
MPRI, 2019

Brice Minaud

email: brice.minaud@inria.fr
website: www.di.ens.fr/brice.minaud/

Zero Knowledge

Zero Knowledge

2

Goldwasser, Micali, Rackoff '85.

A zero-knowledge course would be a very bad course.

Image credit Oded Goldreich www.wisdom.weizmann.ac.il/~oded/PS/zk-tut10.ps

http://www.wisdom.weizmann.ac.il/~oded/PS/zk-tut10.ps

Expressivity

3

Zero-knowledge (ZK) proofs are very powerful and versatile.

On an intuitive level (for now), statements you may want to prove:

‣ “I followed the protocol honestly.” (but want to hide the secret
values involved.) E.g. prove election result is correct, without
revealing votes.

‣ “I know this secret information.” (but don't want to reveal it.) For
identification purposes.

‣ “The amount of money going into this transaction is equal to the
amount of money coming out.” (but want to hide the amount,
and how it was divided.)

What do we want to prove?

4

Want to prove a statement on some x: P(x) is true.

Exemple: x = list V of encryptions of all votes + election result R

P(V,R) = result R is the majority vote among encrypted votes V.

In general, can regard x as a bit string.

Equivalently: want to prove x ∈ ℒ. (set ℒ = {y : P(y)}.)

What is a proof?

5

Prover P Verifier V
Proof 𝜋 for x ∈ ℒx

Expected properties of proof system:

‣ Completeness. If x ∈ ℒ, then ∃ proof 𝜋, V(𝜋) = accept.

‣ Soundness. If x ∉ ℒ, then ∀ proof 𝜋, V(𝜋) = reject.

‣ Efficiency. V is PPT (Probabilistic Polynomial Time).

Without the last condition, definition is vacuous (prover is useless).

For a language ℒ :

accept/reject

Zero knowledge

6

Intuitively: Verifier learns nothing from 𝜋 other than x ∈ ℒ.

...this is impossible for previous notion of proof.

(only possible languages are those in BPP, i.e. when the proof is
useless...)

→ going to generalize/relax notion of proofs in a few ways:

‣ Interactive proof, probabilistic prover, imperfect (statistical)
soundness...

Brief interlude: crypto magic

7

Challenge:

Define an injective mapping F: {0,1}* → {0,1}λ.

How about if injectivity is only computational?

Then it's fine! It's a (cryptographic) hash function.

i.e. computationally hard to find x ≠ y s.t. F(x) = F(y).

(Story for another time: hardness as sketched above is ill-defined.)

Interactive proof

8

Prover P

x

...

Interactive
proof

Verifier V

An Interactive Proof (P,V) for ℒ must satisfy:

‣ (Perfect) Completeness. If x ∈ ℒ, then P↔V accepts.

‣ (Statistical) Soundness. If x ∉ ℒ, then ∀ prover P*, Pr[P*↔V rejects] =

non-negl(|x|). (i.e. ≥ 1/p(|x|) for some fixed polynomial p.)

‣ Efficiency. V is PPT.

Caveat: prover is unbounded.

accept/reject

IP

9

IP: complexity class of languages that admit an interactive proof.

Theorem. Shamir, LKFN at FOCS '90.

IP = PSPACE.

Very powerful but in crypto, for usability, we want efficient (PPT) prover.

when soundess is wrt PPT prover, sometimes say argument of
knowledge.

Further, we often want zero knowledge.

Public-coin proof: verifier gives its randomness to prover.

Private-coin proof: no such restriction. No more expressive.

Zero knowledge

Pepsi or Coke is in IP
Prosper (P) wants to prove to Véronique (V) that she can
distinguish Pepsi from Coke. Let (X0,X1) = (Pepsi,Coke).

Prover P (Prosper)

(b’ = b)

Verifier V (Véronique)

b ←$ {0,1}glass of Xb

guess b’

accept iff b’ = b

Tasting (or chemistry?)

This interactive proof is complete and sound.

Soundess error = 1/2. Reduce to 2-λ: iterate the protocol λ times.

Graph isomorphism
• I know an isomorphism 𝜎 between two graphs G0, G1: 𝜎(G0) = G1.

• I want to prove G0~G1 without revealing anything about the

isomorphism.

Formally: ℒ = {(G,G'): G~G'}, want to prove (G0,G1) ∈ ℒ.

Prover P Verifier V

𝜃←random isom. on G0 H = 𝜃(G0)

b ←$ {0,1}b

𝜌 = 𝜃 ◦ 𝜎b

accept iff H = 𝜌(Gb)

Bounded prover who knows a witness. Public coin. Perfect ZK.
(H = 𝜌(Gb))

Analysis

13

‣ (Perfect) Completeness.

“If x ∈ ℒ, then P↔V accepts”.

Clearly true.

‣ (Statistical) Soundness.

“If x ∉ ℒ, then ∀ prover P*, Pr[P*↔V rejects] = non-negl(|x|)”.

True: V will reject with probability ≥ 1/2.

‣ Efficiency. V is PPT.

Analysis

14

We want to actually use this → want a bounded prover (PPT).

Graph isomorphism: bounded prover is OK if they know a witness:
the permutation 𝜎. Note: secret knowledge necessary for bounded
prover to make sense.

→ NP languages are great: ℒ = {x | ∃w, R(x,w)} for efficient R.

Two proof goals:

‣ Proof of membership. Want to prove: “x ∈ ℒ ”.

‣ Proof of knowledge. Want to prove: “I know w s.t. R(x,w)”

Completeness: unchanged.

Soundness: for membership: already seen. For knowledge: how
do you express: “proof implies P ‘knows’ w”?

Soundness of a knowledge proof

15

Prover P Extractor E

witness w
s.t. R(x,w)

...

Knowledge soundness.

∃ efficient extractor E that, given access to P and x, can compute
w such that R(x,w) (with non-negligible probability, and for any P
that convinces V with non-negligible probability).

x

can control completely,
including random tape

Knowledge soundness for Graph Isomorphism

16

Extractor:

- calls P, gets H = 𝜃(G0).

- asks b = 0, and b = 1. This is legitimate due to randomness
control! Gets back 𝜌0, 𝜌1 with H = 𝜌0(G0) = 𝜌1(G1).

- G1 = 𝜌1-1◦𝜌0(G0) → witness 𝜎 = 𝜌1-1◦𝜌0.

Special soundness: answering two challenges reveals witness.

Prover P Verifier V

𝜃←random isom. on G0 H = 𝜃(G0)

b ←$ {0,1}b

𝜌 = 𝜃 ◦ 𝜎b

accept iff H = 𝜌(Gb)

(H = 𝜌(Gb))

Towards zero knowledge

17

For language in NP, witness itself is a proof of knowledge...

‣ Zero-knowledge: prove membership or knowledge while
revealing nothing else.

Prover P Verifier V

𝜎

accept iff G1 = 𝜎(G0)

(G1 = 𝜎(G0))

Honest-verifier zero-knowledge

18

Prover P Verifier V

Simulated
transcript

...

Honest-verifier zero-knowledge.

The (interactive) proof system (P,V) is zero-knowledge iff:

∃ efficient (PPT) simulator S s.t. ∀ x ∈ ℒ, transcript of P interacting
with V on input x is indistinguishable from the output of S(x).

x x

Simulator S
x

Indistinguishable

Analysis

19

Point of definition:

‣ anything V could learn from interacting (honestly) with P, could

also learn by just running S.

‣ S is efficient and knows no secret information.

⇒ Anything V can compute with access to P, can compute without P.

That expresses formally: “V learns nothing from P”.

‣ Is the Graph Isomorphism proof ZK?

Yes. Simulator: choose b in {0,1}, and random permutation 𝜋 of Gb.
Publish as simulated transcript: (𝜋(Gb),b, 𝜋). This is identically
distributed to a real transcript → perfect zero-knowledge.

Key argument: 𝜋(Gb) for uniform 𝜋 does not depend on b.

Types of zero knowledge

20

Let 𝜌 be the distribution of real transcrpits, 𝜎 simulated transcript.

‣ Perfect ZK: 𝜌 = 𝜎.

‣ Statistical ZK: dist(𝜌,𝜎) is negligible. (dist = statistical distance)

‣ Computational ZK: advantage of efficient adversary trying to

distinguish 𝜌 from 𝜎 is negligible.

Likewise: completeness, soundness can be perfect/statistical/
computational.

What if the prover is malicious (does not follow the protocol?)

implies

Honest-verifier Zero-knowledge

21

Prover P* Verifier V

Simulated
transcript

...

Zero-knowledge.

The (interactive) proof system (P,V) is zero-knowledge iff:

∀ prover P*, ∃ PPT simulator S s.t. ∀ x ∈ ℒ, transcript of P*
interacting with V on input x is indistinguishable from output of S(x).

x x

Simulator S
x

Indistinguishable

Summary

22

A ZK proof is (perfectly/statistically/computationally):

1.Complete

2.Sound

3.Zero-knowledge.

Examples

Graph isomorphism
• I know an isomorphism 𝜎 between two graphs G0, G1: 𝜎(G0) = G1.

• I want to prove G0~G1 without revealing anything about the

isomorphism.

Formally: ℒ = {(G,G'): G~G'}, want to prove (G0,G1) ∈ ℒ.

Prover P Verifier V

𝜃←random isom. on G0 H = 𝜃(G0)

b ←$ {0,1}b

𝜌 = 𝜃 ◦ 𝜎b

accept iff H = 𝜌(Gb)

Bounded prover who knows a witness. Public coin. Perfect ZK.

Graph non isomorphism
• I am an unbounded prover who knows G0≁G1.

• I want to prove G0≁G1 without revealing anything else.

Formally: ℒ = {(G,G'): G≁G'}, want to prove (G0,G1) ∈ ℒ.

Prover P Verifier V

𝜃←random isom. on Gb

b ←$ {0,1}

H = 𝜃(Gb)

b’
accept iff b’ = b

return b’ iff Gb’ ~H

Unbounded prover. Private coin. Not ZK for malicious V. Hints
IP≠NP.

Knowledge of a discrete log
• Let 𝔾 = <g> ~ ℤp and y ∈ 𝔾. I know x ∈ ℤp such that y = gx.

•Corresponding language is trivial! ∀y ∃x, y = gx. But proof of

knowledge still makes sense.
Prover P Verifier V

k ←$ ℤp r = gk

e ←$ ℤpe

s = k - xe

accept iff r = gsye

Known as Schnorr protocol.

Analysis of Schnorr protocol

‣ (Perfect) Completeness.

Clear.

‣ (Special) Knowledge soundness.

Extractor: gets r = gk, asks two challenges e≠e’, gets back s,
s’ with r = gsye = gs’ye’. Yields y = g(s-s’)/(e’-e).

‣ (Perfect) Honest-verifier zero knowledge.

Simulator: draw e ←$ ℤp, s ←$ ℤp, then r = gsye. Return
transcript (r,e,s). Note r, e still uniform and independent →
distribution is identical to real transcript.

We will use this for a signature!

Sigma protocols and NIZK

Equality of exponents = DH language
• Let 𝔾 ~ ℤp, g, h ∈ 𝔾. I know x ∈ ℤp such that (y, z) = (gx, hx).

•Corresponding language is Diffie-Hellman language (for fixed g, h)!

ℒ = {(g, ga, gb, gab): a, b ∈ ℤp} ↔ ℒ ’= {(ga, ha): a ∈ ℤp} for h = gb

Prover P Verifier V

k ←$ ℤp q = gk, r = hk

e ←$ ℤpe

s = k - xe
accept iff q = gsye

and r = hsze

This is two ‘simultaneous’ executions of Schnorr protocol, with
same (k,e). Soundness and ZK proofs are the same.

We will use this in a voting protocol!

Sigma protocol

Prover P Verifier V

k ←$ ℤp r = gk

e ←$ ℤpe

s = k - xe

accept iff r = gsye

Schnorr protocol:

Commit

Challenge

Response

Public-coin ZK protocols following this pattern = Sigma Protocols.

Fiat-Shamir transform:

By setting Challenge = Hash(Commit), can be made non-interactive
→ Non-Interactive Zero-Knowledge (NIZK)

Sigma protocol → signature

NIZK knowledge proof: “I know a witness w for R(x,w)” and can prove
it non-interactively without revealing anything about w.

This is an identification scheme.

Sigma protocol → can integrate message into challenge randomness.

This yields a signature scheme!

Public key: x

Secret key: w

Sign(m): signature = NIZK proof with challenge = hash(commit,m)

Verify signature = verify proof.

That is the Fiat-Shamir transform.

Example: Schnorr signature

k ←$ ℤp r = gk

e ←$ ℤpe

s = k - xe

accept iff r = gsye

Schnorr signature:

Public key: y = gx

Secret key: x

Sign(m): signature 𝜎 = (r,s) with r = gk for k ←$ ℤp, s = k - xH(r,m).

Verify(𝜎,m): accept iff r = gsyH(r,m).

Security reduces to Discrete Log, in the Random oracle Model.

Schnorr protocol:

ZK proofs for arbitrary circuits

Reductions
Suppose there exists an efficient (polynomial) reduction from ℒ ’ to ℒ :

∃ efficient f such that x ∈ ℒ ’ iff f(x) ∈ ℒ. (Karp reduction.)

If I can do ZK proofs for ℒ, I can do ZK proofs for ℒ ’!

To prove x ∈ ℒ ’, do a ZK proof of f(x) ∈ ℒ.

Also works for knowledge proofs (via everything being constructive).

⇒ The dream: if we can do ZK proof for an NP-complete language, we
can prove everything we ever want!

Notably circuit-SAT.

Commitment scheme

A commitment scheme is a family of functions C: X x A → V s.t.:

• Binding: it is hard to find x≠x' and a, a' s.t. C(x,a) = C(x',a').

•Hiding: for all x, x', the distributions C(x,a) for a ←$ A and

C(x',a) for a ←$ A are indistinguishable.

Instantiation: pick a hash function.

The dream: ZK proof for 3-coloring
• I know an 3-coloring c of a graph G (into ℤ3).

• I want to prove that such a coloring exists, without revealing

anything about the coloring.

Formally: ℒ = {(G): G admits a 3-coloring}

Prover P

(𝜃◦c(v)≠𝜃◦c(w)
and 𝜃◦c(v)∈ℤ3)

Verifier V

𝜃←$ permutation on ℤ3.
commit on 𝜃◦c for

each vertex.

v, w ←$ vertex setopen commit on
𝜃◦c(v),𝜃◦c(w)

Bounded prover with a witness. Public coin. Computational ZK.

The wake-up

...this is incredibly inefficient.

- transform circuit-SAT instance into 3-coloring instance.

- run previous protocol many times (roughly #circuit size ×
security parameter) → gigantic proofs, verification times...

SNARKs

SNARK(?) tile by William Morris.

Finite Fields
Most of what follows is going to happen in a finite field.

For a short presentation of finite fields, see:

https://www.di.ens.fr/brice.minaud/cours/ff.pdf

A key idea we will use:

If P≠Q are two degree-d polynomials over 𝔽q, then for 𝛼 ← 𝔽q
drawn uniformly at random, Pr[P(𝛼)≠Q(𝛼)] ≥ 1 - d/q.

Proof: P-Q is a non-zero polynomial of degree at most d, so it
can be zero on at most d points.

→ to check if two bounded-degree polynomials are equal, it is
enough to check at a random point!

https://www.di.ens.fr/brice.minaud/cours/ff.pdf

A toy example
Prover P Verifier V

...
x x

Prosper Véronique

Véronique wants to compute the 1000th Fibonacci number in ℤp.

She doesn't have time, so she asks Prosper to to it. But she
wants a proof that the computation was correct.

(P & V hate closed formulas and fast exponentiation.)

“Solution”: agree on whole computation circuit → encode as
SAT problem → transform into 3-coloring problem → include
NIZK proof of that 3-coloring problem with the result.

Remark: size of proof is linear in the size of the circuit Véronique
doesn't want to compute.

SNARK

We would like to achieve zero-knowledge proofs that are succint
and non-interactive.

Succint Non-interactive Argument of Knowledge: SNARK.

Also a fantastical beast by Lewis Caroll:

A new approach

Prosper computes the Fibonacci sequence f1, ..., f1000 in ℤp.

He sends f1, f2, and f1000 to Véronique.

This line of presentation is loosely borrowed from Eli Ben-Sasson:

https://www.youtube.com/watch?v=9VuZvdxFZQo

Magic claim: she will be able to check that this computation was
correct, for all i, with 99% certainty, by asking Prosper for only 4
values in ℤp.

Now V. wants to check fi+2 = fi + fi+1 for all i's.

Disclaimers:
- we assume Prosper answers queries honestly (for now).

- from now on, assume |ℤp| is “large enough”, say |ℤp| > 100000.

(Otherwise, just go to a field extension.)

https://www.youtube.com/watch?v=9VuZvdxFZQo

A new approach

Setup: Prosper interpolates a degree-1000 polynomial P in ℤp
such that P(i) = fi for i = 1, ..., 1000.

Let D = (X-1)⋅(X-2)⋅...⋅(X-998).

P(i+2) - P(i+1) - P(i) = 0 for i = 1,...,998

D divides P(X+2) - P(X+1) - P(X)
P(X+2) - P(X+1) - P(X) = D⋅H for some H of degree 2

⇒
⇒

How Véronique checks that the computation was correct:

- Véronique draws 𝛼 ← ℤp uniformly, computes D(𝛼).

- She asks Prosper for P(𝛼), P(𝛼+1), P(𝛼+2), H(𝛼).

- She accepts computation was correct iff:

P(𝛼+2) - P(𝛼+1) - P(𝛼) = D(𝛼)⋅H(𝛼)

Why the approach works

Completeness: if Prosper computed the fi's correctly, then he can
compute H(𝛼) as required.

Soundness: if Prosper computed the fi's incorrectly, then no
matter what degree-two polynomial H Prosper computes:

Pr[P(𝛼+2) - P(𝛼+1) - P(𝛼) = D(𝛼)⋅H(𝛼)] ≤ 1000/p < 0.01
so Véronique will detect the issue with > 99% probability.

It remains to force Prosper to answer queries honestly.

In particular, soundness argument crucially relies on P, H being
bounded-degree polys.

→ need to limit Prosper to computing polys of degree < 1000.

→ A new ingredient: pairings.

Pairings
Pairings. Let 𝔾 = <g>, 𝕋 = <t> be two cyclic groups of order p. A
map e: 𝔾 × 𝔾 → 𝕋 is a pairing iff for all a, b in ℤp,

e(ga,gb) = tab.

Remarks:

- Definition doesn't depend on choice of generators, as long as
t = e(g,g).

- Assume Discrete Log is hard in 𝔾, otherwise this is useless. On
the other hand, e implies DDH cannot be hard (why?).

- First two groups need not be equal in general.

- Can be realized with 𝔾 an elliptic curve, 𝕋 = 𝔽q*.

Encodings
Fix 𝔾 = <g> of order p.

Encode a value a ∈ ℤp as ga. We will write [a] = ga.

We assume DL is hard → decoding a random value is hard. But
encoding is deterministic → checking if h ∈ 𝔾 encodes a given
value is easy.

Additive homomorphism: given encodings [a],[b] of a and b, can
compute encoding of a+b: [a+b] = [a][b].

→ can compute ℤp-linear functions over encodings.

Idea: a pairing e: <g> × <g> → <t> allows computing quadratic
functions over encodings (at the cost of moving to 𝕋).

Keeping Prosper honest, using encodings
First: want to ensure P computed by Prosper is degree ≤ 1000.

Approach:

- Véronique draws evaluation point 𝛼 ← ℤp uniformly at random.

- V. publishes encodings [𝛼], [𝛼2], ..., [𝛼1000].

→ Prosper can compute [P(𝛼)], because it is a linear combination
of the [𝛼i]'s, i ≤ 1000. But only for deg(P) ≤ 1000.

E.g. cannot compute [𝛼1001].

Prosper can compute in the same way [P(𝛼)], [P(𝛼+1)], [P(𝛼+2)], [H(𝛼)].

Remark: Prosper can compute [(𝛼+1)i] from the [𝛼j]'s for j ≤ i.

Remaining issues:

1) ensure value “[P(𝛼)]”returned by Prosper is in fact a linear
combination of [𝛼i]'s.

2) ensure deg(H) ≤ 2, not 1000.

3) ensure [P(𝛼)], [P(𝛼+1)], [P(𝛼+2)] are from same polynomial.

4) last issue: how does Véronique check the result? Cannot
decode encodings.

Dealing with issues (1) and (2)

1) ensure [P(𝛼)] is in fact a linear combination of [𝛼i]'s.
2) ensure deg(H) ≤ 2, not 1000.

Goal

Solution:

V. publishes encodings [𝛼], [𝛼2], ..., [𝛼1000]...

...and also encodings [𝛾], [𝛾𝛼], [𝛾𝛼2], ..., [𝛾𝛼1000] for a uniform 𝛾.

→ Prosper can compute [P(𝛼)], and [𝛾P(𝛼)], and send them to V.

V. can now use the pairing e to check: e([P(𝛼)],[𝛾]) = e([𝛾P(𝛼)],[1]).

The point: if Prosper did not compute [P(𝛼)] as linear combination
of [𝛼i]'s, he cannot compute [𝛾P(𝛼)]. (Note this is quadratic.)

This is an ad-hoc knowledge assumption (true in a generic model).

1) ensure [P(𝛼)] is in fact a linear combination of [𝛼i]'s.

2) ensure deg(H) ≤ 2, not 1000.

Goal

Solution:

V. publishes encodings [𝛼], [𝛼2], ..., [𝛼1000]...

...and also encodings [𝜂], [𝜂𝛼], [𝜂𝛼2] for a uniform 𝜂.

→ Prosper can compute [H(𝛼)], and [𝜂H(𝛼)].

V. can check: e([H(𝛼)],[𝜂]) = e([𝜂H(𝛼)],[1]).

The point: if Prosper did not compute [H(𝛼)] as linear combination
of [𝛼i]'s, i ≤ 2, he cannot compute [𝜂H(𝛼)].

Dealing with issue (3)

3) ensure [P(𝛼)], [P(𝛼+1)], [P(𝛼+2)] are from same polynomial.
Goal

Solution:

Let's deal with [P(𝛼)], [P(𝛼+1)].

V. publishes [𝜃], [𝜃((𝛼+1)2-𝛼2)], ..., [𝜃((𝛼+1)1000-𝛼1000)] for a uniform 𝜃.

→ Prosper can compute [𝜃(P(𝛼+1)-P(𝛼))].

V. can check: e([𝜃(P(𝛼+1)-P(𝛼))],[1]) = e([P(𝛼+1)-P(𝛼)],[𝜃]).

The point: if Prosper did not compute [P(𝛼)], [P(𝛼+1)] with same
coefficients, he cannot compute [𝜃(P(𝛼+1)-P(𝛼))].

Checking divisibility
Summary of 3 previous slides: we have forced Prosper to
compute [P(𝛼)], [H(𝛼)], ... as polys of right degree.

Remains to check P(𝛼+2)-P(𝛼+1)-P(𝛼) = D(𝛼)⋅H(𝛼), using the
encodings.

No problem. this is a quadratic equation. Check:

e([P(𝛼+2)-P(𝛼+1)-P(𝛼)],[1]) = e([D(𝛼)],[H(𝛼)])

Conclusion. Since P(𝛼), H(𝛼) etc are polys of right degree, original
argument applies: checking equality at random 𝛼 ensures with
≥ 1-1000/|ℤp| > 99% probability the equality is true on the whole
polys → D divides P(𝛼+2)-P(𝛼+1)-P(𝛼) → computation was correct.

Efficiency

Prosper proves correct computation by providing a constant
number of encodings: [P(𝛼)], [𝛾P(𝛼)], [H(𝛼)], [𝜂H(𝛼)] etc.

#encodings is absolute constant, independent of circuit size.

Pre-processing by Véronique was still linear in circuit size:
publishes [𝛼i], i ≤ 1000, etc. But...

- Can be amortized over many circuits.

- Exist “fully succint” SNARKs, with O(log(circ. size)) verifier pre-
processing.

Working with circuits directly

In essence: we have seen how to do a succint proof of polynomial
divisibility.

Can in principle encode valid machine state transitions as
polynomial constraints → succint proofs for circuit-SAT.

Now: want to do that more concretely = get SNARKs for circuit-
SAT (directly).

We are going to encode a circuit as polynomials.

For simplicity, forget about negations. Write
circuit with (XOR), (AND) gates. Then:

1) Associate an integer i to each input; and to
each output of a mult gate .

2) Associate an element ri ∈ 𝔽q to mult gate i.

Now circuit can be encoded as polys. For each i
= 1,...,6, define polynomials vi, wi, yi:

‣ vi(rj)=1 if value i is left input to gate j, 0 if not.

‣ wi(rj)=1 if value i is right input to gate j, 0 if not.

‣ yi(rj)=1 if value i is output of gate j, 0 if not.

1 2 3 4

5

6

r6

r5

In this case, vi, wi, yi are degree 2.

Encoding mult gate 5:

‣ v3(r5)=1, vi(r5)=0 otherwise.

‣ w4(r5)=1, wi(r5)=0 otherwise.

‣ y5(r5)=1, yi(r5)=0 otherwise.

Encoding mult gate 6:

‣ v1(r6)=v2(r6)=1, vi(r6)=0 otherwise.

‣ w5(r6)=1, wi(r6)=0 otherwise.

‣ y6(r6)=1, yi(r6)=0 otherwise.1 2 3 4

5

6

r6

r5

Exemple.

The point: an assignment of variables c1, ..., c6 satisfies the circuit iff:

(𝝨civi(r5))⋅(𝝨ciwi(r5)) = 𝝨ciyi(r5) and (𝝨civi(r6))⋅(𝝨ciwi(r6)) = 𝝨ciyi(r6)

Equivalently:

(X-r5)(X-r6) divides (𝝨civi) ⋅ (𝝨ciwi) - 𝝨ciyi

c1 c2 c3 c4

c5

c6

→ we have reduced:

“Prosper wants to prove he knows inputs satisfying a circuit.”
into:

“Prosper wants to prove he knows linear combinations V = 𝝨civi, W
= 𝝨ciwi, Y = 𝝨ciyi, such that T = (X-r5)(X-r6) divides VW-Y.”

⇔ ∃ H, T⋅H = V⋅W-Y
1. quadratic!

2. polynomial equality!We know how to do that!

V. publishes [𝛼i], plus auxiliary [𝛾𝛼i] etc... (at setup, indep. of circuit)

P.'s proof is [V(𝛼)], [W(𝛼)], [Y(𝛼)], [H(𝛼)], plus auxiliary [𝛾V(𝛼)] etc...

V. checks e(T(𝛼),H(𝛼))=e([V(𝛼)],[W(𝛼)])e([Y(𝛼)],[1])-1 and auxiliary stuff.

Constant-size proof. Construction works for any circuit.

In practice

Construction was proposed in Pinocchio scheme

(Parno et al. S&P 2013).

Practical: proofs ~ 300kB, verification time ~ 10 ms.

- Introduced for verifiable outsourced computation.

- Further improvements since.

Can be made zero-knowledge at negligible additional cost.

A ZK application: e-Voting

e-Voting

Are going to see (more or less) Helios voting system.

https://heliosvoting.org/

Used for many small- to medium-scale elections.

Including IACR (International Association for Cryptologic
Research).

We will focus on yes/no referendum.

Nice description of Belenios variant: https://hal.inria.fr/hal-02066930/document

https://heliosvoting.org/
https://hal.inria.fr/hal-02066930/document

Goals

We want:

‣Vote privacy

‣Full verifiability:

• Voter can check their vote was counted

• Everyone can check election result is correct

Every voter cast ≤1 vote, result = number of yes votes

We do not try to protect against:

‣Coercion/vote buying

Nice description of Belenios variant: https://hal.inria.fr/hal-02066930/document

https://hal.inria.fr/hal-02066930/document

Basics

Election = want to add up encrypted votes...

→ just use additively homomorphic encryption!

Helios: use ElGamal. Multiplicatively homomorphic.

To make it additive: vote for v is gv.

Recovering v from gv is discrete log, but brute force OK (v small).

In addition: voters sign their votes.

Helios: Schnorr signatures.

Who decrypts the result?

Public bulletin board

• Voter public sig. keys: pki

• Master public key: mpk=gx

• votes: ci = encmpk(vi)

• signatures: sigski(ci)

Voter i

owns voter secret sig. key ski

wants to vote vi ∈ {0,1}

Decryption trustee

generates ElGamal master
key pair (mpk=gx,msk=x)

generates

Anobody
checks

• encrypted result: c = ∑ ci

• result: decmsk(c)

First attempt

?

Problem: how to verify final result.

Making election result verifiable

ElGamal encryption:

Master keys: (mpk=gx,msk=x)

Encrypted election result c = (cL = gk,cR = m∙gxk)

Election result = Dec(c) = m = cR / cLx

→ giving decryption is same as giving cLx

→ to prove decryption is correct, prove:

 discrete log of (cL)x in base cL = discrete log of mpk=gx in base g

⇔ (g,gx, cL, cLx) ∈ Diffie-Hellman language
→ to make election result verifiable: decryption trustee just provides
NIZK proof of DH language for (g,gx, cL, cLx)!

Take ZK proof of DH language from earlier + Fiat-Shamir → NIZK

Note ZK property is crucial.

Public bulletin board

• Voter public sig. keys: pki

• Master public key: mpk=gx

• votes: ci = encmpk(vi)

• signatures: sigski(ci)

Voter i

owns voter secret sig. key ski

wants to vote vi ∈ {0,1}

Decryption trustee

generates ElGamal master
key pair (mpk=gx,msk=x)

generates

Anobody
checks

• encrypted result: c = ∑ ci

• result: decmsk(c) + DH proof

Now with verifiable election result

Problem 2: how about I vote encmpk(1000)?

Proving individual vote correctness

In addition to vote encmpk(vi) and signature sigski(ci), voter provides NIZK
proof that vi ∈ {0,1}.

Helios doesn't use SNARK here, but more tailored proof of disjunction.

Note ZK property is crucial again.

To prevent “weeding attack” (vote replication):

NIZK proof includes gk, pki in challenge randomness (hash input of
sigma protocol), where gk is the randomness used in encmpk(vi).

→ proof (hence vote) cannot be duplicated without knowing ski.

Public bulletin board

• Voter public sig. keys: pki

• Master public key: mpk=gx

• votes: ci = encmpk(vi)+proof ≤1

• signatures: sigski(ci)

Voter i

owns voter secret sig. key ski

wants to vote vi ∈ {0,1}

Decryption trustee

generates ElGamal master
key pair (mpk=gx,msk=x)

generates

Anobody
checks

• encrypted result: c = ∑ ci

• result: decmsk(c) + DH proof

Now with full verifiability

Bonus problem: replace decryption trustee by threshold scheme.

