own:

- Simplicity (of schemes, not analysis).
- Security from worst-case hardness.
- Very expressive/verstatile, much beyond PKE/sig.

Number Theory

Lattices, codes,... (conjectured)

Lattices



Lattices

Lattice. A lattice \mathscr{L} is:

- An additive subgroup of \mathbb{R}^n .
- Discrete (not dense).

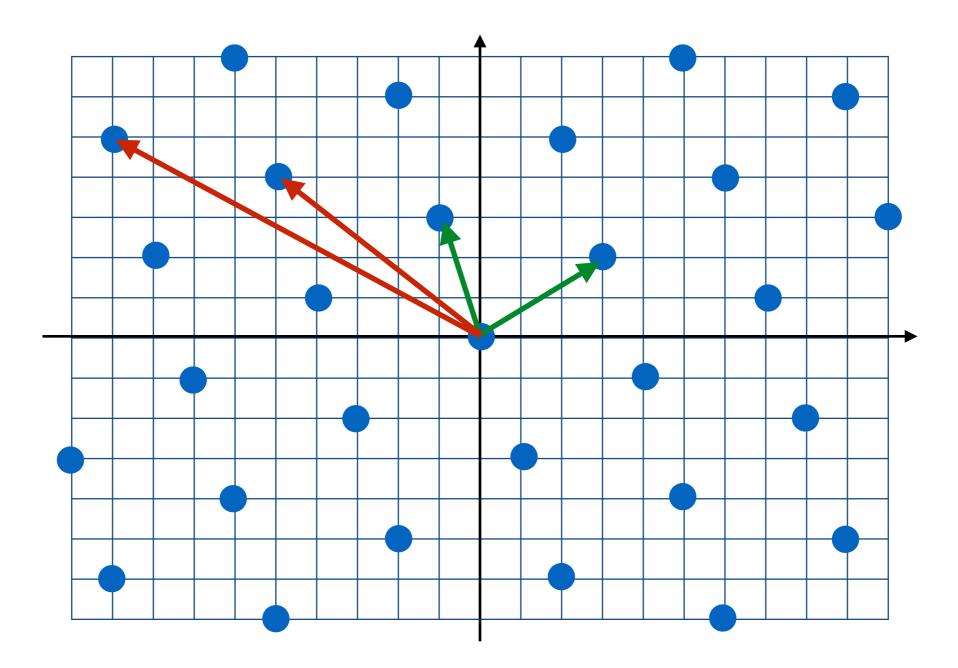
In practice, in crypto, \mathscr{L} often:

- Spans \mathbb{R}^n , a.k.a. "full-rank".
- Typically $\subseteq \mathbb{Z}^n$.
- Often "q-ary": all $qe_i = (0, ..., 0, q, 0, ..., 0)$'s are in \mathscr{L} . That is, the lattice wraps around mod q. Can be regarded as in \mathbb{Z}_q^n .

Concretely, \mathscr{L} can be defined by a basis $B \in \mathbb{Z}^{n \times n}$:

$$\mathscr{L} = B\mathbb{Z}^n$$

In pictures



Basis B. Basis B'.

Dual lattice

Dual lattice. The dual \mathscr{L}^* of a lattice $\mathscr{L} \subseteq \mathbb{R}^n$ is:

$$\mathcal{L}^* = \{ \mathbf{x} \in \mathbb{R}^n : \forall \mathbf{y} \in \mathcal{L}, \, {}^t\mathbf{x}\mathbf{y} \in \mathbb{Z} \}$$

Properties of the dual:

- It is a lattice.
- It characterizes the lattice \mathscr{L} : $\mathscr{L}^{**} = \mathscr{L}$.
- If B is a basis of \mathscr{L} , (^tB)⁻¹ is a basis of \mathscr{L}^* .

Hermite Normal Form

A lattice can be charaterized by a basis in Hermite Normal Form.

HNF basis is unique and easy to compute from any basis \rightarrow "neutral" description of the lattice.

Hermite Normal Form. A basis $B \in \mathbb{Z}^{n \times n}$ of a (full-rank) lattice is HNF iff:

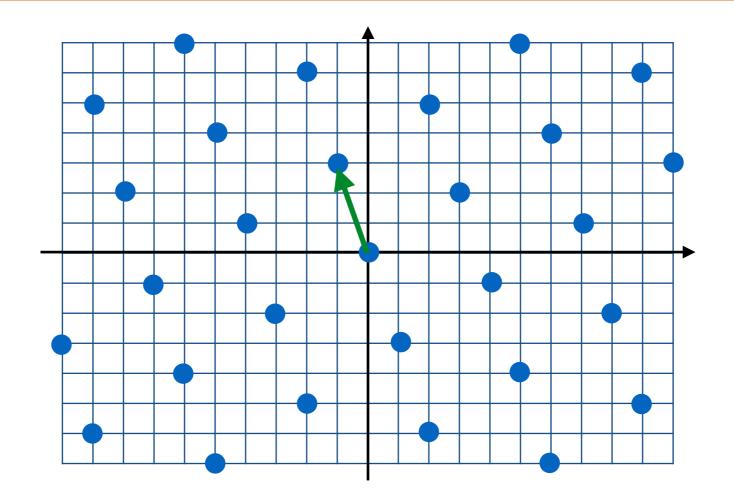
- It is upper triangular, with > 0 diagonal elements.
- Elements to the right of a diagonal element $m_{i,i}$ are ≥ 0 and $< m_{i,i}$.

Hard problems in lattices

Define the usual ℓ^2 norm on \mathbb{R}^n .

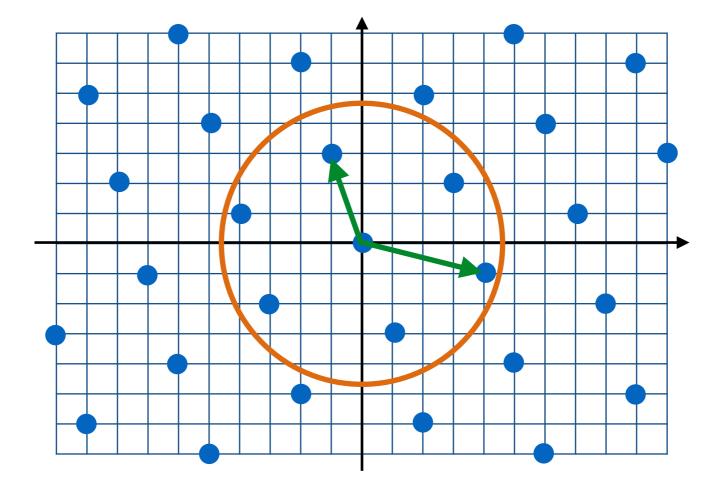
Define $\lambda_i(\mathscr{L})$ to be the smallest vector independent from $\lambda_1(\mathscr{L}), \dots, \lambda_{i-1}(\mathscr{L}).$

Shortest Vector Problem (SVP). Given a basis B of a lattice \mathscr{L} , find the smallest non-zero lattice vector. I.e., find $x \in \mathscr{L}$ s.t. $||x|| = \lambda_1(\mathscr{L})$.



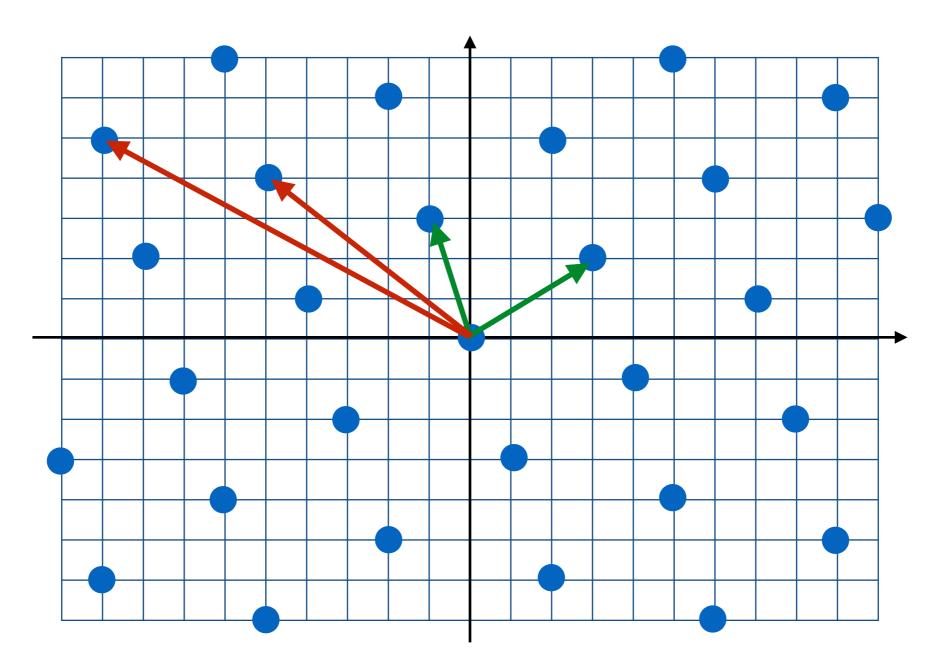
Hard problems in lattices

Shortest Vector Problem (SVP_{γ}). Given a basis B of a lattice $\mathscr{L} \subseteq \mathbb{R}^n$, find a vector x of norm $\leq \gamma(n) \cdot \lambda_1(\mathscr{L})$.



Decisional Shortest Vector Problem (GapSVP). Given a basis B of a lattice $\mathscr{L} \subseteq \mathbb{R}^n$, decide if $\lambda_1(\mathscr{L}) \leq 1$ or $\lambda_1(\mathscr{L}) \geq \gamma(n)$.

In pictures

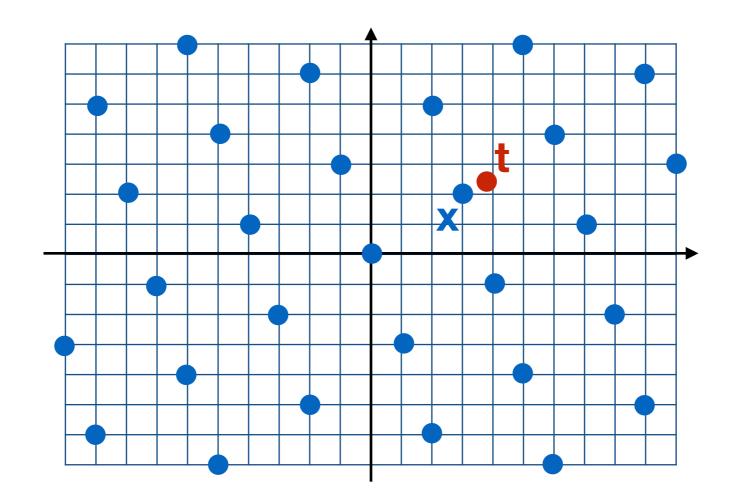


Good basis.

Bad basis.

Hard problems in lattices

Bounded Distance Decoding (BDD_{γ}). Given a basis B of a lattice $\mathscr{L} \subseteq \mathbb{R}^n$ and t $\in \mathbb{R}^n$, with the promise: $\exists x \in \mathscr{L}$, $||t - x|| < \lambda_1(\mathscr{L})/(2\gamma(n))$, find x (necessarily unique for $\gamma \ge 1$).

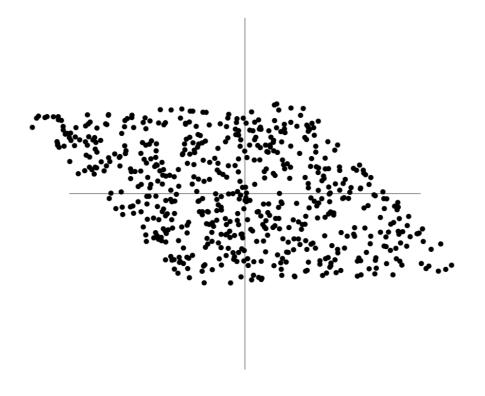


How hard are these problems?

- Deep and well-studied area \rightarrow confidence in hardness.
- No known significant quantum speedup.
- Worst-case to average-case reduction.
- However, not (believed to be) NP-hard.

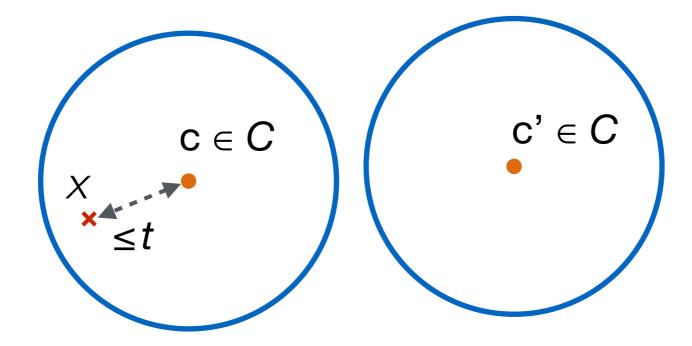
For typical choice in crypto of $\gamma \ge \in \text{Poly}(n)$ with $\gamma \ge \sqrt{n}$, GapSVP is in NPncoNP.

Crypto from lattices



Recall code-based crypto...

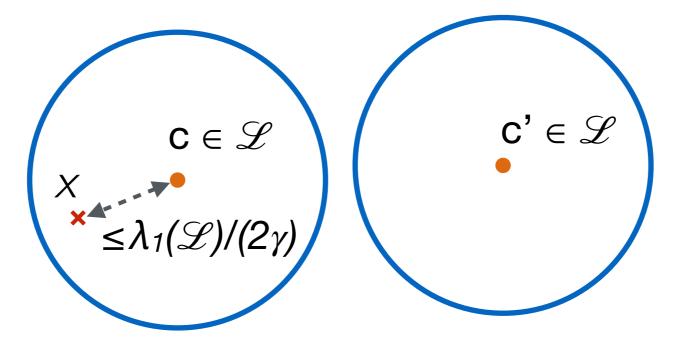
Problem: given a generator matrix G (i.e. a basis of C) and some x such that dist(x-c) $\leq t$ for some c in C, find c.



- For a random linear code, this is a hard problem!
- Except if you have a trapdoor (the code is secretly a "permutation" of an efficiently decodable code).

Now with lattices...

Problem: given a random lattice in \mathbb{Z}_q (given as HNF of a uniform matrix) and some *x* such that dist(*x*- \mathscr{L}) $\leq \lambda_1(\mathscr{L})/2\gamma$, find *c*.



- This is **BDD** $_{\gamma}$! It is a hard problem.
- Except if you have a trapdoor: namely, a good base of the lattice.
 You can then apply Babai's rounding algorithm.

The McEliece cryptosystem

Robert McEliece, 1978.

Pick a binary *t*-correcting Goppa code with generator matrix **G**.

Public key: $G' = S \cdot G \cdot P$, where S is a random invertible matrix, and P is a random permutation matrix.

Secret key: S, G, P.

Encrypt: encode a message *m* into the code *C*' (generated by *G*'), pick a random error vector *e* of weight *t*. The ciphertext *c* is: c = m + e

Decrypt: given a ciphertext c, decode c using knowledge of the equivalence between C and C' (via S, P).

The GGH cryptosystem

Golreich, Goldwasser, Halevi 1997.

Pick a good basis **G** of some lattice **L** in \mathbb{Z}_q .

Public key: Hermite Normal Form *B* of *G*.

Secret key: G.

Encrypt: encode a message *m* into the lattice *L* (generated by *B*), pick a small enough random error vector *e*. The ciphertext *c* is: c = m + e

Decrypt: given a ciphertext c, retrieve closest lattice point m using knowledge of the good basis G (using Babai's rounding algorithm).

The GGH cryptosystem

- Warning: Like RSA or basic McEliece, this is actually a trapdoor permutation. It is not a PKE: not IND-CCA secure (why?).
- Some care is needed regarding how the message is encoded into the lattice.
- In theory: No reduction \rightarrow "heuristic" security.
- In practice: impossibly large parameters.

GGH signatures

Golreich, Goldwasser, Halevi 1997.

Pick a good basis G of some lattice L in \mathbb{Z}_q .

Public key: Hermite Normal Form *B* of *G*.

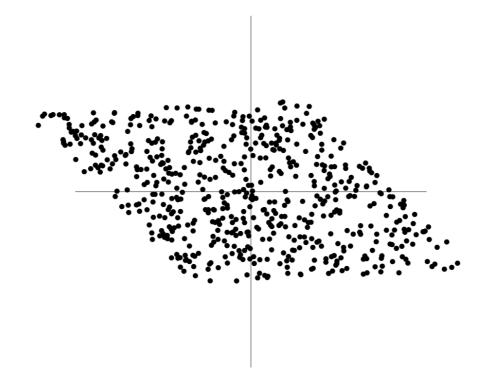
Secret key: G.

Sign: encode a message *m* as a point in \mathbb{Z}_q . The signature of *m* is the closest lattice point *x* (computed using **G**).

Verify: check that the signature x is close enough to m.

GGH signatures

- This time, similarities to Niederreiter signatures in codes.
- Again, **no reduction** \rightarrow "heuristic" security.
- In fact, broken asymptotically and in practice! Nguyen-Regev '06.



 Idea: the value x-m is uniformly distributed in the fundamental parallelipiped G · [-1/2,1/2]ⁿ. Yields a learning problem: the Hidden Parallelipiped Problem. Modern approach, part I SIS: short integer solution

Short Integer Solution (SIS)

Ajtai '96 (the foundational article of Lattice-based crypto).

Say I have m > n vectors a_i in \mathbb{Z}_q^n .

Problem: find **short** $x = (x_1, ..., x_m)$ in \mathbb{Z}_q^m such that $\sum x_i a_i = 0$. Here, **short** means of small norm: $||x|| \le \beta$.

- The crucial point is the norm constraint β . Otherwise this is just a linear system.
- Typically, Euclidian norm, with representatives in [-q/2,q/2].
- Solution must exist as long as there are at least q^n vectors of norm $\leq \beta/\sqrt{2}$, due to collisions. E.g. $\beta > \sqrt{n \log q}$ and $m \geq n \log q$.

SIS and lattices

Equivalent formulation:

SIS problem. Given a uniform matrix $A \in \mathbb{Z}_q^{n \times m}$, find $x \in \mathbb{Z}_q^m$ with and $||x|| \le \beta$ such that Ax = 0.

For A as above, define $\mathscr{L}(A) = \{x \in \mathbb{Z}_q^m : Ax = 0\}$ (in \mathbb{Z}_q).

This is a (q-ary) lattice!

SIS = finding a short vector in $\mathscr{L}(A)$.

Better! Ajtai '96: Solving SIS (for uniformly random *A*) implies solving GapSVP $_{\beta\sqrt{n}}$ in dimension *n* for **any** lattice!

→ "Worst-case to average-case" reduction. Note *m* irrelevant.

(Cryptographic) hash function

Hash function $H: \{0,1\}^* \rightarrow \{0,1\}^n$.

Preimage resistance: for uniform $y \in \{0,1\}^n$, hard to find x such that H(x) = y.

Collision resistance: hard to find $x \neq y \in \{0,1\}^*$ such that H(x) = H(y).

Note: collision is ill-defined for a single hash function. (why?)

→ To formally define hash functions, usually assume they are a family of functions. Parametrized by a "key".

(See also Random Oracle Model.)

(Cryptographic) hash function

In theory, collision-resistance \Rightarrow preimage resistance.

Argument: if the hash function is "compressing" enough, whp the preimage computed by a preimage algorithm, on input H(x), will be distinct from x. (Because most points will have many preimages.)

In practice, preimage resistance should cost 2^n , while collision resistance should cost $2^{n/2}$. \rightarrow Previous reduction is not so relevant.

Right now we are more in the world of theory, so we'll only care about collision resistance.

Ajtai's hash function

Pick random $A \in \mathbb{Z}_q^{n \times m}$. Define: $H_A : \{0,1\}^m \to \mathbb{Z}_q^n$ $x \mapsto Ax$

Finding a collision for random A yields a SIS solution with $\beta = \sqrt{m}$.

Indeed, $H_A(x) = H_A(x)$ yields A(y-x) = 0 with $y-x \in \{-1,0,1\}^m$.

Example: $q = n^2$, $m = 2n \log q$ (compression factor 2), need roughly $n \sim 100$, $mn \sim 100000$...

Modern approach, part II LWE: learning with errors

Learning Parity with Noise (LPN)

Say I have m > n vectors a_i in \mathbb{Z}_2^n . I am given $a_i \cdot s + e_i$ (scalar product) for some secret $s, e_i \in \mathbb{Z}_2$ drawn from Bernoulli distribution B(η) (i.e. Pr($e_i = 1$) = η).

Problem: find s.

Oracle O_{\$}: returns (*a*,*b*) for a uniform in \mathbb{Z}_2^n , *b* uniform in \mathbb{Z}_2 . Oracle O_{\$}: returns (*a*,*a* · **s**+*e*) for a uniform in \mathbb{Z}_2^n , *e* drawn from B(η).

LPN problem. Let $s \in \mathbb{Z}_2^n$ be drawn uniformly at random. Given access to either O_{\$} or O_{\$}, distinguish between the two.

LPN problem (bounded samples). Let $A \in \mathbb{Z}_2^{m \times n}$ and $b, s \in \mathbb{Z}_2^n$ be drawn uniformly at random, and $e \in \mathbb{Z}_2^m$ drawn according to $B(\eta)$. Distinguish between (A, As + e), and (A, b).

Learning Parity with Noise (LPN)

- Famous problem in learning theory.
- Trivial without the noise.
- Believed to be very hard, even given unbounded samples. Best algorithm slightly sub-exponential: Blum-Kalai-Wasserman 2003. Complexity roughly 2^{n/log n} in time and #queries.
- For bounded samples, same as decoding a random linear code.

Secret-key encryption using LPN

Attempt #1.

Pick a secret s uniformly in \mathbb{Z}_2^n .

Secret key: s.

Encrypt: to encrypt one bit *b*: give *m* samples from $O_{\$}$ if b=0, *m* samples from $O_{\$}$ if b=1.

Decrypt: use s to distinguish the two oracles.

Secret-key encryption using LPN

Attempt #2.

Pick a secret s uniformly in \mathbb{Z}_2^n .

Secret key: s.

Encrypt: to encrypt one bit *b*: give *m* samples from $(a, a \cdot s + b + e)$.

Decrypt: compute $a \cdot s$ to retrieve b + e, determine e by majority vote.

Secret-key encryption using LPN

Attempt #3.

Pick a secret S uniformly in $\mathbb{Z}_2^{m \times n}$.

Secret key: S.

Encrypt: to encrypt message *m*: (a, Sa+C(m)+e) where $C(\cdot)$ encodes the message into \mathbb{Z}_2^m with error correction.

Decrypt: use S to retrieve C(m)+e, use error correction to remove e.

Additional tweaks: LPN-C cryptosystem (Gilbert et al. '08).

Learning with Errors (LWE)

Regev '05. Milestone result.

Pick s uniformly in \mathbb{Z}_q^n .

Oracle O_{\$}: returns (*a*,*b*) for a uniform in \mathbb{Z}_q^n , *b* uniform in \mathbb{Z}_q . Oracle O_s: returns (*a*,*a* · **s**+*e*) for a uniform in \mathbb{Z}_q^n , *e* drawn from χ .

Typically, χ is a discrete Gaussian distribution with std deviation αq .

LWE. Let $s \in \mathbb{Z}_q^n$ be drawn uniformly at random. Given access to either O_{\$} or O_{\$}, distinguish between the two.

LWE (bounded samples). Let $A \in \mathbb{Z}_q^{m \times n}$ and $b, s \in \mathbb{Z}_q^n$ be drawn uniformly at random, and $e \in \mathbb{Z}_q^m$ drawn according to χ . Distinguish between (A, As + e), and (A, b).

Search and Decision variants

LWE (decisional). Let $s \in \mathbb{Z}_q^n$ be drawn uniformly at random. Given access to either O_{\$} or O_{\$}, distinguish between the two.

LWE (search). Let $s \in \mathbb{Z}_q^n$ be drawn uniformly at random. Given access to either O_s , find s.

Proposition 1: the two problems are equivalent up to polynomial reductions ("hybrid" technique).

Proposition 2: given an efficient algorithm that solves SIS with parameters *n*, *m*, *q*, β , there is an efficient algorithm that solves LWE with the same parameters, assuming (roughly) $\alpha\beta \ll 1$.

LWE and BDD

LWE (bounded samples). Let $A \in \mathbb{Z}_q^{m \times n}$ and $b, s \in \mathbb{Z}_q^n$ be drawn uniformly at random, and $e \in \mathbb{Z}_q^m$ drawn according to χ . Distinguish between (A, As + e), and (A, b).

Proposition 3: LWE reduces to BDD with $\gamma = q^{n/m}/\alpha$.

Consider the lattice $\mathscr{L} = A\mathbb{Z}_q^n$ generated by *A*. The shortest vector is expected to have norm $\lambda_1(A) \sim \sqrt{(m)q^{(m-n)/m}}$. The standard deviation of *e* is $\sqrt{m\alpha q}$. (In particular we can expect the closest lattice point to *A***s**+*e is A***s**.)

Better! Regev '05: Solving LWE (for uniformly random *A*) implies **quantumly** solving GapSVP in dimension *n* for **any** lattice!

→ "Worst-case to average-case" reduction. Note *m* irrelevant. Classical reduction in dim \sqrt{n} , Peikert '09.

Flexibility of LWE

Many variants of LWE reduce to LWE:

- Binary-LWE: s is in {0,1}ⁿ (with limited samples).
- Learning with Rounding (LWR): the error is uniform in a small range instead of Gaussian. Amounts to deterministic rounding!

- ...

Can be used for a host of applications:

- Secret-key encryption, PRF.
- PKE, key exchange.
- Identity-based encryption (see Michel's course), FHE.

Secret-key encryption using LWE

Like LPN:

Pick a secret s uniformly in \mathbb{Z}_q^n .

Secret key: s.

Encrypt: to encrypt one bit *b*: give $(a, a \cdot s + b \lfloor q/2 \rfloor + e)$.

Decrypt: compute $a \cdot s$ to retrieve $b \lfloor q/2 \rfloor + e$, output b=1 iff closer to $\lfloor q/2 \rfloor$ than to 0.

IND-CPA security sketch: $(a, a \cdot s + e)$ is indistinguishable from uniform, hence so is $(a, a \cdot s + b \lfloor q/2 \rfloor + e)$.

A public sampler for LWE

To make previous scheme public-key, we'd like a public "sampler" for LWE. Should not require knowing the secret s.

Setup:

- Pick a secret s uniformly in \mathbb{Z}_q^n .

- Publish *m* LWE(q,n,χ) samples for large enough *m* (value TBD). That is, publish (A,As+e) for $m \times n$ matrix *A*.

Now to get a fresh LWE sample:

- Pick x uniformly in $\{0,1\}^n$.
- Publish (${}^{t}xA, {}^{t}x(As+e)$).

With the right parameters, this yields a distribution statistically close to LWE(q,n,χ '), where if χ is Gaussian with variance σ^2 , χ ' is Gaussian with variance $m\sigma^2$.

Argument: Leftover Hash Lemma. Example: $m = 2n \log q$ suffices. Remark: recognize the Ajtai hash function from earlier/subset sum.

Public-key encryption* using LWE

Regev '05: Regev encryption.

Idea: same as secret-key scheme, but with public sampler.

Pick a secret s uniformly in \mathbb{Z}_q^n , A uniformly in $\mathbb{Z}_q^{m \times n}$.

```
Public key: (A, b = As + e).
```

Secret key: s.

Encrypt: to encrypt one bit k: draw x in $\{0,1\}^m$, output: $({}^txA, {}^txb + k \lfloor q/2 \rfloor)$.

Decrypt: upon receipt of ciphertext (c,d), output 0 if d-c·s is closer to 0 than to $\lfloor q/2 \rfloor$, 1 otherwise.

Proof argument. Step 1: public key is indistinguishable from uniform. Step 2: assuming uniform public key, ciphertexts are statistically close to uniform.

```
*malleability \rightarrow not IND-CCA.
```

Practical (in)efficiency

Example parameters: q prime $\approx n^2$, $m = 2 n \log q$, $\alpha = 1/(\sqrt{n \log^2 n})$. In practice, e.g. $n \approx 200$.

Terrible efficiency:

- $O(n^2)$ operations for encryption.
- O(n log n) ciphertext for 1 bit of plaintext!

Multi-bit Regev encryption

Idea: use multiple secrets.

Pick a secret **matrix** *S* uniformly in $\mathbb{Z}_q^{\ell \times n}$, *A* uniformly in $\mathbb{Z}_q^{m \times n}$. **Public key**: (*A*, *B* = *AS* + *E*). **Secret key**: *S*. **Encrypt**: to encrypt ℓ bits $k \in \{0,1\}^{\ell}$: draw *x* in $\{0,1\}^m$, output:

 $(^{t}xA, ^{t}xB + [q/2]k).$

Decrypt: upon receipt of ciphertext (*C*,*D*), output $k \in \{0,1\}^{\ell}$ such that $D-C \cdot S$ is closest to $\lfloor q/2 \rfloor k$.

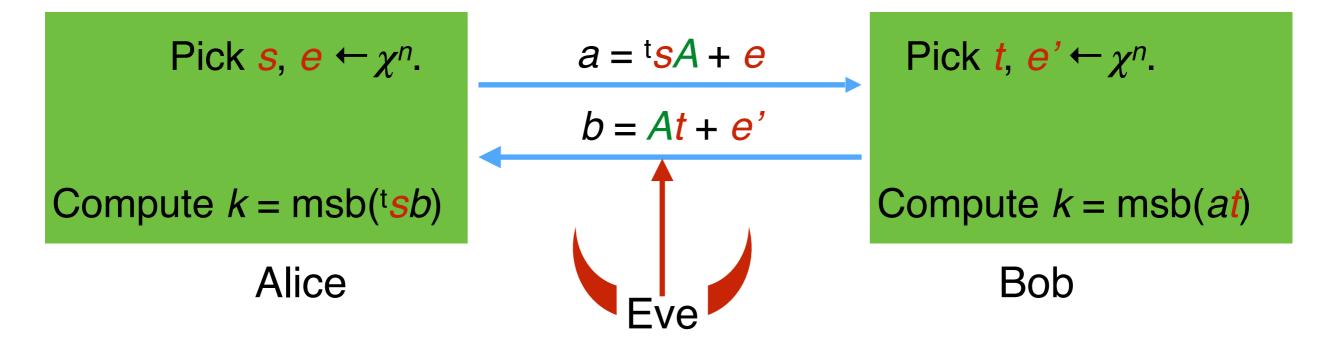
Proof argument: use multiple-secret LWE.

Ciphertext expansion $(n/\ell + 1) \log q$.

Other idea: encode multiple bits per element in \mathbb{Z}_q . (use high-order bits.)

Key exchange

Setup: pick public *A* uniformly in $\mathbb{Z}_q^{n \times n}$.



Here, msb = most significant bit.

Both parties get ^tsAt up to error terms. msb gets rid of error.

Equivalent of DDH: Eve wants to distinguish (*A*,*a*,*b*,*k*) from (*A*,\$,\$,\$).

Proof argument: 1^{st} hybrid (*A*,\$,*b*,*k*). 2^{nd} hybrid (*A*,\$,\$,\$). Use LWE with secret-error switching on *A*, then (*A*|*a*).

Practical aspects

Improving efficiency: compressing A

LWE (decisional). Let $s \in \mathbb{Z}_q^n$ be drawn uniformly at random. Distinguish ($a, a \cdot s + e$) from (a, b) for uniform a, b, and $e \leftarrow \chi$.

To get one "usable" *b* you need to publish the corresponding *a*, which is *n* times larger.

It'd be nice if the matrix A of a's was structured \rightarrow compressible.

Simple idea: cyclic A. (See cyclic codes...)

Amounts to operating in ring $\mathbb{Z}_q[X]/(X^n - 1) \rightarrow \text{Ring-LWE}$.

Ring-LWE

Let $R = \mathbb{Z}_q[X]/P$ for some polynomial *P* (think irreducible).

Ring-LWE (decisional). Let $s \in R$ be drawn uniformly at random. Distinguish ($a,a \cdot s + e$) from (a,b) for uniform $a, b \leftarrow R$, and $e \leftarrow \chi$.

The "usable" part b is now the same size as the uniform part a.

Example: Regev encryption

- ciphertext expansion O(1) instead of O(n).
- with proper choice of ring (e.g. arising from cyclotomic polynomials), $a \cdot s$ can be computed in *n* log *n*, not n^2 , using FFT.

Theoretical concern: reduces to hard *ideal* lattice problems. Believed to be as hard as general case, beside a few "trivial" properties (e.g. SVP = SIVP, collision on Ajtai hash function).

Concrete security

For factorization or Discrete Log, essentially one *family* of attacks.

For LWE and other lattice-based schemes, much more difficult:

- lattice reduction algorithms: LLL, BKZ.
- BKW-type algorithms (connection with LPN).
- ISD algorithms (connection with decoding random code).
- For low errors, such as Arora-Ge and Gröbner bases (connection with multivariate system solving).

→ ongoing NIST standardization process to fix concrete parameters.