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Post-Quantum crypto
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Today, most of public-key crypto is based on hard problems arising 
from number theory:

• Integer Factorization         RSA

• Discrete Log         Diffie-Hellman, ElGamal…

• Elliptic Curves         ECDSA, pairing-based crypto, including 
                                 most SNARKs…

Broken in quantum polynomial time by Shor’s algorithm.


In short: efficient quantum computers ⇒ global crypto catastrophe. 
(Caveats apply.)


→ Need to anticipate. To have solutions ready, + forward security.


→ Ongoing NIST-organized “selection process” (a.k.a. competition) 
to define new post-quantum standards.



RSA
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• Select a pair of random primes p, q. Set N = pq. 
• Select integers d, e such that de = 1 mod (p-1)(q-1).


‣ The public key is pk = (e,N).

‣ The secret key is sk = d.


Encryption: for a message m ∈ [1,N-1], the ciphertext is:

c = me mod N.


Decryption: for a ciphertext c, the message is:

m = cd mod N.

You can think of e = 3.

Hard problem: computing third root modulo N.

Trapdoor: knowledge of prime decomposition N = p ∙ q.



Post-Quantum crypto
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There is nothing wrong with the general outline of building 
encryption or signatures from a hard problem + trapdoor.


‣ Ultimately, post-quantum cryptography is “just” about changing 
the underlying hard problems.

...and evaluating post-quantum resistance.


...and selecting concrete parameters.


...and changing proof models (quantum random oracles, post-post 
quantum cryptography...).

...and ensuring side-channel resistance.

...and optimizing classical efficiency.

...and deploying the result.



Hard problems in post-quantum world
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Number Theory

Lattices, codes,… 
(conjectured)

Post-quantum candidate hard problems:

• Lattices.

•Code-based crypto.

• Isogenies.

•Multivariate crypto.


Also: symmetric crypto (incl. signatures!)

Lattices are the mainstream candidate. Other PQ 
approaches for Public-Key crypto “only” motivated 
by PQ. Lattice-based crypto stands on its own:


• Simplicity (of schemes, not analysis).


• Security from worst-case hardness.


• Very expressive/verstatile, much beyond PKE/sig.



Error-correcting codes



(Linear) error-correcting codes
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We operate on      , where       is a finite field with q elements.

Think q = 2.

Fnq Fq

The Hamming distance between two elements of       is the number 
of bit positions where they differ.

Fnq

dist(00101,00011) = 2

A (linear) code of length n, rank k, and distance d is a linear 
subspace of       of dimension k, such that the minimum distance 
between distinct elements is d.

Fnq

The (Hamming) weight of               is the number of non-zero 
coordinates.

x 2 Fnq

hw(010011) = 3



(Linear) error-correcting codes
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If the distance of a code C is d = 2t + 1, then C can correct up to t 
errors.

‣ That is, for              , if dist(x-c) ≤ t for some            ,

then c is unique. 

x 2 Fnq c 2 C

c 2 C

t

t c 0 2 C

c 00 2 Cx
≤ t



Decoding
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Recall a code C is a linear subspace. Concretely, C may be 
represented by some basis. A matrix G whose row vectors span 
the code is called a generator matrix.

c 2 C c 0 2 C
x

≤ t

Problem: given a generator matrix G (i.e. a basis of C) and some x 
such that dist(x-c) ≤ t for some c in C, find c.

‣ For a random linear code, this is a hard problem!



Trapdoor
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In practice, codes are generally not random, but structured.

E.g. Goppa codes.

The structure ensures that decoding is efficient.

E.g. Patterson's algorithm.

‣ Knowledge of the structure enables efficient decoding. Otherwise 
it is a hard problem...



McEliece
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Robert McEliece, 1978.

Pick a binary t-correcting Goppa code with generator matrix G.

Public key: G' = S ∙ G ∙ P, where S is a random invertible matrix, 
and P is a random permutation matrix.

Secret key: S, G, P.

Encrypt: encode a message m into the code C' (generated by G'), 
pick a random error vector e of weight t. The ciphertext c is:


c = m + e

Decrypt: given a ciphertext c, decode c using knowledge of the 
equivalence between C and C' (via S, P).



McEliece
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Underlying hard problem(s):

• It is hard to distinguish C' from a random linear code.

• It is hard to decode a random linear code.

Sometimes described as "reducing" to random linear decoding...

Warning: whether the first problem is actually hard is highly 
dependent on the type of linear code used.



History
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The original McEliece, using binary Goppa codes, is essentially 
unbroken since 1978.


Best attack is generic linear decoding using Information Set 
Decoding. Very stable complexity.

Various later efficiency enhancements using other types of codes 
were broken.

Also enables signatures via Niederreiter variant.



Hash-based signatures

OTS1 OTS2 OTS3 ...

OTS1,1 OTS1,2

OTS2,1



Hash-based signatures
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For signing, a hash function is needed.

We need to assume the hash function is hard to invert: it is 
preimage-resistant.

In fact, this is enough to build a signature scheme!

hash : {0, 1}⇤ ! {0, 1}n

+ Minimalist assumption. High level of confidence in 
security.



How?
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Challenge: given a one-way function, build a signature scheme.

We start with a one-time signature (OTS).

A one-time-signature is secure as long as you use it to sign a 
single message.

Note: the message is chosen after the signature key is 
published.



Lamport signature
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Pick two random values x0 and x1.


‣ The secret key is sk = (x0,x1). 


‣ The public key is pk = (y0,y1) with y0 = h(x0), y1 = h(x1).


Signature: to sign the bit b, reveal xb:

s = xb


Verification: simply check h(xb) = yb.

One-time-signature for a single bit from a hash function h.



Lamport signature
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This can be extended to multiple bits by using multiple copies 
of the scheme.

There are more efficient schemes for multiple bits (Winternitz 
signatures), but we shall skip them here.

Next challenge: how to go from one-time signature to many-
time signature?



Solution 1: Merkle trees
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OTS1 OTS2 OTS3 OTSN... ... ...

pk

h1 h2 hN/2

hN/2+1

Each node in the Merkle tree is a hash of its children.



Solution 1: Merkle trees
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‣ The secret key is sk = (OTS1,OTS2,...,OTSN). 

‣ The public key is the root of the tree pk.


Signature: to sign the i-th message, reveal hash values in the tree 
forming a path from OTSi to the root pk, and use OTSi to sign:


s = hi1, ..., hik, OTSi, OTSi(m)

Verification: check the OTSi signature, and all hashes.

OTSN...

pk

OTS1 OTS2 OTS3 OTS4 OTS1 OTS2 OTS3 OTS4

revealed hash values
computable hash values



Solution 1: Merkle trees
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OTSN...

pk

OTS1 OTS2 OTS3 OTS4 OTS1 OTS2 OTS3 OTS4

revealed hash values
computable hash values

‣ Can sign up to N messages.


‣ Signatures are length O(log(N)).


‣ Needs a state to store which OTSi is next to be used.

‣ Problem: need O(N) precomputation to get pk!



Solution 2: Goldreich scheme
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OTS1 OTS2 OTS3 OTSN... ... ...

pk = OTSlog(N)

OTS1,1 OTS1,2 OTS1,N/2

OTS2,1

Each node in the Goldreich tree is a separate OTS scheme.



Solution 2: Goldreich scheme
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‣ The secret key is a random seed used to generate all OTSi's. 

‣ The public key is the (hash of the) OTS at the root of the tree.


Signature: to sign the i-th message, use the i-th OTSi scheme at a 
leaf, then use each OTS along the path from OTSi to the root to sign 
the hash of both children.

Verification: check the final and all intermediate OTS signatures, 
and that the hash of the root matches pk.

OTSN...

pk

OTS1 OTS2 OTS3 OTS4 OTS1 OTS2 OTS3 OTS4

sign hash of children



Solution 2: Goldreich scheme
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OTSN...

pk

OTS1 OTS2 OTS3 OTS4 OTS1 OTS2 OTS3 OTS4

sign hash of children

‣ Can sign up to N messages.


‣ Signatures are length O(log(N)).


‣ Needs a state to store which OTSi is next to be used.

‣ O(1) precomputation to get pk!

‣ Longer signatures.



SPHINCS
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XMSS: Merkle trees are used as nodes within a Goldreich 
scheme.

SPHINCS: add some other tricks to get rid of the state.

v2 currently in NIST competition.

Other hash-based signature schemes: from Zero Knowledge 
and Multi-Party Computation.



Lattices



Lattices
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In practice, in crypto, ℒ often:

• Spans ℝn, a.k.a. “full-rank”.

• Typically ⊆ ℤn.

•Often “q-ary”: all qei = (0,…,0,q,0,…,0)’s are in ℒ. That is, the 
lattice wraps around mod q. Can be regarded as in .ℤn

q

Lattice. A lattice ℒ is:

• An additive subgroup of ℝn.

• Discrete (not dense).

Concretely, ℒ can be defined by a basis :


ℒ = 

B ∈ ℤn×n

Bℤn



In pictures
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Basis B.
Basis B’.



Dual lattice
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Properties of the dual:

• It is a lattice.

• It characterizes the lattice ℒ: ℒ** = ℒ.


• If B is a basis of ℒ, (tB)-1 is a basis of ℒ*.

Dual lattice. The dual ℒ* of a lattice ℒ ⊆ ℝn is:


ℒ* = {x ∈ ℝn : ∀ y ∈ ℒ, txy ∈ ℤ}



Hermite Normal Form
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A lattice can be charaterized by a basis in Hermite Normal Form.


 HNF basis is unique and easy to compute from any basis → 
“neutral” description of the lattice.

Hermite Normal Form. A basis B ∈ ℤnxn of a (full-rank) lattice is HNF iff:

• It is upper triangular, with > 0 diagonal elements.

• Elements to the right of a diagonal element mi,i are ≥0 and < mi,i.



Hard problems in lattices

31

Shortest Vector Problem (SVP). Given a basis B of a lattice ℒ, find the 
smallest non-zero lattice vector. I.e., find x ∈ ℒ s.t. .| |x | | = λ1(ℒ)

Define the usual  norm on ℝn.

Define  to be the smallest vector independent from 

.

ℓ2

λi(ℒ)
λ1(ℒ), …, λi−1(ℒ)



Hard problems in lattices
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Shortest Vector Problem (SVP𝛾). Given a basis B of a lattice ℒ ⊆ ℝn, 
find a vector x of norm .≤ γ(n) ⋅ λ1(ℒ)

Decisional Shortest Vector Problem (GapSVP𝛾). Given a basis B of 
a lattice ℒ ⊆ ℝn, decide if  or .λ1(ℒ) ≤ 1 λ1(ℒ) ≥ γ(n)



Hard problems in lattices
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Bounded Distance Decoding (BDD𝛾). Given a basis B of a lattice ℒ ⊆ 
ℝn and t∈ℝn, with the promise: ∃ x∈ ℒ, , 
find x (necessarily unique for ).

| | t − x | | < λ1(ℒ)/(2γ(n))
γ ≥ 1

t
x



How hard are these problems?
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• Deep and well-studied area → confidence in hardness.


•No known significant quantum speedup.


•However, not (believed to be) NP-hard.

For typical choice in crypto of  with , 
GapSVP is in NP∩coNP.

γ ≥ ∈ Poly(n) γ ≥ n



Crypto from lattices



Recall code-based crypto…
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x
≤ t

Problem: given a generator matrix G (i.e. a basis of C) and some x 
such that dist(x-c) ≤ t for some c in C, find c.

‣ For a random linear code, this is a hard problem!


‣ Except if you have a trapdoor (the code is secretly a 
“permutation” of an efficiently decodable code).

c ∈ C c’ ∈ C



Now with lattices…
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x
≤ λ1(ℒ)/(2𝛾)

Problem: given a random lattice in ℤq (given as HNF of a uniform 
matrix) and some x such that dist(x-ℒ) ≤ λ1(ℒ)/2𝛾, find c.

‣ This is BDD𝛾! It is a hard problem.


‣ Except if you have a trapdoor: namely, a good base of the lattice. 
You can then apply Babai’s rounding algorithm.

c ∈ ℒ c’ ∈ ℒ



The McEliece cryptosystem
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Robert McEliece, 1978.

Pick a binary t-correcting Goppa code with generator matrix G.

Public key: G' = S ∙ G ∙ P, where S is a random invertible matrix, 
and P is a random permutation matrix.

Secret key: S, G, P.

Encrypt: encode a message m into the code C' (generated by G'), 
pick a random error vector e of weight t. The ciphertext c is:


c = m + e

Decrypt: given a ciphertext c, decode c using knowledge of the 
equivalence between C and C' (via S, P).



The GGH cryptosystem
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Golreich, Goldwasser, Halevi 1997.

Pick a good basis G of some lattice L in ℤq.

Public key: Hermite Normal Form B of G.

Secret key: G.

Encrypt: encode a message m into the lattice L (generated by B), 
pick a small enough random error vector e. The ciphertext c is:


c = m + e

Decrypt: given a ciphertext c, retrieve closest lattice point m using 
knowledge of the good basis G (using Babai’s rounding algorithm).



The GGH cryptosystem
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‣ Warning: Like RSA or basic McEliece, this is actually a trapdoor 
permutation. It is not a PKE: not IND-CCA secure (why?).


‣ Some care is needed regarding how the message is encoded into 
the lattice.


‣ In theory: No reduction → “heuristic” security.


‣ In practice: impossibly large parameters.



GGH signatures
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Golreich, Goldwasser, Halevi 1997.

Pick a good basis G of some lattice L in ℤq.

Public key: Hermite Normal Form B of G.

Secret key: G.

Sign: encode a message m as a point in ℤq. The signature of m is 
the closest lattice point x (computed using G).

Verify: check that the signature x is close enough to m.



GGH signatures
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‣ This time, similarities to Niederreiter signatures in codes.


‣ Again, no reduction → “heuristic” security.


‣ In fact, broken asymptotically and in practice! Nguyen-Regev ’06.

‣ Idea: the value x-m is uniformly distributed in the fundamental 
parallelipiped G⋅[-1/2,1/2]n. Yields a learning problem: the Hidden 
Parallelipiped Problem.



SIS: short integer solution
Modern approach, part I



Short Integer Solution (SIS)
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Ajtai ’96 (the foundational article of Lattice-based crypto).

Say I have m > n vectors ai in .ℤn
q

Problem: find short x = (x1,…,xm) in  such that .

Here, short means of small norm: ||x|| ≤ 𝛽.

ℤm
q ∑ xiai = 0

‣ The crucial point is the norm constraint 𝛽. Otherwise this is just a 
linear system.


‣ Typically, Euclidian norm, with representatives in [-q/2,q/2].


‣ Solution must exist as long as there are at least qn vectors of 
norm ≤ , due to collisions. E.g.  and .β/ 2 β > n log q m ≥ n log q



SIS and lattices
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Equivalent formulation:

SIS problem. Given a uniform matrix , find  with 
and  such that .

A ∈ ℤn×m
q x ∈ ℤm

q
| |x | | ≤ β Ax = 0

For A as above, define ℒ⊥(A) = (in ℤq).


This is a (q-ary) lattice!


SIS = finding a short vector in ℒ⊥(A).

{x ∈ ℤm
q : Ax = 0}

Better! Ajtai ’96: Solving SIS (for uniformly random A) implies 
solving GapSVP  in dimension n for any lattice!


→ “Worst-case to average-case” reduction. Note m irrelevant.

β n



(Cryptographic) hash function
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Hash function H: {0,1}* → {0,1}n.


Preimage resistance: for uniform y ∈ {0,1}n, hard to find x 
such that H(x) = y.


Collision resistance: hard to find x ≠ y ∈ {0,1}* such that 
H(x) = H(y).

Note: collision is ill-defined for a single hash function. (why?)


→ To formally define hash functions, usually assume they are a 
family of functions. Parametrized by a “key”.


(See also Random Oracle Model.)



(Cryptographic) hash function
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In theory, collision-resistance ⇒ preimage resistance.


Argument: if the hash function is “compressing” enough, 
whp the preimage computed by a preimage algorithm, on 
input H(x), will be distinct from x. (Because most points will 
have many preimages.)

In practice, preimage resistance should cost 2n, while collision 
resistance should cost 2n/2. → Previous reduction is not so 
relevant.

Right now we are more in the world of theory, so we’ll only 
care about collision resistance.



Ajtai’s hash function
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Pick random . Define:
A ∈ ℤn×m
q

HA : {0,1}m → ℤn
q

x ↦ Ax

Finding a collision for random A yields a SIS solution with .


Indeed, HA(x) = HA(x) yields A(y-x) = 0 with y-x ∈ {-1,0,1}m.

β = m

Example: q = n2, m = 2n log q (compression factor 2), need 
roughly n ~ 100, mn ~ 100000…



LWE: learning with errors
Modern approach, part II



Learning Parity with Noise (LPN)
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Say I have m > n vectors ai in .

I am given ai⋅s + ei (scalar product) for some secret s, ei ∈ ℤ2 drawn 
from Bernoulli distribution B(𝜂) (i.e. Pr(ei = 1) = 𝜂).

ℤn
2

Problem: find s.

LPN problem. Let  be drawn uniformly at random. Given 
access to either O$ or Os, distinguish between the two.

s ∈ ℤn
2

Oracle O$: returns (a,b) for a uniform in , b uniform in .

Oracle Os: returns (a,a⋅s+e) for a uniform in , e drawn from B(𝜂).

ℤn
2 ℤ2

ℤn
2

LPN problem (bounded samples). Let  and  be 
drawn uniformly at random, and  drawn according to B(𝜂).


Distinguish between (A, As + e), and (A, b).

A ∈ ℤm×n
2 b, s ∈ ℤn

2
e ∈ ℤm

2



Learning Parity with Noise (LPN)
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‣ Famous problem in learning theory.


‣ Trivial without the noise.


‣ Believed to be very hard, even given unbounded samples. Best 
algorithm slightly sub-exponential: Blum-Kalai-Wasserman 2003. 
Complexity roughly 2n/log n in time and #queries.


‣ For bounded samples, same as decoding a random linear code.



Secret-key encryption using LPN
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Pick a secret s uniformly in .ℤn
2

Secret key: s.

Encrypt: to encrypt one bit b: give m samples from O$ if b=0, m 
samples from Os if b=1.

Decrypt: use s to distinguish the two oracles.

Attempt #1.



Secret-key encryption using LPN
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Pick a secret s uniformly in .ℤn
2

Secret key: s.

Encrypt: to encrypt one bit b: give m samples from (a,a⋅s+b+e).

Decrypt: compute a⋅s to retrieve b+e, determine e by majority vote.

Attempt #2.



Secret-key encryption using LPN
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Pick a secret S uniformly in .ℤm×n
2

Secret key: S.

Encrypt: to encrypt message m: (a,Sa+C(m)+e) where C(⋅) 
encodes the message into  with error correction.ℤm

2

Decrypt: use S to retrieve C(m)+e, use error correction to remove e.

Attempt #3.

Additional tweaks: LPN-C cryptosystem (Gilbert et al. ’08).



Learning with Errors (LWE)
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Regev ’05. Milestone result.

Pick s uniformly in .ℤn
q

Oracle O$: returns (a,b) for a uniform in , b uniform in .

Oracle Os: returns (a,a⋅s+e) for a uniform in , e drawn from 𝝌.

ℤn
q ℤq

ℤn
q

LWE. Let  be drawn uniformly at random. Given access to 
either O$ or Os, distinguish between the two.

s ∈ ℤn
q

LWE (bounded samples). Let  and  be drawn 
uniformly at random, and  drawn according to 𝝌.


Distinguish between (A, As + e), and (A, b).

A ∈ ℤm×n
q b, s ∈ ℤn

q

e ∈ ℤm
q

Typically, 𝝌 is a discrete Gaussian distribution with std deviation 𝛼q.



Search and Decision variants
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LWE (decisional). Let  be drawn uniformly at random. 
Given access to either O$ or Os, distinguish between the two.

s ∈ ℤn
q

LWE (search). Let  be drawn uniformly at random. Given 
access to either Os, find s.

s ∈ ℤn
q

Proposition 1: the two problems are equivalent up to polynomial 
reductions (“hybrid” technique).

Proposition 2: given an efficient algorithm that solves SIS with 
parameters n, m, q, 𝛽, there is an efficient algorithm that solves 
LWE with the same parameters, assuming (roughly) 𝛼𝛽 ≪ 1.



LWE and BDD
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Proposition 3: LWE reduces to BDD with . 

Consider the lattice ℒ =  generated by A.

The shortest vector is expected to have norm λ1(A) ~ .

The standard deviation of e is .

(In particular we can expect the closest lattice point to As+e is As.)

γ = qn/m /α

Aℤn
q

(m)q(m−n)/m

mαq

LWE (bounded samples). Let  and  be drawn 
uniformly at random, and  drawn according to 𝝌.


Distinguish between (A, As + e), and (A, b).

A ∈ ℤm×n
q b, s ∈ ℤn

q

e ∈ ℤm
q

Better! Regev ’05: Solving LWE (for uniformly random A) implies 
quantumly solving GapSVP in dimension n for any lattice!


→ “Worst-case to average-case” reduction. Note m irrelevant.

Classical reduction in dim , Peikert ’09.n



Flexibility of LWE I
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Random self-reducibility. Consider a variant of LWE where the 
secret s is drawn according to some distribution 𝜎, instead of 
uniformly. This variant reduces to standard LWE.

→ “average-case” LWE (for the secret) is hardest possible.



Flexibility of LWE II
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Secret-error switching. Consider a variant of LWE where the 
secret s is drawn according to the error distribution 𝝌, instead of 
uniformly. This reduces to standard LWE, and conversely.

→ drawing the secret from 𝝌 is also hardest possible. (This 
reduction costs sacrificing n samples.)



Flexibility of LWE III
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LWE with multiple secrets. LWE with k secrets reduces to 
standard LWE (with k calls to the LWE oracle).

Consider a variant of LWE where instead of publishing samples 
(a, a⋅s+e), with n-dimensional secret vector s, samples are (a, 
a⋅S+e), with k×n secret matrix S: LWE with “k secrets”.



Flexibility of LWE IV
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Many other variants of LWE still reduce to LWE:


- Binary-LWE: s is in {0,1}n (with limited samples).


- Learning with Rounding (LWR): the error is uniform in a small 
range instead of Gaussian. Amounts to deterministic rounding!


- …

Can be used for a host of applications:


- Secret-key encryption, PRF.


- PKE, key exchange.


- Identity-based encryption (see Michel’s course), FHE.


- …



Secret-key encryption using LWE
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Pick a secret s uniformly in .ℤn
q

Secret key: s.

Encrypt: to encrypt one bit b: give (a,a⋅s+b⌊q/2⌋+e).

Like LPN:

Decrypt: compute a⋅s to retrieve b⌊q/2⌋+e, output b=1 iff closer 
to ⌊q/2⌋ than to 0.

IND-CPA security sketch: (a,a⋅s+e) is indistinguishable from 
uniform, hence so is (a,a⋅s+b⌊q/2⌋+e).



A public sampler for LWE

63

Setup: 
- Pick a secret s uniformly in .

- Publish m LWE(q,n,𝝌) samples for large enough m (value TBD). 
That is, publish (A,As+e) for m×n matrix A.

ℤn
q

To make previous scheme public-key, we’d like a public “sampler” 
for LWE. Should not require knowing the secret s.

Now to get a fresh LWE sample: 
- Pick x uniformly in {0,1}n.

- Publish (txA, tx(As+e)).

With the right parameters, this yields a distribution statistically close 
to LWE(q,n,𝝌’), where if 𝝌 is Gaussian with variance 𝜎2, 𝝌’ is 
Gaussian with variance m𝜎2.

Argument: Leftover Hash Lemma. Example: m = 2n log q suffices.

Remark: recognize the Ajtai hash function from earlier/subset sum.



Public-key encryption* using LWE
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Pick a secret s uniformly in , A uniformly in .ℤn
q ℤm×n

q

Secret key: s.
Encrypt: to encrypt one bit k: draw x in {0,1}m, output:


(txA,txb + k⌊q/2⌋).

Regev ’05: Regev encryption. 
Idea: same as secret-key scheme, but with public sampler.

Public key: (A, b = As + e).

Decrypt: upon receipt of ciphertext (c,d), output 0 if d-c⋅s is closer 
to 0 than to ⌊q/2⌋, 1 otherwise.

Proof argument. Step 1: public key is indistinguishable from 
uniform. Step 2: assuming uniform public key, ciphertexts are 
statistically close to uniform.

*malleability → not IND-CCA.



Practical (in)efficiency
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Example parameters: q prime ≅n2, m = 2 n log q, .

In practice, e.g. n≅200.

α = 1/( n log2 n)

Terrible efficiency:

- O(n2) operations for encryption.

- O(n log n) ciphertext for 1 bit of plaintext!



Multi-bit Regev encryption
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Pick a secret matrix S uniformly in , A uniformly in .ℤℓ×n
q ℤm×n

q

Secret key: S.

Encrypt: to encrypt 𝓁 bits k ∈ {0,1}𝓁: draw x in {0,1}m, output:

(txA,txB +⌊q/2⌋k).

Idea: use multiple secrets.

Public key: (A, B = AS + E).

Decrypt: upon receipt of ciphertext (C,D), output k ∈ {0,1}𝓁 such 
that D-C⋅S is closest to ⌊q/2⌋k.

Proof argument: use multiple-secret LWE.

Ciphertext expansion (n/𝓁 + 1) log q.

Other idea: encode multiple bits per element in ℤq. (use high-order bits.)



Key exchange
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Setup: pick public A uniformly in .ℤn×n
q

a = tsA + e

b = At + e’

Eve

Pick t, e’ ←𝝌n.Pick s, e ←𝝌n.

Alice Bob

Compute k = msb(tsb) Compute k = msb(at)

Here, msb = most significant bit.

Both parties get tsAt up to error terms. msb gets rid of error.

Equivalent of DDH: Eve wants to distinguish (A,a,b,k) from (A,$,$,$).

Proof argument: 1st hybrid (A,$,b,k). 2nd hybrid (A,$,$,$). Use LWE 
with secret-error switching on A, then (A|a).



Practical aspects



Improving efficiency: compressing A
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LWE (decisional). Let s  be drawn uniformly at random. 
Distinguish (a,a⋅s+e) from (a,b) for uniform a, b, and e ← 𝝌.

∈ ℤn
q

To get one “usable” b you need to publish the corresponding a, 
which is n times larger.

It’d be nice if the matrix A of a’s was structured → compressible.

Simple idea: cyclic A. (See cyclic codes…)

Amounts to operating in ring  → Ring-LWE.ℤq[X]/(Xn − 1)



Ring-LWE
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Ring-LWE (decisional). Let s  be drawn uniformly at random. 
Distinguish (a,a⋅s+e) from (a,b) for uniform a, b← R, and e ← 𝝌.

∈ R

Let R =  for some polynomial P (think irreducible).ℤq[X]/P

The “usable” part b is now the same size as the uniform part a.

Example: Regev encryption 
- ciphertext expansion O(1) instead of O(n).

- with proper choice of ring (e.g. arising from cyclotomic 
polynomials), a⋅s can be computed in n log n, not n2, using FFT.

Theoretical concern: reduces to hard ideal lattice problems. 
Believed to be as hard as general case, beside a few “trivial” 
properties (e.g. SVP = SIVP, collision on Ajtai hash function).



Concrete security
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For factorization or Discrete Log, essentially one family of attacks.

For LWE and other lattice-based schemes, much more difficult:

- lattice reduction algorithms: LLL, BKZ. 
- BKW-type algorithms (connection with LPN).

- ISD algorithms (connection with decoding random code).

- For low errors, such as Arora-Ge and Gröbner bases (connection 
with multivariate system solving).

→ ongoing NIST standardization process to fix concrete 
parameters.


