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Succint Arguments of Knowledge



Meta information

2

Tentative topics for the remaining lectures:


1. Succint Non-interactive Arguments of Knowledge (today).


2. Post-quantum cryptography.


3. Lattice-based cryptography.


4. Cryptocurrencies.

Exam: Monday, May 25, 2pm to Wednesday 5pm. Register here: 

https://www.di.ens.fr/david.pointcheval/cours.html


All other info for this course, including past lectures/TAs:


https://www.di.ens.fr/brice.minaud/init-crypto.html

https://www.di.ens.fr/david.pointcheval/cours.html
https://www.di.ens.fr/brice.minaud/init-crypto.html


Zero knowledge: quick reminder



Expressivity
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Zero-knowledge (ZK) proofs are very powerful and versatile.


On an intuitive level (for now), statements you may want to prove:


‣ “I followed the protocol honestly.” (but want to hide the secret 
values involved.) E.g. prove election result is correct, without 
revealing votes.


‣ “I know this secret information.” (but don't want to reveal it.) For 
identification purposes.


‣ “The amount of money going into this transaction is equal to the 
amount of money coming out.” (but want to hide the amount, 
and how it was divided.)



What do we want to prove?
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Want to prove a statement on some x: P(x) is true.


Exemple: x = list V of encryptions of all votes + election result R

P(V,R) = result R is the majority vote among encrypted votes V.


In general, can regard x as a bit string.


Equivalently: want to prove x ∈ ℒ. (set ℒ = {y : P(y)}.)



What is a proof?
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Prover P Verifier V
Proof 𝜋 for x ∈ ℒx

Expected properties of proof system:


‣ Completeness. If x ∈ ℒ, then ∃ proof 𝜋, V(𝜋) = accept.


‣ Soundness. If x ∉ ℒ, then ∀ proof 𝜋, V(𝜋) = reject.


‣ Efficiency. V is PPT (Probabilistic Polynomial Time).


Without the last condition, definition is vacuous (prover is useless).

For a language ℒ :

accept/reject



Interactive proof
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Prover P

x

...

Interactive 
proof

Verifier V

An Interactive Proof (P,V) for ℒ must satisfy:


‣ (Perfect) Completeness. If x ∈ ℒ, then P↔V accepts.


‣ (Statistical) Soundness. If x ∉ ℒ, then ∀ prover P*, Pr[P*↔V rejects] = 

non-negl(|x|). (i.e. ≥ 1/p(|x|) for some fixed polynomial p.)

‣ Efficiency. V is PPT.


Caveat: prover is unbounded.

accept/reject



Example : graph isomorphism
• I know an isomorphism 𝜎 between two graphs G0, G1: 𝜎(G0) = G1.

• I want to prove G0~G1 without revealing anything about the 

isomorphism.

Formally: ℒ = {(G,G'): G~G'}, want to prove (G0,G1) ∈ ℒ.

Prover P Verifier V

𝜃←random isom. on G0 H = 𝜃(G0)

b ←$ {0,1}b

𝜌 = 𝜃 ◦ 𝜎b

accept iff H = 𝜌(Gb)

Bounded prover who knows a witness. Public coin. Perfect ZK.



Zero knowledge
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Intuitively: Verifier learns nothing from 𝜋 other than x ∈ ℒ.


...this is impossible for previous notion of proof.


(only possible languages are those in BPP, i.e. when the proof is 
useless...)

→ going to generalize/relax notion of proofs in a few ways:


‣ Interactive proof, probabilistic prover, imperfect (statistical) 
soundness...



Summary
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A ZK proof is (perfectly/statistically/computationally):

1.Complete.

2.Sound.

3.Zero-knowledge.



Types of zero knowledge proofs
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Strength of the zero-knowledge guarantee:

Let 𝜌 be the distribution of real transcripts, 𝜎 simulated transcript.

‣ Perfect ZK: 𝜌 = 𝜎.

‣ Statistical ZK: advantage of any (unbounded) adversary trying


to distinguish 𝜌 from 𝜎 is negligible is negligible.

‣ Computational ZK: advantage of efficient adversary is negligible.

implies

Strength of the soundness guarantee:

‣ Proof of knowledge: unbounded prover cannot cheat.

‣ Argument of knowledge: efficient prover cannot cheat. implies

Strength of the goal:

‣ Proof of knowledge: the prover proves that they know a 

witness w such that R(x,w), where ℒ = {x : ∃w, R(x,w)}.

‣ Proof of membership: the prover proves x ∈ ℒ. implies



Soundness of a knowledge proof
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Prover P Extractor E

witness w 
s.t. R(x,w)

...

Knowledge soundness.

∃ efficient extractor E that, given access to P and x, can compute 
w such that R(x,w) (with non-negligible probability, and for any P 
that convinces V with non-negligible probability).

x

can control completely, 
including random tape



Honest-verifier zero-knowledge
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Prover P Verifier V

Simulated 
transcript

...

Honest-verifier zero-knowledge.

The (interactive) proof system (P,V) is zero-knowledge iff:

∃ efficient (PPT) simulator S s.t. ∀ x ∈ ℒ, transcript of P interacting 
with V on input x is indistinguishable from the output of S(x).

x x

Simulator S
x

Indistinguishable



ZK proofs for arbitrary circuits



Reductions
Suppose there exists an efficient (polynomial) reduction from ℒ ’ to ℒ :

∃ efficient f such that x ∈ ℒ ’ iff f(x) ∈ ℒ. (Karp reduction.)


If I can do ZK proofs for ℒ, I can do ZK proofs for ℒ ’!


To prove x ∈ ℒ ’, do a ZK proof of f(x) ∈ ℒ.


Also works for knowledge proofs (via everything being constructive).

⇒ The dream: if we can do ZK proof for an NP-complete language, we 
can prove everything we ever want!


Notably circuit-SAT.



Commitment scheme

A commitment scheme is a family of functions C: X x A → V s.t.:

• Binding: it is hard to find x≠x' and a, a' s.t. C(x,a) = C(x',a').

•Hiding: for all x, x', the distributions C(x,a) for a ←$ A and 

C(x',a) for a ←$ A are indistinguishable.

Instantiation: pick a hash function.



The dream: ZK proof for 3-coloring
• I know an 3-coloring c of a graph G (into ℤ3).

• I want to prove that such a coloring exists, without revealing 

anything about the coloring.

Formally: ℒ = {(G): G admits a 3-coloring}

Prover P

(𝜃◦c(v)≠𝜃◦c(w) 
and 𝜃◦c(v)∈ℤ3)

Verifier V

𝜃←$ permutation on ℤ3.
commit on 𝜃◦c for 

each vertex.

v, w ←$ vertex setopen commit on 
𝜃◦c(v),𝜃◦c(w)

Bounded prover with a witness. Public coin. Computational ZK.



The wake-up

...this is incredibly inefficient.


- transform circuit-SAT instance into 3-coloring instance.


- run previous protocol many times (roughly #circuit size × 
security parameter) → gigantic proofs, verification times...



SNARKs

SNARK(?) tile by William Morris.



Finite Fields
Most of what follows is going to happen in a finite field.


For a short presentation of finite fields, see:


https://www.di.ens.fr/brice.minaud/cours/ff.pdf

A key idea we will use:


If P≠Q are two degree-d polynomials over 𝔽q, then for 𝛼 ← 𝔽q 
drawn uniformly at random, Pr[ P(𝛼)≠Q(𝛼) ] ≥ 1 - d/q.

Proof: P-Q is a non-zero polynomial of degree at most d, so it 
can be zero on at most d points.

→ to check if two bounded-degree polynomials are equal, it is 
enough to check at a random point!

https://www.di.ens.fr/brice.minaud/cours/ff.pdf


A toy example
Prover P Verifier V

...
x x

Prosper Véronique

Véronique wants to compute the 1000th Fibonacci number in ℤp.


She doesn't have time, so she asks Prosper to to it. But she 
wants a proof that the computation was correct.

(P & V hate closed formulas and fast exponentiation.)

“Solution”: agree on whole computation circuit → encode as 
SAT problem → transform into 3-coloring problem → include 
NIZK proof of that 3-coloring problem with the result.

Remark: size of proof is linear in the size of the circuit Véronique 
doesn't want to compute.



SNARK

We would like to achieve zero-knowledge proofs that are succint 
and non-interactive.


Succint Non-interactive Argument of Knowledge: SNARK.

Also a fantastical beast by Lewis Caroll:



A new approach

Prosper computes the Fibonacci sequence f1, ..., f1000 in ℤp.

He sends f1, f2, and f1000 to Véronique.

This line of presentation is loosely borrowed from Eli Ben-Sasson:

https://www.youtube.com/watch?v=9VuZvdxFZQo

Magic claim: she will be able to check that this computation was 
correct, for all i, with 99% certainty, by asking Prosper for only 4 
values in ℤp.

Now V. wants to check fi+2 = fi + fi+1 for all i's.

Disclaimers: 
- we assume Prosper answers queries honestly (for now).

- from now on, assume |ℤp| is “large enough”, say |ℤp| > 100000.


(Otherwise, just go to a field extension.)

https://www.youtube.com/watch?v=9VuZvdxFZQo


A new approach

Setup: Prosper interpolates a degree-1000 polynomial P in ℤp 
such that P(i) = fi for i = 1, ..., 1000.


Let D = (X-1)⋅(X-2)⋅...⋅(X-998).

P(i+2) - P(i+1) - P(i) = 0 for i = 1,...,998

D divides P(X+2) - P(X+1) - P(X) 
P(X+2) - P(X+1) - P(X) = D⋅H for some H of degree 2

⇒ 
⇒

How Véronique checks that the computation was correct: 

- Véronique draws 𝛼 ← ℤp uniformly, computes D(𝛼).

- She asks Prosper for P(𝛼), P(𝛼+1), P(𝛼+2), H(𝛼).

- She accepts computation was correct iff:


P(𝛼+2) - P(𝛼+1) - P(𝛼) = D(𝛼)⋅H(𝛼)



Why the approach works

Completeness: if Prosper computed the fi's correctly, then he can 
compute H(𝛼) as required.


Soundness: if Prosper computed the fi's incorrectly, then no 
matter what degree-two polynomial H Prosper computes:


Pr[ P(𝛼+2) - P(𝛼+1) - P(𝛼) = D(𝛼)⋅H(𝛼) ] ≤ 1000/p < 0.01 

so Véronique will detect the issue with > 99% probability.



It remains to force Prosper to answer queries honestly.


In particular, soundness argument crucially relies on P, H being 
bounded-degree polys.


→ need to limit Prosper to computing polys of degree < 1000.


→ A new ingredient: pairings.



Pairings
Pairings. Let 𝔾 = <g>, 𝕋 = <t> be two cyclic groups of order p. A 
map e: 𝔾 × 𝔾 → 𝕋 is a pairing iff for all a, b in ℤp,


e(ga,gb) = tab.

Remarks:


- Definition doesn't depend on choice of generators, as long as    
t = e(g,g).


- Assume Discrete Log is hard in 𝔾, otherwise this is useless. On 
the other hand, e implies DDH cannot be hard (why?).


- First two groups need not be equal in general.


- Can be realized with 𝔾 an elliptic curve, 𝕋 = 𝔽q*.



Encodings
Fix 𝔾 = <g> of order p.


Encode a value a ∈ ℤp as ga. We will write [a] = ga.


We assume DL is hard → decoding a random value is hard. But 
encoding is deterministic → checking if h ∈ 𝔾 encodes a given 
value is easy.


Additive homomorphism: given encodings [a],[b] of a and b, can 
compute encoding of a+b: [a+b] = [a][b].


→ can compute ℤp-linear functions over encodings.

Idea: a pairing e: <g> × <g> → <t> allows computing quadratic 
functions over encodings (at the cost of moving to 𝕋).




Keeping Prosper honest, using encodings
First: want to ensure P computed by Prosper is degree ≤ 1000.


Approach: 


- Véronique draws evaluation point 𝛼 ← ℤp uniformly at random.


- V. publishes encodings [𝛼], [𝛼2], ..., [𝛼1000].


→ Prosper can compute [P(𝛼)], because it is a linear combination 
of the [𝛼i ]'s, i ≤ 1000. But only for deg(P) ≤ 1000.

E.g. cannot compute [𝛼1001].

Prosper can compute in the same way [P(𝛼)], [P(𝛼+1)], [P(𝛼+2)], [H(𝛼)].


Remark: Prosper can compute [(𝛼+1)i ] from the [𝛼j ]'s for j ≤ i.



Remaining issues: 


1) ensure value “[P(𝛼)]”returned by Prosper is in fact a linear 
combination of [𝛼i ]'s.


2) ensure deg(H) ≤ 2, not 1000.


3) ensure [P(𝛼)], [P(𝛼+1)], [P(𝛼+2)] are from same polynomial.


4) last issue: how does Véronique check the result? Cannot 
decode encodings.



Dealing with issues (1) and (2)

1) ensure [P(𝛼)] is in fact a linear combination of [𝛼i ]'s. 
2) ensure deg(H) ≤ 2, not 1000.

Goal

Solution: 

V. publishes encodings [𝛼], [𝛼2], ..., [𝛼1000]...

...and also encodings [𝛾], [𝛾𝛼], [𝛾𝛼2], ..., [𝛾𝛼1000] for a uniform 𝛾.


→ Prosper can compute [P(𝛼)], and [𝛾P(𝛼)], and send them to V.


V. can now use the pairing e to check: e([P(𝛼)],[𝛾]) = e([𝛾P(𝛼)],[1]).


The point: if Prosper did not compute [P(𝛼)] as linear combination 
of [𝛼i]'s, he cannot compute [𝛾P(𝛼)]. (Note this is quadratic.)


This is an ad-hoc knowledge assumption (true in a generic model).



1) ensure [P(𝛼)] is in fact a linear combination of [𝛼i ]'s.

2) ensure deg(H) ≤ 2, not 1000.

Goal

Solution: 

V. publishes encodings [𝛼], [𝛼2], ..., [𝛼1000]...

...and also encodings [𝜂], [𝜂𝛼], [𝜂𝛼2] for a uniform 𝜂.


→ Prosper can compute [H(𝛼)], and [𝜂H(𝛼)].


V. can check: e([H(𝛼)],[𝜂]) = e([𝜂H(𝛼)],[1]).


The point: if Prosper did not compute [H(𝛼)] as linear combination 
of [𝛼i]'s, i ≤ 2, he cannot compute [𝜂H(𝛼)].



Dealing with issue (3)

3) ensure [P(𝛼)], [P(𝛼+1)], [P(𝛼+2)] are from same polynomial.
Goal

Solution: 

Let's deal with [P(𝛼)], [P(𝛼+1)].


V. publishes [𝜃], [𝜃((𝛼+1)2-𝛼2)], ..., [𝜃((𝛼+1)1000-𝛼1000)] for a uniform 𝜃.


→ Prosper can compute [𝜃(P(𝛼+1)-P(𝛼))].


V. can check: e([𝜃(P(𝛼+1)-P(𝛼))],[1]) = e([P(𝛼+1)-P(𝛼)],[𝜃]).


The point: if Prosper did not compute [P(𝛼)], [P(𝛼+1)] with same 
coefficients, he cannot compute [𝜃(P(𝛼+1)-P(𝛼))].



Checking divisibility
Summary of 3 previous slides: we have forced Prosper to 
compute [P(𝛼)], [H(𝛼)], ... as polys of right degree.


Remains to check P(𝛼+2)-P(𝛼+1)-P(𝛼) = D(𝛼)⋅H(𝛼), using the 
encodings.


No problem. this is a quadratic equation. Check:

e([P(𝛼+2)-P(𝛼+1)-P(𝛼)],[1]) = e([D(𝛼)],[H(𝛼)])


Conclusion. Since P(𝛼), H(𝛼) etc are polys of right degree, original 
argument applies: checking equality at random 𝛼 ensures with 
≥ 1-1000/|ℤp| > 99% probability the equality is true on the whole 
polys → D divides P(𝛼+2)-P(𝛼+1)-P(𝛼) → computation was correct.



Efficiency

Prosper proves correct computation by providing a constant 
number of encodings: [P(𝛼)], [𝛾P(𝛼)], [H(𝛼)], [𝜂H(𝛼)] etc.


#encodings is absolute constant, independent of circuit size.


Pre-processing by Véronique was still linear in circuit size: 
publishes [𝛼i ], i ≤ 1000, etc. But...

- Can be amortized over many circuits.

- Exist “fully succint” SNARKs, with O(log(circ. size)) verifier pre-
processing.



Working with circuits directly

In essence: we have seen how to do a succint proof of polynomial 
divisibility.


Can in principle encode valid machine state transitions as 
polynomial constraints → succint proofs for circuit-SAT.


Now: want to do that more concretely = get SNARKs for circuit-
SAT (directly).



We are going to encode a circuit as polynomials.

For simplicity, forget about negations. Write 
circuit with  (XOR),  (AND) gates. Then:


1) Associate an integer i to each input; and to 
each output of a mult gate .


2) Associate an element ri ∈ 𝔽q to mult gate i.


Now circuit can be encoded as polys. For each i 
= 1,...,6, define polynomials vi, wi, yi:


‣ vi(rj)=1 if value i is left input to gate j, 0 if not.


‣ wi(rj)=1 if value i is right input to gate j, 0 if not.


‣ yi(rj)=1 if value i is output of gate j, 0 if not.

1 2 3 4

5

6

r6

r5



In this case, vi, wi, yi are degree 2.


Encoding mult gate 5:

‣ v3(r5)=1, vi(r5)=0 otherwise.

‣ w4(r5)=1, wi(r5)=0 otherwise.

‣ y5(r5)=1, yi(r5)=0 otherwise.


Encoding mult gate 6:

‣ v1(r6)=v2(r6)=1, vi(r6)=0 otherwise.

‣ w5(r6)=1, wi(r6)=0 otherwise.

‣ y6(r6)=1, yi(r6)=0 otherwise.1 2 3 4

5

6

r6

r5

Exemple.

The point: an assignment of variables c1, ..., c6 satisfies the circuit iff:

(𝝨civi(r5))⋅(𝝨ciwi(r5)) = 𝝨ciyi(r5)   and   (𝝨civi(r6))⋅(𝝨ciwi(r6)) = 𝝨ciyi(r6)


Equivalently:

(X-r5)(X-r6) divides (𝝨civi) ⋅ (𝝨ciwi) - 𝝨ciyi

c1 c2 c3 c4

c5

c6



→ we have reduced:

“Prosper wants to prove he knows inputs satisfying a circuit.” 
into:

“Prosper wants to prove he knows linear combinations V = 𝝨civi, W 
= 𝝨ciwi, Y = 𝝨ciyi, such that T = (X-r5)(X-r6) divides VW-Y.” 

⇔ ∃ H,  T⋅H = V⋅W-Y
1. quadratic!

2. polynomial equality!We know how to do that!


V. publishes [𝛼i ], plus auxiliary [𝛾𝛼i ] etc... (at setup, indep. of circuit)

P.'s proof is [V(𝛼)], [W(𝛼)], [Y(𝛼)], [H(𝛼)], plus auxiliary [𝛾V(𝛼)] etc...

V. checks e(T(𝛼),H(𝛼))=e([V(𝛼)],[W(𝛼)])e([Y(𝛼)],[1])-1 and auxiliary stuff.


Constant-size proof. Construction works for any circuit.



In practice

Construction was proposed in Pinocchio scheme

(Parno et al. S&P 2013).

Practical: proofs ~ 300kB, verification time ~ 10 ms.

- Introduced for verifiable outsourced computation.

- Further improvements since.


Can be made zero-knowledge at negligible additional cost.



A ZK application: e-Voting



e-Voting

Are going to see (more or less) Helios voting system.

https://heliosvoting.org/


Used for many small- to medium-scale elections.

Including IACR (International Association for Cryptologic 
Research).


We will focus on yes/no referendum.

Nice description of Belenios variant: https://hal.inria.fr/hal-02066930/document

https://heliosvoting.org/
https://hal.inria.fr/hal-02066930/document


Goals

We want:

‣Vote privacy

‣Full verifiability:

• Voter can check their vote was counted

• Everyone can check election result is correct


Every voter cast ≤1 vote, result = number of yes votes


We do not try to protect against:

‣Coercion/vote buying

Nice description of Belenios variant: https://hal.inria.fr/hal-02066930/document

https://hal.inria.fr/hal-02066930/document


Basics

Election = want to add up encrypted votes...

→ just use additively homomorphic encryption!


Helios: use ElGamal. Multiplicatively homomorphic.

To make it additive: vote for v is gv.

Recovering v from gv is discrete log, but brute force OK (v small).


In addition: voters sign their votes.

Helios: Schnorr signatures.


Who decrypts the result?



Public bulletin board

• Voter public sig. keys: pki 

• Master public key: mpk=gx


• votes: ci = encmpk(vi)

• signatures: sigski(ci)

Voter i

owns voter secret sig. key ski

wants to vote vi ∈ {0,1}

Decryption trustee

generates ElGamal master 
key pair (mpk=gx,msk=x)

generates

Anobody checks
• encrypted result: c = ∑ ci

• result: decmsk(c)

First attempt

?

Problem: how to verify final result.



Making election result verifiable

ElGamal encryption:

Master keys: (mpk=gx,msk=x)

Encrypted election result c = (cL = gk,cR = m∙gxk)

Election result = Dec(c) = m = cR / cLx 

→ giving decryption is same as giving cLx 

→ to prove decryption is correct, prove:

 discrete log of (cL)x in base cL = discrete log of mpk=gx in base g 

⇔ (g,gx, cL, cLx) ∈ Diffie-Hellman language 
→ to make election result verifiable: decryption trustee just provides 
NIZK proof of DH language for (g,gx, cL, cLx)!


Take ZK proof of DH language from earlier + Fiat-Shamir → NIZK


Note ZK property is crucial.



Public bulletin board

• Voter public sig. keys: pki 

• Master public key: mpk=gx


• votes: ci = encmpk(vi)

• signatures: sigski(ci)

Voter i

owns voter secret sig. key ski

wants to vote vi ∈ {0,1}

Decryption trustee

generates ElGamal master 
key pair (mpk=gx,msk=x)

generates

Anobody checks
• encrypted result: c = ∑ ci

• result: decmsk(c) + DH proof

Now with verifiable election result

Problem 2: how about I vote encmpk(1000)?



Proving individual vote correctness

In addition to vote encmpk(vi) and signature sigski(ci), voter provides NIZK 
proof that vi ∈ {0,1}.


Helios doesn't use SNARK here, but more tailored proof of disjunction.


Note ZK property is crucial again.

To prevent “weeding attack” (vote replication):

NIZK proof includes gk, pki in challenge randomness (hash input of 
sigma protocol), where gk is the randomness used in encmpk(vi).

→ proof (hence vote) cannot be duplicated without knowing ski.



Public bulletin board

• Voter public sig. keys: pki 

• Master public key: mpk=gx


• votes: ci = encmpk(vi)+proof ≤1

• signatures: sigski(ci)

Voter i

owns voter secret sig. key ski

wants to vote vi ∈ {0,1}

Decryption trustee

generates ElGamal master 
key pair (mpk=gx,msk=x)

generates

Anobody checks
• encrypted result: c = ∑ ci

• result: decmsk(c) + DH proof

Now with full verifiability

Bonus problem: replace decryption trustee by threshold scheme.


