
Initiation à la Cryptologie, ENS/MPRI, 2019-2020

Brice Minaud 

email: brice.minaud@ens.fr 
website: www.di.ens.fr/brice.minaud/init-crypto.html

Post-Quantum Cryptography



Meta information

2

Exam: Monday, May 25, 2pm to Wednesday 27, 5pm.


Register here: 

https://www.di.ens.fr/david.pointcheval/cours.html


All other info for this course, including past lectures/TAs:


https://www.di.ens.fr/brice.minaud/init-crypto.html

(The diff with last week’s information is in red.)

https://www.di.ens.fr/david.pointcheval/cours.html
https://www.di.ens.fr/brice.minaud/init-crypto.html


Quantum computing

3

New model of computation. Computes on superposition of 
n-bit strings.


Grover algorithm: given arbitrary (efficient) F: {0,1}n → {0,1}, 
find x such that F(x) = 1 in time O(2n/2).


Shor algorithm: factors integer and computes discrete 
logarithm in polynomial time.

Fine print: existence of efficient quantum computers in the 
forseeable future is still up for debate. “Weak” forms of 
quantum computing already exist.



Post-Quantum crypto

4

Today, most of public-key crypto is based on hard problems arising 
from number theory:

• Integer Factorization         RSA

• Discrete Log         Diffie-Hellman, ElGamal…

• Elliptic Curves         ECDSA, pairing-based crypto, including 
                                 most SNARKs…

Broken in quantum polynomial time by Shor’s algorithm.


In short: efficient quantum computers ⇒ global crypto catastrophe. 
(Caveats apply.)


→ Need to anticipate. To have solutions ready, + forward security.


→ Ongoing NIST-organized “selection process” (a.k.a. competition) 
to define new post-quantum standards.



RSA

5

• Select a pair of random primes p, q. Set N = pq. 
• Select integers d, e such that de = 1 mod (p-1)(q-1).


‣ The public key is pk = (e,N).

‣ The secret key is sk = d.


Encryption: for a message m ∈ [1,N-1], the ciphertext is:

c = me mod N.


Decryption: for a ciphertext c, the message is:

m = cd mod N.

You can think of e = 3.

Hard problem: computing third root modulo N.

Trapdoor: knowledge of prime decomposition N = p ∙ q.



Post-Quantum crypto

6

There is nothing wrong with the general outline of building 
encryption or signatures from a hard problem + trapdoor.


‣ Ultimately, post-quantum cryptography is “just” about changing 
the underlying hard problems.

...and evaluating post-quantum resistance.


...and selecting concrete parameters.


...and changing proof models (quantum random oracles, post-post 
quantum cryptography...).

...and ensuring side-channel resistance.

...and optimizing classical efficiency.

...and deploying the result.



Hard problems in post-quantum world

7

Number Theory

Lattices, codes,… 
(conjectured)

Post-quantum candidate hard problems:

• Lattices.

•Code-based crypto.

• Isogenies.

• Symmetric crytpo (→ signatures).

•Multivariate crypto.

Lattices are the mainstream candidate. Other PQ 
approaches for Public-Key crypto “only” motivated 
by PQ. Lattice-based crypto stands on its own:


• Simplicity (of schemes, not analysis).


• Security from worst-case hardness.


• Very expressive/verstatile, much beyond PKE/sig.



Error-correcting codes



(Linear) error-correcting codes

9

We operate on      , where       is a finite field with q elements.

Think q = 2.

Fnq Fq

The Hamming distance between two elements of       is the number 
of bit positions where they differ.

Fnq

dist(00101,00011) = 2

A (linear) code of length n, rank k, and distance d is a linear 
subspace of       of dimension k, such that the minimum distance 
between distinct elements is d.

Fnq

The (Hamming) weight of               is the number of non-zero 
coordinates.

x 2 Fnq

hw(010011) = 3



(Linear) error-correcting codes

10

If the distance of a code C is d = 2t + 1, then C can correct up to t 
errors.

‣ That is, for              , if dist(x-c) ≤ t for some            ,

then c is unique. 

x 2 Fnq c 2 C

c 2 C

t

t c 0 2 C

c 00 2 Cx
≤ t



Decoding

11

Recall a code C is a linear subspace. Concretely, C may be 
represented by some basis. A matrix G whose row vectors span 
the code is called a generator matrix.

c 2 C c 0 2 C
x

≤ t

Problem: given a generator matrix G (i.e. a basis of C) and some x 
such that dist(x-c) ≤ t for some c in C, find c.

‣ For a random linear code, this is a hard problem!



Trapdoor

12

In practice, codes are generally not random, but structured.

E.g. Goppa codes.

The structure ensures that decoding is efficient.

E.g. Patterson's algorithm.

‣ Knowledge of the structure enables efficient decoding. Otherwise 
it is a hard problem...



McEliece

13

Robert McEliece, 1978.

Pick a binary t-correcting Goppa code with generator matrix G.

Public key: G' = S ∙ G ∙ P, where S is a random invertible matrix, 
and P is a random permutation matrix.

Secret key: S, G, P.

Encrypt: encode a message m into the code C' (generated by G'), 
pick a random error vector e of weight t. The ciphertext c is:


c = m + e

Decrypt: given a ciphertext c, decode c using knowledge of the 
equivalence between C and C' (via S, P).



McEliece

14

Underlying hard problem(s):

• It is hard to distinguish C' from a random linear code.

• It is hard to decode a random linear code.

Sometimes described as "reducing" to random linear decoding...

Warning: whether the first problem is actually hard is highly 
dependent on the type of linear code used.



History

15

The original McEliece, using binary Goppa codes, is essentially 
unbroken since 1978.


Best attack is generic linear decoding using Information Set 
Decoding. Very stable complexity.

Various later efficiency enhancements using other types of codes 
were broken.

Also enables signatures via Niederreiter variant.



Multivariate Cryptography

...F = 



Multivariate cryptography

17

Hard problem: solving a system of random quadratic 
equations over some finite field (MQ).


→ How to get an encryption scheme: 


Public key: encryption function F given as sequence of m 
quadratic polynomials in n variables.


Private key:  hidden structure (decomposition) of F that 
makes it easy to invert.


Signature of message Y is X such that Y = F(X).

+: small signature, fast with private key.

-: slow public-key operations, large public key.



Quadratic polynomials

18

Homogeneous degree-two polynomials (over a field of 
odd characteristic) may be represented as a 
symmetric matrix:

x2 + 4xy + 3z2 =
�
x y z

�


1 2 0
2 0 0
0 0 3






x
y
z




= XT ·M ·X for X =
�
x y z

�



Trapdoor

19

Say the bottom right quadrant of the matrix is zeros...

w2 + 4wx + 3x2 + 2wy � 4wz + 2wz + 6xz

=
�
w x y z

�


1 2 1 1
2 3 3 �2
1 3 0 0
1 �2 0 0






w
x
y
z




And say we magically know the value of variables in 
the top left quadrant, e.g. w = 1, x = 1, then the 
equation becomes linear:

1 + 4 + 3 + 2y � 4z + 2z + 6z



In pictures

20

0

General matrix Trapdoored 
matrix

vinegar oil



Quadratic polynomials

21

F = 

So a quadratic function                may be represented 
by a sequence of n square m×m matrices:

Fmq ! Fnq

...

n matrices



Trapdoor

22

F = ...

n matrices

n n

Additional trick: 2n input variables, n output 
variables. → vinegar variables can be picked freely.

Hard problem: given F(x) for uniform x, find x.



Hiding the trapdoor

23

F = ...

M1 M2 Mn

Just do a change of basis!

M 0i  STMiS
for a random invertible matrix S.

...

M'1 M'2 M'n

F' =  STFS = 



A multivariate signature scheme

24

‣ The secret key is F = (M1,M2,...,Mn). 


‣ The public key is F' = (M'1,M'2,...,M'n) for M'i = ST ∙ M'i ∙ S.


Signature: hash the message m into h = hash(m):

s = sign(m) = F'-1(h)


Verification: for signature s for message m with h = hash(m), check:

F'(s) = h

So signing = inverting F'.

What is the underlying hard problem(s)?



Underlying hard problem

25

‣ Underlying hard problem(s):

• It is hard to distinguish F' from a random system of quadratic 
equations.

• It is hard to invert a system of random quadratic equations 
(MQ).

Sometimes described as "reducing" to MQ...

Warning: whether the first problem is hard is highly dependent on 
how F' is generated.



Some history

26

‣ Oil-and-Vinegar as described was broken by Kipnis and Shamir.

...F = Oil and Vinegar

...F = Unbalanced Oil 
and Vinegar

...F = Rainbow

Several fixes :



Multivariate crypto: conclusion

27

Was considered mostly dead until post-quantum cryptography 
came along.

+
Fast secret key operations.

Small signatures/ciphertexts.

Cheap encryption.

-
Public key = F' → large public key sizes (up to 1 Mb).

Heuristic security reduction.

Not a high level of confidence in security.

Now trying to gain credibility in terms of security.



Hash-based signatures

OTS1 OTS2 OTS3 ...

OTS1,1 OTS1,2

OTS2,1



Hash-based signatures

29

For signing, a hash function is needed.

We need to assume the hash function is hard to invert: it is 
preimage-resistant.

In fact, this is enough to build a signature scheme!

hash : {0, 1}⇤ ! {0, 1}n

+ Minimalist assumption. High level of confidence in 
security.



How?

30

Challenge: given a one-way function, build a signature scheme.

We start with a one-time signature (OTS).

A one-time-signature is secure as long as you use it to sign a 
single message.

Note: the message is chosen after the signature key is 
published.



Lamport signature

31

Pick two random values x0 and x1.


‣ The secret key is sk = (x0,x1). 


‣ The public key is pk = (y0,y1) with y0 = h(x0), y1 = h(x1).


Signature: to sign the bit b, reveal xb:

s = xb


Verification: simply check h(xb) = yb.

One-time-signature for a single bit from a hash function h.



Lamport signature

32

This can be extended to multiple bits by using multiple copies 
of the scheme.

There are more efficient schemes for multiple bits (Winternitz 
signatures), but we shall skip them here.

Next challenge: how to go from one-time signature to many-
time signature?



Solution 1: Merkle trees

33

OTS1 OTS2 OTS3 OTSN... ... ...

pk

h1 h2 hN/2

hN/2+1

Each node in the Merkle tree is a hash of its children.



Solution 1: Merkle trees

34

‣ The secret key is sk = (OTS1,OTS2,...,OTSN). 

‣ The public key is the root of the tree pk.


Signature: to sign the i-th message, reveal hash values in the tree 
forming a path from OTSi to the root pk, and use OTSi to sign:


s = hi1, ..., hik, OTSi, OTSi(m)

Verification: check the OTSi signature, and all hashes.

OTSN...

pk

OTS1 OTS2 OTS3 OTS4 OTS1 OTS2 OTS3 OTS4

revealed hash values
computable hash values



Solution 1: Merkle trees

35

OTSN...

pk

OTS1 OTS2 OTS3 OTS4 OTS1 OTS2 OTS3 OTS4

revealed hash values
computable hash values

‣ Can sign up to N messages.


‣ Signatures are length O(log(N)).


‣ Needs a state to store which OTSi is next to be used.

‣ Problem: need O(N) precomputation to get pk!



Solution 2: Goldreich scheme

36

OTS1 OTS2 OTS3 OTSN... ... ...

pk = OTSlog(N)

OTS1,1 OTS1,2 OTS1,N/2

OTS2,1

Each node in the Goldreich tree is a separate OTS scheme.



Solution 2: Goldreich scheme

37

‣ The secret key is a random seed used to generate all OTSi's. 

‣ The public key is the (hash of the) OTS at the root of the tree.


Signature: to sign the i-th message, use the i-th OTSi scheme at a 
leaf, then use each OTS along the path from OTSi to the root to sign 
the hash of both children.

Verification: check the final and all intermediate OTS signatures, 
and that the hash of the root matches pk.

OTSN...

pk

OTS1 OTS2 OTS3 OTS4 OTS1 OTS2 OTS3 OTS4

sign hash of children



Solution 2: Goldreich scheme

38

OTSN...

pk

OTS1 OTS2 OTS3 OTS4 OTS1 OTS2 OTS3 OTS4

sign hash of children

‣ Can sign up to N messages.


‣ Signatures are length O(log(N)).


‣ Needs a state to store which OTSi is next to be used.

‣ O(1) precomputation to get pk!

‣ Longer signatures.



SPHINCS

39

XMSS: Merkle trees are used as nodes within a Goldreich 
scheme.

SPHINCS: add some other tricks to get rid of the state.

v2 currently in NIST competition.

Other hash-based signature schemes: from Zero Knowledge 
and Multi-Party Computation.



Lattices



Lattices

41

In practice, in crypto, ℒ often:

• Spans ℝn, a.k.a. “full-rank”.

• Typically ⊆ ℤn.

•Often “q-ary”: all qei = (0,…,0,q,0,…,0)’s are in ℒ. That is, the 

lattice wraps around mod q. Can be regarded as in .ℤn
q

Lattice. A lattice ℒ is:

• An additive subgroup of ℝn.

• Discrete (not dense).

Concretely, ℒ can be defined by a basis :


ℒ = 

B ∈ ℤn×n

Bℤn



In pictures

42

Basis B.
Basis B’.



Dual lattice

43

Properties of the dual:

• It is a lattice.

• It characterizes the lattice ℒ: ℒ** = ℒ.


• If B is a basis of ℒ, (tB)-1 is a basis of ℒ*.

Dual lattice. The dual ℒ* of a lattice ℒ ⊆ ℝn is:


ℒ* = {x ∈ ℝn : ∀ y ∈ ℒ, txy ∈ ℤ}



Hermite Normal Form

44

A lattice can be charaterized by a basis in Hermite Normal Form.


 HNF basis is unique and easy to compute from any basis → 
“neutral” description of the lattice.

Hermite Normal Form. A basis B ∈ ℤnxn of a (full-rank) lattice is HNF iff:

• It is upper triangular, with > 0 diagonal elements.

• Elements to the right of a diagonal element mi,i are ≥0 and < mi,i.



Hard problems in lattices

45

Shortest Vector Problem (SVP). Given a basis B of a lattice ℒ, find the 
smallest non-zero lattice vector. I.e., find x ∈ ℒ s.t. .| |x | | = λ1(ℒ)

Define the usual  norm on ℝn.

Define  to be the smallest vector independent from 

.

ℓ2

λi(ℒ)
λ1(ℒ), …, λi−1(ℒ)



Hard problems in lattices

46

Shortest Vector Problem (SVP𝛾). Given a basis B of a lattice ℒ ⊆ ℝn, 
find a vector x of norm .≤ γ(n) ⋅ λ1(ℒ)

Decisional Shortest Vector Problem (GapSVP𝛾). Given a basis B of 
a lattice ℒ ⊆ ℝn, decide if  or .λ1(ℒ) ≤ 1 λ1(ℒ) ≥ γ(n)



Hard problems in lattices

47

Bounded Distance Decoding (BDD𝛾). Given a basis B of a lattice ℒ ⊆ 
ℝn and t∈ℝn, with the promise: ∃ x∈ ℒ, , 
find x (necessarily unique for ).

| | t − x | | < λ1(ℒ)/(2γ(n))
γ ≥ 1

t
x



How hard are these problems?

48

• Deep and well-studied area → confidence in hardness.


•No known significant quantum speedup.


•However, not (believed to be) NP-hard.


For typical choice in crypto of  with , 
GapSVP is in NP∩coNP.

γ ≥ ∈ Poly(n) γ ≥ n



Crypto from lattices



Recall code-based crypto…

50

x
≤ t

Problem: given a generator matrix G (i.e. a basis of C) and some x 
such that dist(x-c) ≤ t for some c in C, find c.

‣ For a random linear code, this is a hard problem!


‣ Except if you have a trapdoor (the code is secretly a 
“permutation” of an efficiently decodable code).

c ∈ C c’ ∈ C



Now with lattices…

51

x
≤ λ1(ℒ)/(2𝛾)

Problem: given a random lattice in ℤq (given as HNF of a uniform 
matrix) and some x such that dist(x-ℒ) ≤ λ1(ℒ)/2𝛾, find c.

‣ This is BDD𝛾! It is a hard problem.


‣ Except if you have a trapdoor: namely, a good base of the lattice. 
You can then apply Babai’s rounding algorithm.

c ∈ ℒ c’ ∈ ℒ



The McEliece cryptosystem

52

Robert McEliece, 1978.

Pick a binary t-correcting Goppa code with generator matrix G.

Public key: G' = S ∙ G ∙ P, where S is a random invertible matrix, 
and P is a random permutation matrix.

Secret key: S, G, P.

Encrypt: encode a message m into the code C' (generated by G'), 
pick a random error vector e of weight t. The ciphertext c is:


c = m + e

Decrypt: given a ciphertext c, decode c using knowledge of the 
equivalence between C and C' (via S, P).



The GGH cryptosystem

53

Golreich, Goldwasser, Halevi 1997.

Pick a good basis G of some lattice L in ℤq.

Public key: Hermite Normal Form B of G.

Secret key: G.

Encrypt: encode a message m into the lattice L (generated by B), 
pick a small enough random error vector e. The ciphertext c is:


c = m + e

Decrypt: given a ciphertext c, retrieve closest lattice point m using 
knowledge of the good basis G (using Babai’s rounding algorithm).



The GGH cryptosystem

54

‣ Warning: Like RSA or basic McEliece, this is actually a trapdoor 
permutation. It is not a PKE: not IND-CCA secure (why?).


‣ Some care is needed regarding how the message is encoded into 
the lattice.


‣ In theory: No reduction → “heuristic” security.


‣ In practice: impossibly large parameters.



GGH signatures

55

Golreich, Goldwasser, Halevi 1997.

Pick a good basis G of some lattice L in ℤq.

Public key: Hermite Normal Form B of G.

Secret key: G.

Sign: encode a message m as a point in ℤq. The signature of m is 
the closest lattice point x (computed using G).

Verify: check that the signature x is close enough to m.



GGH signatures

56

‣ This time, similarities to Niederreiter signatures in codes.


‣ Again, no reduction → “heuristic” security.


‣ In fact, broken asymptotically and in practice! Nguyen-Regev ’06.

‣ Idea: the value x-m is uniformly distributed in the fundamental 
parallelipiped G⋅[-1/2,1/2]n. Yields a learning problem: the Hidden 
Parallelipiped Problem.


