Succint Arguments of Knowledge

Brice Minaud

email: brice.minaud@ens.fr website: www.di.ens.fr/brice.minaud/init-crypto.html

Initiation à la Cryptologie, ENS/MPRI, 2019-2020

Meta information

Tentative topics for the remaining lectures:

1. Succint Non-interactive Arguments of Knowledge (today).
2. Post-quantum cryptography.
3. Lattice-based cryptography.
4. Cryptocurrencies.

Exam: Monday, May 25, 2pm to Wednesday 5pm. Register here:
https://www.di.ens.fr/david.pointcheval/cours.html
All other info for this course, including past lectures/TAs:
https://www.di.ens.fr/brice.minaud/init-crypto.html

Zero knowledge: quick reminder

Expressivity

Zero-knowledge (ZK) proofs are very powerful and versatile.
On an intuitive level (for now), statements you may want to prove:

- "I followed the protocol honestly." (but want to hide the secret values involved.) E.g. prove election result is correct, without revealing votes.
- "I know this secret information." (but don't want to reveal it.) For identification purposes.
- "The amount of money going into this transaction is equal to the amount of money coming out." (but want to hide the amount, and how it was divided.)

What do we want to prove?

Want to prove a statement on some x : $\mathrm{P}(\mathrm{x})$ is true.
Exemple: $x=$ list V of encryptions of all votes + election result R $\mathrm{P}(V, R)=$ result R is the majority vote among encrypted votes V.

In general, can regard x as a bit string.
Equivalently: want to prove $x \in \mathscr{L}$. (set $\mathscr{L}=\{y: \mathrm{P}(y)\}$.)

What is a proof?

For a language \mathscr{L} :
Prover $P \quad$ Verifier V

Expected properties of proof system:
accept/reject

- Completeness. If $x \in \mathscr{L}$, then \exists proof $\pi, V(\pi)=$ accept.
- Soundness. If $x \notin \mathscr{L}$, then \forall proof $\pi, V(\pi)=$ reject.
- Efficiency. V is PPT (Probabilistic Polynomial Time).

Without the last condition, definition is vacuous (prover is useless).

Interactive proof

An Interactive Proof (P, V) for \mathscr{L} must satisfy:
\bullet (Perfect) Completeness. If $x \in \mathscr{L}$, then $P \leftrightarrow V$ accepts.
\bullet (Statistical) Soundness. If $x \notin \mathscr{L}$, then \forall prover $P^{*}, \operatorname{Pr}\left[P^{*} \leftrightarrow V\right.$ rejects $]=$ non-negl(|x|). (i.e. $\geq 1 / p(|x|)$ for some fixed polynomial p.)

- Efficiency. V is PPT.

Caveat: prover is unbounded.

Example : graph isomorphism

- I know an isomorphism σ between two graphs $\mathrm{G}_{0}, \mathrm{G}_{1}: \sigma\left(\mathrm{G}_{0}\right)=\mathrm{G}_{1}$.
- I want to prove $\mathrm{G}_{0} \sim \mathrm{G}_{1}$ without revealing anything about the isomorphism.
Formally: $\mathscr{L}=\left\{\left(G, G^{\prime}\right): G \sim G^{\prime}\right\}$, want to prove $\left(\mathrm{G}_{0}, \mathrm{G}_{1}\right) \in \mathscr{L}$.

Prover $P \quad$ Verifier V
$\theta \leftarrow$ random isom. on G_{0}

$$
H=\theta\left(G_{0}\right)
$$

b

$$
\rho=\theta \circ \sigma^{b}
$$

Bounded prover who knows a witness. Public coin. Perfect ZK.

Zero knowledge

Intuitively: Verifier learns nothing from π other than $x \in \mathscr{L}$.
...this is impossible for previous notion of proof.
(only possible languages are those in BPP, i.e. when the proof is useless...)
\rightarrow going to generalize/relax notion of proofs in a few ways:

- Interactive proof, probabilistic prover, imperfect (statistical) soundness...

Summary

A ZK proof is (perfectly/statistically/computationally): 1.Complete.
2.Sound.
3.Zero-knowledge.

Types of zero knowledge proofs

Strength of the goal:

- Proof of knowledge: the prover proves that they know a witness w such that $R(\mathrm{x}, \mathbf{w})$, where $\mathscr{L}=\{\mathrm{x}: \exists \mathrm{w}, \mathrm{R}(\mathrm{x}, \mathrm{w})\}$.
- Proof of membership: the prover proves $\mathrm{x} \in \mathscr{L}$.

Strength of the soundness guarantee:

- Proof of knowledge: unbounded prover cannot cheat.
- Argument of knowledge: efficient prover cannot cheat.

Strength of the zero-knowledge guarantee:
Let ρ be the distribution of real transcripts, σ simulated transcript.

- Perfect ZK: $\rho=\sigma$.
- Statistical ZK: advantage of any (unbounded) adversary trying to distinguish ρ from σ is negligible is negligible.
- Computational ZK: advantage of efficient adversary is negligible.

Soundness of a knowledge proof

Knowledge soundness.

\exists efficient extractor E that, given access to P and x, can compute w such that $\mathrm{R}(x, w)$ (with non-negligible probability, and for any P that convinces V with non-negligible probability).

Honest-verifier zero-knowledge

ZK proofs for arbitrary circuits

Reductions

Suppose there exists an efficient (polynomial) reduction from \mathscr{L}^{\prime} to \mathscr{L} : \exists efficient f such that $x \in \mathscr{L}$ ' iff $f(x) \in \mathscr{L}$. (Karp reduction.)

If I can do ZK proofs for \mathscr{L}, I can do ZK proofs for \mathscr{L}^{\prime} !
To prove $x \in \mathscr{L}^{\prime}$, do a ZK proof of $f(x) \in \mathscr{L}$.
Also works for knowledge proofs (via everything being constructive).
\Rightarrow The dream: if we can do ZK proof for an NP-complete language, we can prove everything we ever want!

Notably circuit-SAT.

Commitment scheme

A commitment scheme is a family of functions $C: X \times A \rightarrow V$ s.t.:

- Binding: it is hard to find $x \neq x^{\prime}$ and a, a^{\prime} s.t. $C(x, a)=C\left(x^{\prime}, a^{\prime}\right)$.
\bullet Hiding: for all x, x^{\prime}, the distributions $C(x, a)$ for $a \leftarrow_{\$} A$ and $C\left(x^{\prime}, a\right)$ for $a \leftarrow_{\$} A$ are indistinguishable.

Instantiation: pick a hash function.

The dream: ZK proof for 3-coloring

- I know an 3-coloring c of a graph G (into \mathbb{Z}_{3}).
- I want to prove that such a coloring exists, without revealing anything about the coloring.
Formally: $\mathscr{L}=\{(\mathrm{G})$: G admits a 3-coloring $\}$
Prover P
$\theta \leftarrow \$$ permutation on \mathbb{Z}_{3}.
commit on θ oc for each vertex.
open commit on
$\theta \circ c(v), \theta \circ c(w)$
$(\theta \circ \mathrm{c}(\mathrm{v}) \neq \theta \circ \mathrm{c}(\mathrm{w})$
and $\left.\theta \circ \mathrm{c}(\mathrm{v}) \in \mathbb{Z}_{3}\right)$

Verifier V

Bounded prover with a witness. Public coin. Computational ZK.

The wake-up

...this is incredibly inefficient.

- transform circuit-SAT instance into 3-coloring instance.
- run previous protocol many times (roughly \#circuit size \times security parameter) \rightarrow gigantic proofs, verification times...

SNARKs

SNARK(?) tile by William Morris.

Finite Fields

Most of what follows is going to happen in a finite field.
For a short presentation of finite fields, see:
https://www.di.ens.fr/brice.minaud/cours/ff.pdf

A key idea we will use:
If $P \neq Q$ are two degree- d polynomials over \mathbb{F}_{q}, then for $\alpha \leftarrow \mathbb{F}_{q}$ drawn uniformly at random, $\operatorname{Pr}[P(\alpha) \neq Q(\alpha)] \geq 1-d / q$.

Proof: $P-Q$ is a non-zero polynomial of degree at most d, so it can be zero on at most d points.
\rightarrow to check if two bounded-degree polynomials are equal, it is enough to check at a random point!

A toy example

Véronique wants to compute the $1000^{\text {th }}$ Fibonacci number in \mathbb{Z}_{p}.
She doesn't have time, so she asks Prosper to to it. But she wants a proof that the computation was correct.
"Solution": agree on whole computation circuit \rightarrow encode as SAT problem \rightarrow transform into 3 -coloring problem \rightarrow include NIZK proof of that 3 -coloring problem with the result.

Remark: size of proof is linear in the size of the circuit Véronique doesn't want to compute.
(P \& V hate closed formulas and fast exponentiation.)

SNARK

We would like to achieve zero-knowledge proofs that are succint and non-interactive.

Succint Non-interactive Argument of Knowledge: SNARK.

Also a fantastical beast by Lewis Caroll:

A new approach

Prosper computes the Fibonacci sequence f_{1}, \ldots, f_{1000} in \mathbb{Z}_{p}. He sends f_{1}, f_{2}, and f_{1000} to Véronique.

Now V . wants to check $f_{i+2}=f_{i}+f_{i+1}$ for all i's.

Magic claim: she will be able to check that this computation was correct, for all i, with 99% certainty, by asking Prosper for only 4 values in \mathbb{Z}_{p}.

Disclaimers:

- we assume Prosper answers queries honestly (for now).
- from now on, assume $\left|\mathbb{Z}_{p}\right|$ is "large enough", say $\left|\mathbb{Z}_{p}\right|>100000$.
(Otherwise, just go to a field extension.)

A new approach

Setup: Prosper interpolates a degree-1000 polynomial P in \mathbb{Z}_{p} such that $P(i)=f_{i}$ for $i=1, \ldots, 1000$.

Let $D=(X-1) \cdot(X-2) \cdot \ldots \cdot(X-998)$.

$$
P(i+2)-P(i+1)-P(i)=0 \text { for } i=1, \ldots, 998
$$

$$
\Rightarrow D \text { divides } P(X+2)-P(X+1)-P(X)
$$

$$
\Rightarrow P(X+2)-P(X+1)-P(X)=D \cdot H \text { for some } H \text { of degree } 2
$$

How Véronique checks that the computation was correct:

- Véronique draws $\alpha \leftarrow \mathbb{Z}_{p}$ uniformly, computes $D(\alpha)$.
- She asks Prosper for $P(\alpha), P(\alpha+1), P(\alpha+2), H(\alpha)$.
- She accepts computation was correct iff:

$$
P(\alpha+2)-P(\alpha+1)-P(\alpha)=D(\alpha) \cdot H(\alpha)
$$

Why the approach works

Completeness: if Prosper computed the f_{i} 's correctly, then he can compute $H(\alpha)$ as required.

Soundness: if Prosper computed the f_{i} 's incorrectly, then no matter what degree-two polynomial H Prosper computes:

$$
\operatorname{Pr}[P(\alpha+2)-P(\alpha+1)-P(\alpha)=D(\alpha) \cdot H(\alpha)] \leq 1000 / p<0.01
$$

so Véronique will detect the issue with $>99 \%$ probability.

It remains to force Prosper to answer queries honestly.
In particular, soundness argument crucially relies on P, H being bounded-degree polys.
\rightarrow need to limit Prosper to computing polys of degree <1000.
\rightarrow A new ingredient: pairings.

Pairings

Pairings. Let $\mathbb{G}=<g>, \mathbb{T}=<t>$ be two cyclic groups of order p. A map $e: \mathbb{G} \times \mathbb{G} \rightarrow \mathbb{T}$ is a pairing iff for all a, b in \mathbb{Z}_{p},

$$
e\left(g^{a}, g^{b}\right)=t^{a b}
$$

Remarks:

- Definition doesn't depend on choice of generators, as long as $t=e(g, g)$.
- Assume Discrete Log is hard in \mathbb{G}, otherwise this is useless. On the other hand, e implies DDH cannot be hard (why?).
- First two groups need not be equal in general.
- Can be realized with \mathbb{G} an elliptic curve, $\mathbb{T}=\mathbb{F}_{q}{ }^{*}$.

Encodings

Fix $\mathbb{G}=\langle g>$ of order p.
Encode a value $a \in \mathbb{Z}_{p}$ as g^{a}. We will write $[a]=g^{a}$.
We assume DL is hard \rightarrow decoding a random value is hard. But encoding is deterministic \rightarrow checking if $h \in \mathbb{G}$ encodes a given value is easy.

Additive homomorphism: given encodings $[a],[b]$ of a and b, can compute encoding of $a+b:[a+b]=[a][b]$.
\rightarrow can compute \mathbb{Z}_{p}-linear functions over encodings.

Idea: a pairing e : $\langle g\rangle \times\langle g\rangle \rightarrow\langle t\rangle$ allows computing quadratic functions over encodings (at the cost of moving to \mathbb{T}).

Keeping Prosper honest, using encodings

First: want to ensure P computed by Prosper is degree ≤ 1000.

Approach:

- Véronique draws evaluation point $\alpha \leftarrow \mathbb{Z}_{p}$ uniformly at random.
- V. publishes encodings [$\alpha],\left[\alpha^{2}\right], \ldots,\left[\alpha^{1000}\right]$.
\rightarrow Prosper can compute $[P(\alpha)]$, because it is a linear combination of the $\left.[\alpha]^{i}\right]$'s, $i \leq 1000$. But only for $\operatorname{deg}(P) \leq 1000$.
E.g. cannot compute [$\alpha^{1001]}$.

Prosper can compute in the same way $[P(\alpha)],[P(\alpha+1)],[P(\alpha+2)],[H(\alpha)]$.
Remark: Prosper can compute $\left[(\alpha+1)^{i}\right]$ from the $[\alpha j$'s for $j \leq i$.

Remaining issues:

1) ensure value " $[P(\alpha)]$ "returned by Prosper is in fact a linear combination of $\left[\alpha^{i}\right]$'s.
2) ensure $\operatorname{deg}(H) \leq 2$, not 1000 .
3) ensure $[P(\alpha)],[P(\alpha+1)],[P(\alpha+2)]$ are from same polynomial.
4) last issue: how does Véronique check the result? Cannot decode encodings.

Dealing with issues (1) and (2)

Goal

1) ensure $[P(\alpha)]$ is in fact a linear combination of $\left[\alpha^{i}\right]^{\prime}$ s.
2) ensure $\operatorname{deg}(H) \leq 2$, not 1000 .

Solution:

V. publishes encodings $[\alpha],\left[\alpha^{2}\right], \ldots,\left[\alpha^{1000}\right] . .$.
...and also encodings [$\gamma],[\gamma \alpha],\left[\gamma \alpha^{2}\right], \ldots,\left[\gamma \alpha^{1000}\right]$ for a uniform γ.
\rightarrow Prosper can compute $[P(\alpha)]$, and $[\gamma P(\alpha)]$, and send them to V .
V. can now use the pairing e to check: $e([P(\alpha)],[\gamma])=e([\gamma P(\alpha)],[1])$.

The point: if Prosper did not compute $[P(\alpha)]$ as linear combination of $[\alpha]$'s, he cannot compute $[\gamma P(\alpha)]$. (Note this is quadratic.)

This is an ad-hoc knowledge assumption (true in a generic model).

Goal

1) ensure $[P(\alpha)]$ is in fact a linear combination of $\left[\alpha^{i}\right]$'s.
2) ensure $\operatorname{deg}(H) \leq 2$, not 1000 .

Solution:

V. publishes encodings [α], $\left[\alpha^{2}\right], \ldots,\left[\alpha^{1000}\right] \ldots$
...and also encodings $[\eta],[\eta \alpha],\left[\eta \alpha^{2}\right]$ for a uniform η.
\rightarrow Prosper can compute $[H(\alpha)]$, and $[\eta H(\alpha)]$.
V. can check: $e([H(\alpha)],[\eta])=e([\eta H(\alpha)],[1])$.

The point: if Prosper did not compute $[H(\alpha)]$ as linear combination of $[\alpha \mathrm{i}]$'s, $\mathrm{i} \leq 2$, he cannot compute $[\eta H(\alpha)]$.

Dealing with issue (3)

Goal

3) ensure $[P(\alpha)],[P(\alpha+1)],[P(\alpha+2)]$ are from same polynomial.

Solution:

Let's deal with $[P(\alpha)],[P(\alpha+1)]$.
V. publishes $[\theta],\left[\theta\left((\alpha+1)^{2}-\alpha^{2}\right)\right], \ldots,\left[\theta\left((\alpha+1)^{1000}-\alpha^{1000}\right)\right]$ for a uniform θ.
\rightarrow Prosper can compute $[\theta(P(\alpha+1)-P(\alpha))]$.
V. can check: $e([\theta(P(\alpha+1)-P(\alpha))],[1])=e([P(\alpha+1)-P(\alpha)],[\theta])$.

The point: if Prosper did not compute $[P(\alpha)],[P(\alpha+1)]$ with same coefficients, he cannot compute $[\theta(P(\alpha+1)-P(\alpha))]$.

Checking divisibility

Summary of 3 previous slides: we have forced Prosper to compute $[P(\alpha)],[H(\alpha)], \ldots$ as polys of right degree.

Remains to check $P(\alpha+2)-P(\alpha+1)-P(\alpha)=D(\alpha) \cdot H(\alpha)$, using the encodings.

No problem. this is a quadratic equation. Check:

$$
e([P(\alpha+2)-P(\alpha+1)-P(\alpha)],[1])=e([D(\alpha)],[H(\alpha)])
$$

Conclusion. Since $P(\alpha), H(\alpha)$ etc are polys of right degree, original argument applies: checking equality at random α ensures with
$\geq 1-1000 /\left|\mathbb{Z}_{p}\right|>99 \%$ probability the equality is true on the whole polys $\rightarrow D$ divides $P(\alpha+2)-P(\alpha+1)-P(\alpha) \rightarrow$ computation was correct.

Efficiency

Prosper proves correct computation by providing a constant
number of encodings: $[P(\alpha)],[\gamma P(\alpha)],[H(\alpha)],[\eta H(\alpha)]$ etc.
\#encodings is absolute constant, independent of circuit size.

Pre-processing by Véronique was still linear in circuit size: publishes [α^{i}], $i \leq 1000$, etc. But...

- Can be amortized over many circuits.
- Exist "fully succint" SNARKs, with O(log(circ. size)) verifier preprocessing.

Working with circuits directly

In essence: we have seen how to do a succint proof of polynomial divisibility.

Can in principle encode valid machine state transitions as polynomial constraints \rightarrow succint proofs for circuit-SAT.

Now: want to do that more concretely $=$ get SNARKs for circuitSAT (directly).

We are going to encode a circuit as polynomials.

For simplicity, forget about negations. Write circuit with $\oplus(X O R), ~ \bigotimes(A N D)$ gates. Then:

1) Associate an integer ito each input; and to each output of a mult gate \otimes.
2) Associate an element $r_{i} \in \mathbb{F}_{q}$ to mult gate i.

Now circuit can be encoded as polys. For each i $=1, \ldots, 6$, define polynomials $\mathbf{v}_{\mathbf{i}}, \mathbf{w}_{\mathbf{i}}, \mathbf{y}_{\mathbf{i}}$:

- $\mathbf{v}_{\mathrm{i}}\left(\mathrm{r}_{\mathrm{j}}\right)=1$ if value i is left input to gate $\mathrm{j}, 0$ if not.
- $\mathbf{w}_{\mathbf{i}}\left(r_{\mathrm{j}}\right)=1$ if value i is right input to gate $\mathrm{j}, 0$ if not.
- $y_{i}\left(r_{\mathrm{j}}\right)=1$ if value i is output of gate $\mathrm{j}, 0$ if not.

Exemple.

In this case, $\mathbf{v}_{\mathbf{i}}, \mathbf{w}_{\mathbf{i}}, \mathbf{y}_{\mathbf{i}}$ are degree 2.
Encoding mult gate 5 :

- $\mathbf{v}_{3}\left(r_{5}\right)=1, \mathbf{v}_{\mathbf{i}}\left(r_{5}\right)=0$ otherwise.
- $\mathbf{w}_{4}\left(r_{5}\right)=1, w_{i}\left(r_{5}\right)=0$ otherwise.
- $\mathbf{y}_{5}\left(r_{5}\right)=1, \mathbf{y}_{i}\left(r_{5}\right)=0$ otherwise.

Encoding mult gate 6:

- $\mathbf{v}_{1}\left(r_{6}\right)=\mathbf{v}_{2}\left(r_{6}\right)=1, \mathbf{v}_{\mathbf{i}}\left(r_{6}\right)=0$ otherwise.
- $\mathbf{w}_{5}\left(r_{6}\right)=1, w_{i}\left(r_{6}\right)=0$ otherwise.
${ }^{-} \mathbf{y}_{6}\left(r_{6}\right)=1, \mathbf{y}_{i}\left(r_{6}\right)=0$ otherwise.

The point: an assignment of variables c_{1}, \ldots, c_{6} satisfies the circuit iff:

$$
\left(\Sigma c_{i} v_{i}\left(r_{5}\right)\right) \cdot\left(\Sigma c_{i} \mathbf{w}_{i}\left(r_{5}\right)\right)=\Sigma c_{i} \mathbf{y}_{i}\left(r_{5}\right) \quad \text { and } \quad\left(\Sigma c_{i} \mathbf{v}_{i}\left(r_{6}\right)\right) \cdot\left(\Sigma c_{i} \mathbf{w}_{i}\left(r_{6}\right)\right)=\Sigma c_{i} \mathbf{y}_{i}\left(r_{6}\right)
$$

Equivalently:

$$
\left(X-r_{5}\right)\left(X-r_{6}\right) \text { divides }\left(\Sigma c_{i} \mathbf{v}_{i}\right) \cdot\left(\Sigma c_{i} \mathbf{w}_{i}\right)-\Sigma c_{i} \mathbf{y}_{i}
$$

\rightarrow we have reduced:
"Prosper wants to prove he knows inputs satisfying a circuit." into:
"Prosper wants to prove he knows linear combinations $V=\Sigma c_{i} \boldsymbol{v}_{i}, W$
$=\Sigma c_{i} \boldsymbol{w}_{i}, Y=\boldsymbol{\Sigma} c_{i} \boldsymbol{y}_{i}$, such that $T=\left(X-r_{5}\right)\left(X-r_{6}\right)$ divides $V W-Y$."

$$
\Leftrightarrow \exists H, \quad T \cdot H=V \cdot W-Y
$$

We know how to do that!

(1. quadratic!
2. polynomial equality!
V. publishes $\left[\alpha^{i}\right]$, plus auxiliary $\left[\gamma \alpha^{i}\right]$ etc... (at setup, indep. of circuit) P.'s proof is $[V(\alpha)],[W(\alpha)],[Y(\alpha)],[H(\alpha)]$, plus auxiliary $[\gamma V(\alpha)]$ etc...
V. checks $\mathrm{e}(T(\alpha), H(\alpha))=e([V(\alpha)],[W(\alpha)]) e([Y(\alpha)],[1])^{-1}$ and auxiliary stuff.

Constant-size proof. Construction works for any circuit.

In practice

Construction was proposed in Pinocchio scheme (Parno et al. S\&P 2013).
Practical: proofs ~ 300kB, verification time $\sim 10 \mathrm{~ms}$.

- Introduced for verifiable outsourced computation.
- Further improvements since.

Can be made zero-knowledge at negligible additional cost.

A ZK application: e-Voting

e-Voting

Are going to see (more or less) Helios voting system. https://heliosvoting.org/

Used for many small- to medium-scale elections. Including IACR (International Association for Cryptologic Research).

We will focus on yes/no referendum.

Goals

We want:

- Vote privacy
- Full verifiability:
- Voter can check their vote was counted
- Everyone can check election result is correct

Every voter cast ≤ 1 vote, result $=$ number of yes votes

We do not try to protect against:

- Coercion/vote buying

Basics

Election = want to add up encrypted votes...
\rightarrow just use additively homomorphic encryption!
Helios: use EIGamal. Multiplicatively homomorphic.
To make it additive: vote for v is g^{v}.
Recovering v from g^{v} is discrete log, but brute force OK (v small).

In addition: voters sign their votes.
Helios: Schnorr signatures.

Who decrypts the result?

First attempt

	Public bulletin board
Voter i owns voter secret sig. key ski wants to vote $v_{i} \in\{0,1\}$	- Voter public sig. keys: pk_{i} - Master public key: mpk=g×
Anobody checks	
Decryption trustee generates ElGamal master key pair (mpk=g${ }^{\star}, \mathrm{msk}=x$)	

Problem: how to verify final result.

Making election result verifiable

ElGamal encryption:
Master keys: (mpk= $g^{\star}, \mathrm{msk}=x$)
Encrypted election result $c=\left(c_{L}=g^{k}, c_{R}=m \cdot g^{\times k}\right)$
Election result $=\operatorname{Dec}(c)=m=c_{R} / c_{L}{ }^{x}$
\rightarrow giving decryption is same as giving $C_{L^{X}}$
\rightarrow to prove decryption is correct, prove: discrete log of $\left(c_{L}\right)^{x}$ in base $c_{L}=$ discrete log of $m p k=g^{\times}$in base g $\Leftrightarrow\left(g, g^{x}, c_{L}, c_{L^{x}}\right) \in$ Diffie-Hellman language
\rightarrow to make election result verifiable: decryption trustee just provides NIZK proof of DH language for ($g, g^{x}, c_{L}, c_{L^{\star}}$)!

Take ZK proof of DH language from earlier + Fiat-Shamir \rightarrow NIZK
Note ZK property is crucial.

Now with verifiable election result

Problem 2: how about I vote encmpk(1000)?

Proving individual vote correctness

In addition to vote encmpk $\left(v_{i}\right)$ and signature $\operatorname{sig}_{\mathrm{sk}^{\prime}}\left(c_{i}\right)$, voter provides NIZK proof that $v_{i} \in\{0,1\}$.

Helios doesn't use SNARK here, but more tailored proof of disjunction.
Note ZK property is crucial again.

To prevent "weeding attack" (vote replication):
NIZK proof includes g^{k}, pk in challenge randomness (hash input of sigma protocol), where g^{k} is the randomness used in encmpk $\left(v_{i}\right)$.
\rightarrow proof (hence vote) cannot be duplicated without knowing ski.

Now with full verifiability

Public bulletin board

Voter i
owns voter secret sig. key ski wants to vote $v_{i} \in\{0,1\}$

- Voter public sig. keys: pki
- Master public key: mpk= g^{x}
generates
- votes: $c_{i}=$ encmpk $\left(v_{i}\right)+$ proof ≤ 1
- signatures: $\operatorname{sig}_{\text {sk }}\left(C_{i}\right)$ checks
Anobody
- encrypted result: $c=\sum c_{i}$
result: $\operatorname{dec}_{\text {msk }}(c)+\mathrm{DH}$ proof
Decryption trustee generates ElGamal master key pair (mpk= $g^{x}, \mathrm{msk}=x$)

Bonus problem: replace decryption trustee by threshold scheme.

