
MPRI, 2019

Brice Minaud

email: brice.minaud@inria.fr
website: www.di.ens.fr/brice.minaud/

Techniques in Cryptography and Cryptanalysis

What is Cryptography?

 2

Cryptography: design and analysis of secure communications.

Cryptanalysis: subfield that focuses on analyzing the security of
those designs, including attacks.

Cryptography serves as a foundation of computer security.

Computer Security

Cryptography

Cryptanalysis

What is this course?

 3

“Techniques in Cryptography and Cryptanalysis”: will cover (a
choice of) important areas of cryptography.

Current plan:

Bases: public-key encryption, signatures, symmetric
cryptography…

Some more advanced topics: lattices, zero-knowledge proofs,
multi-party computation, identity-based encryption.

Teachers:

Brice Minaud

8 x 1.5h, 1st period

Michel Abdalla

8 x 1.5h, 2nd period

What is security?

 4

Historically, most basic goal = protecting the confidentiality of data
exchanges.

Data exchange

Alice BobEve

Kerckhoff’s (first three) principles:

1.The system must be practically, if not mathematically,

indecipherable.

2.It should not require secrecy, and it should not be a problem

should it fall into enemy hands.

3.It must be possible to […] change or modify [the key] at will.

One-Time Pad

 5

Data exchange

Alice BobEve

Modern version: the algorithms are public. They are parametrized
by a (secret) key.

key K key K

One-Time Pad.
Message space: M ← {0,1}n Key space: K ← {0,1}n

Encryption(M): C = M ⊕ K
Decryption(C): M = C ⊕ K

Security of One-Time Pad

 6

One-Time Pad.
Message space: M ← {0,1}n Key space: K ← {0,1}n

Encryption(M): C = M ⊕ K
Decryption(C): M = C ⊕ K

Naive security: impossible for Eve to find M from C.

Not great. Encryption could leak last bit of M and still be secure by
that definition.

We want to express that Eve learns nothing about M.

Perfect secrecy

 7

Perfect secrecy, historical version, Shannon, 1949.

Prior distribution: distribution of M known a priori to Eve.

Posterior distribution: distribution of M known to Eve after
seeing the encryption EncK(M) of M (for uniform K).

Perfect secrecy: posterior distribution = prior distribution.

Perfect secrecy, equivalent modern version, folklore, 20th century.

Let M0 and M1 be two arbitrary messages.

Perfect secrecy: EncK(M0) = EncK(M1).

The equality is an equality of distributions. The randomness is
over the uniform choice of K.

OTP and perfect secrecy

 8

Proposition. The One-Time Pad achieves perfect secrecy.

Proof. Enc(M0) = C iff K = C ⊕ M0.

So there is exactly one K that yields each possible C. Since K is
uniform, so is C. Thus:

Enc(M0) = Unif({0,1}n) = Enc(M1).

(Note: this would hold in any group.)

Theorem (Shannon ’49). If perfect secrecy holds, it must be the
case that the two parties share some prior information (a key) with:

length(key) ≥ length(message)

where length denotes the bit length.

So OTP is essentially the only perfectly secure scheme.

Measuring Security

Advantage

 10

‣Previous solution is infeasible in most cases.

→ we must be content with imperfect security.

‣The relevant notion to formally express that Eve cannot learn
anything is often about the indistinguishability of two distributions.

Roadmap of a security definition: the adversary is an algorithm
attempting to infer secret information.

Often, this will be expressed as the adversary trying to distinguish
two distributions.

Advantage.

Let D0 and D1 be two probability distributions. The advantage of
an adversary A (i.e. an algorithm, here with output in {0,1}) is:

AdvD0,D1(A) = |2Prb ${0,1}(A(Db) = b)� 1|
<latexit sha1_base64="hIh5Ya4kQ83D4Bg0XoJJYhZPJYo=">AAADV3icbVJLj9MwEHZbWEp5bAtHLhZlpYJKlRQkuCB1RQ9wKxLdXakukeNMWmudh2ynUHkj8Y/4NRz2Av+CKzhJkTbdHSmTTzPfPPxp/FRwpR3nstFs3bp9cKd9t3Pv/oOHh93eoxOVZJLBnCUikWc+VSB4DHPNtYCzVAKNfAGn/vn7In+6Aal4En/W2xSWEV3FPOSMahvyuh8NkRE+Djb5FzP1nOHUc/PB8XP8Dl+My9RM5p7xMVmBVh55holxhi7JLWkw9fyCaN1L7F543b4zckrD14G7A320s5nXa/whQcKyCGLNBFVq4TqpXhoqNWcC8g7JFKSUndMVLCyMaQRqaco35/jIRgIcJtJ+scZl9GqFoZFS28i3zIjqtdrPFcGbcotMh2+XhsdppiFm1aAwE1gnuBAQB1wC02JrAWWS210xW1NJmbYyd46ujlmD2ICuPcSosJzcIRJi+MqSKKJx8MKQkEZcbAMIaSZ0bogK/+ObZBgGG56qnSLfKkk6RIAmieQrHlMhINSkcPWw/a01KX19BVOS7eBivSSF2OQlZCJRQPyVTLK01jzfry+b2gY0tEpUfKiXVYyOvRR3/y6ug5PxyH01Gn963Z9Mvlc300ZP0FM0QC56gyboA5qhOWLoB/qJfqHfzcvm39ZBq11Rm43dnT1GNWv1/gH3xRsD</latexit>

Types of security

 11

let M0 and M1 be two arbitrary messages…

Perfect security:

EncK(M0) = EncK(M1) (as distributions, for uniform K).

Equivalently: AdvEncK(M0), EncK(M1)(A) = 0, for every A.

Statistical security:

AdvEncK(M0), EncK(M1)(A) is negligible, for every A.

Computational security:

AdvEncK(M0), EncK(M1)(A) is negligible, for every efficient adversary A.

Quantifying negligibility, efficiency

 12

“Asymptotic” security “Concrete” security

Negligible
(probability) O(λ-c) for all c usually ≤ 2-λ/2 or 2-λ

Efficient
(adversary) Poly(λ) significantly less than

2λ operations

Security parameter, often denoted λ: used to quantify security.

• “Asymptotic” security: used in more theoretical results. λ

remains a variable.

• “Concrete” security: used in more practical results.

Typically λ = 80, 128, or 256. (e.g. “128-bit” security.)

Concreteness of security

 13

Bits of
security Practical significance

32 Your phone can do it, instantly.

66 Bitcoin hashes per second worldwide.

80 Bitcoin hashes per year worldwide.

(Some state actors could do it?)

128 Considered secure. Standard choice.

(Watch out for trade-offs, like time/data or multi-target)

256 Arguments for impossibility based on physics.

(Relevant for very long-term or quantum security.)

Bitcoin data from https://www.blockchain.com/en/charts/hash-rate in 2019.

https://www.blockchain.com/en/charts/hash-rate

Types of security, again

 14

let M0 and M1 be two arbitrary messages…

Perfect security:

EncK(M0) = EncK(M1) (as distributions, for uniform K).

Equivalently: AdvEncK(M0), EncK(M1)(A) = 0, for every A.

Statistical security:

AdvEncK(M0), EncK(M1)(A) is negligible, for every A.

Computational security:

AdvEncK(M0), EncK(M1)(A) is negligible, for every efficient adversary A.

Statistical distance

 15

Statistical distance.

Let D0 and D1 be two probability distributions over some set X.

Good tool to bound or analyze advantage.

Proposition 1. This is, in fact, a distance.

Proof. x, y ↦ |y - x| is a distance. So Dist(⋅,⋅) is a sum of distances.
(Can also write it out.)

Dist(D0,D1) =
1

2

X

x2X

|D0(x)� D1(x)|
<latexit sha1_base64="11HlaaOn81WiS2ArjS+lLPk2WRc=">AAADUHicbVJbb9MwFHY7LiNc1sEjLxbVpA6NKilI8IJUQR94HBLdKtVV5LgnrTXHiWyntPIi8XP4NTzwAvwRxBs4SZGWbkey/emc71z86USZ4Nr4/q9We+/W7Tt39+959x88fHTQOXx8ptNcMRizVKRqElENgksYG24ETDIFNIkEnEcX78v4+QqU5qn8ZDYZzBK6kDzmjBrnCjvvLFEJHrlGRW8U+id4FAbH+C0msaLMBoUdFETnSWjXmHCJJwW+dLTe+hi/KKkOXIadrt/3K8PXQbAFXbS10/Cw9ZvMU5YnIA0TVOtp4GdmZqkynAkoPJJryCi7oAuYOihpAnpmq88W+Mh55jhOlTvS4Mp7NcPSROtNEjlmQs1S78ZK502xaW7iNzPLZZYbkKxuFOcCmxSXyuE5V8CM2DhAmeJuVsyW1MlknL7e0dU2SxArMI2PWB1XnT2iQMJnliYJlfPnlsQ04WIzh5jmwhSW6Pg/vkmGk/mKZ3qryLqWxCMCDEkVX3BJhYDYkPJqut2zNKS6myPYiuwal+OlGUhbVJCJVAOJFirNs0bxYje/KuoK0NgpUfOhmVYzPLcpwe5eXAdng37wsj/4+Ko7HH6pd2YfPUXPUA8F6DUaog/oFI0RQ1/RN/QD/Wx/b/9p/91r1dT29kVPUMP2vH+XnBpK</latexit>

Statistical distance, cont'd

 16

Proposition 2. The statistical distance Dist(D0,D1) is equal to the
advantage of the best adversary trying to distinguish D0 from D1.

Proof. Let A be the adversary such that, given x ← Db, A outputs 0
iff D0(x) ≥ D1(x). A is clearly best possible.

AdvD0,D1(A) = 2Prx Db(x),b ${0,1}(A(x) = b)� 1

= 2
X

x0

X

b0

Pr(A(x) = b|x = x 0, b = b0)

· Prx Db(x = x 0|b = b0)Prb ${0,1}(b = b0)� 1

=
X

x0

X

b0
A(x0)=b0Db(x

0)� 1

=
X

x0

max(D0(x
0),D1(x

0))� 1

= Dist(D0,D1) using:max(a, b) =
1

2
(a+ b + |b � a|).

<latexit sha1_base64="PRyLEvad3C20Wh2QTTZr90khBQc=">AAAE8XicbVNdb9MwFM1KYSN8rfDIi8XY2rKuagqIgTRpE33gcUjsQ5q7yHGc1pqdhNgprbxI/A3eEK/8Gh75N9wkLVs/LNW+uffc45OTWy8WXOlO5+9a5U717r31jfv2g4ePHj/ZrD09VVGaUHZCIxEl5x5RTPCQnWiuBTuPE0akJ9iZd/Uxr5+NWKJ4FH7Rk5j1JRmEPOCUaEi5tbU/BicSHfmj7NL03E6r5zpZ46hpH2C00y1qx0nmmjHCA6YV6rleY9xsIa98dvFLhE2n5eAMuqCCDpDXRHvIwfhir+1Q2S+ZsEolsNSzMvDq2Yz7fxu6RmM4x/WcHZ7rTYztHTxUMaHMtN+/pTLD1I80Wikra5TdQDNtv4VbJXeGKsQWKpdFYkn00POkcYAEhNYLpfXMLnyoN5de9IZCknEDDM1Ruan5eWNMd4YvJPbgO2eNqftN/DUlfrlpNtYmVTwcfCgJScvLFeAgIRQ0mW7WIGgXXngXXXvATq6bbXdzq9PuFAstB8402LKm69itVdaxH9FUslBTQZS6cDqx7huSaE4Fy2ycKgYf4YoM2AWEIZFM9U0xfBnahoyPgiiBX6hRkb3dYYhUaiI9QOZmqsVanlxZA9sXrtbBft/wME41C2l5c5AKpCOUjzbyecKoFhMICE04iEd0SMApDX8Ae/s295CJEdNz9EYFhRQbJyxk32gkJQn9VwYHRHIx8VlAUqFhbFUwi1f50vJHPFZTi8alRzYWTOMo4QMeEiFYoHG+zafhGGpc7PMSTAGGi3N5UcxCU44lFZFi2BskURrPkWeL/QUpEJAAnCjxbL6tRNgwOs7ioCwHp92287rd/fxm6/DwezlEG9Zz64XVsBzrnXVofbKOrROLVvYrl5VBZVhV1R/Vn9VfJbSyNh28Z9bcqv7+Bzixmf8=</latexit>

Statistical distance, cont'd

 17

Corollary. Let A be any algorithm. Then:

Dist(A(D0),A(D1)) ≤ Dist(D0,D1)

Proof. Let B be the best adversary distinguishing D0 from D1, and
C be the best adversary distinguishing A(D0) from A(D1).

Dist(A(D0),A(D1)) = AdvA(D0),A(D1)(C) = AdvD0,D1(C○A)

≤ AdvD0,D1(B) = Dist(D0,D1).

Proposition 3. For all n, Dist(D0n,D1n) ≤ nDist(D0,D1).

Proof.
Dist(An,Bn) ≤ Dist(An,An-1B) + Dist(An-1B,An-2B2) + ... + Dist(ABn-1,Bn).

Sometimes called the “hybrid” argument, although the same term
is also used in more general settings.

Computational version

 18

Advantage of the best adversary = statistical distance.

By extension:

Advantage of a class of adversaries.

Let D0 and D1 be two probability distributions, and A a set of
adversaries. Define:

AdvD0,D1(A) = sup{AdvD0,D1(A) : A ∈ A}

Define A(t) the set of adversaries that terminate in time t. Let:

AdvD0,D1(t) = AdvD0,D1(A(t))

This is still a distance! (exercise)

NB For asymptotic security, what matters usually is to distinguish
two families of distributions. We want (abuse of notation):

AdvD0,D1(Poly(λ)) = Negl(λ)

with D0, D1 (implicitly) parametrized by λ.

Types of security, revisited

 19

let M0 and M1 be two arbitrary messages…

Perfect security:

EncK(M0) = EncK(M1) (as distributions, for uniform K).

Equivalently: Dist(EncK(M1), EncK(M2)) = 0.

Equivalently: AdvEncK(M0), EncK(M1)({all A}) = 0.

Statistical security:

Dist(EncK(M1), EncK(M2)) is negligible.

Equivalently: AdvEncK(M0), EncK(M1)({all A}) is negligible.

Computational security:

AdvEncK(M0), EncK(M1)({efficient A}) is negligible.

A simple example

 20

Consider a Bernoulli (coinflip) distribution B with B(0) = 1/2 - ε and
B(1) = 1/2 + ε. Let U be the uniform distribution on {0,1}. Observe:

Dist(B,U) = ε.

Assume we are doing a one-time pad with an imperfect
randomness source, where the key bits are drawn according to B:

K ← Bn (instead of Un)

Say ε is negligible (asymptotic sense).

Is this still secure?

Perfect security? Statistical? Computational?

A simple example, cont'd

 21

Let's encrypt a message M ∈ {0,1}n.

Dist(EncK(M),Un) = Dist(K⊕M,Un)

≤ Σi<n Dist((K⊕M)i ,U)

= nε i-th bit of K⊕M

For M0, M1 ∈ {0,1}n.

Dist(EncK(M0),EncK(M1)) ≤ Dist(EncK(M0),Un) + Dist(EncK(M1),Un)

≤ 2nε

Note that n⋅Negl(n) = Negl(n) so this is (statistically) secure!

(A more refined analysis shows this grows in . The hybrid
argument is a little crude here.)

p
n✏

<latexit sha1_base64="7grgtzvu+pHYgctF7iDudZ0yMpE=">AAADL3icbVLLitRAFK2Jjxnjq0eXboLNgIg0ySjossGNyxHsmYGpZqhUbnUXU49YddPahIAf4lb3fo24Ebf+hZWkhUnPXEjlcO65Dw43L5X0mKa/dqIbN2/d3t27E9+9d//Bw9H+o2NvK8dhxq2y7jRnHpQ0MEOJCk5LB0znCk7yi7dt/mQFzktrPuC6hLlmCyOF5AwDdT4aUf/RYW0aCqWXqqXG6STtIrkKsg0Yk00cne9Hu7SwvNJgkCvm/VmWljivmUPJFTQxrTyUjF+wBZwFaJgGP6+71ZvkIDBFIqwLn8GkYy9X1Ex7v9Z5UGqGS7+da8lrc3mut0ajeDOvpSkrBMP7yaJSCdqkNSYppAOOah0A406G5RO+ZI5xDPbFB5d7L0GtAAftay+6VWLqwMAnbrVmpnheU8G0VOsCBKsUNjX14j++zpcXxUqWfmPR596jmCpAap1cSMOUAoG0fYZ0+C2Rdu9whboTh8HterYEUzcd5Mp6oPnC2aocNG+267umoQETwYleD8OyXhGH08m2D+UqOD6cZC8nh+9fjafTL/0R7ZEn5Cl5RjLymkzJO3JEZoSTFflKvpHv0Y/oZ/Q7+tNLo53N4T0mg4j+/gOurBJJ</latexit>

Defining Security

 23

Data exchange

Alice BobEve
key K key K

Symmetric Encryption.

Message space M, ciphertext space C, key space K.

Setup: Pick key K ←$ K.

Encryption: encryption of M ∈ M is C = EncK(M) ∈ C.

Decryption: decryption of C is M = DecK(C).

Symmetric encryption: definition

These three algorithms/protocols are assumed to be efficient.

Symmetric encryption: confidentiality

 24

Symmetric Encryption.

Message space M, ciphertext space C, key space K.

Setup: Pick key K ←$ K.

Encryption: encryption of M ∈ M is C = EncK(M) ∈ C.

Decryption: decryption of C is M = DecK(C).

Cryptographic definitions usually require two properties:

Correctness: scheme fulfills desired functionality.

Security: scheme is secure. (Usually the hard one.)

Here, for symmetric encryption:

Correctness: for all M ∈ M,

 DecK(EncK(M)) = M.

Summary of the previous episodes

 25

Hence we are content with:

Computational security:

AdvEncK(M1), EncK(M2)(A) is negligible, for every efficient adversary A.

Is this enough?

No: we want security even if adversary knows encryption of
known, or chosen plaintexts.

Proposition. The One-Time Pad achieves perfect secrecy.

…as long as a fresh key of the same length of the message is used
for each message. Impractical. We have seen Shannon’s theorem:
this is essentially the only perfectly secret scheme.

 26

Adversary wins iff b’ = b.

Computational security: the advantage of an efficient adversary
in this game is negligible.

(This is just an equivalent statement of what was before, using
games.)

IND: indistinguishability game
Adversary Challenger

Pick M1, M2. M1, M2

Pick b ←$ {0,1}

Pick K ← {0,1}k.

EncK(Mb)

Compute b’.

 27

Adversary Challenger

Pick M1, M2. M1, M2

Pick b ←$ {0,1}

Pick K ← {0,1}k.

EncK(Mb)

Compute b’.

IND-CPA: indist. under Chosen-Plaintext Attacks

Pick M’i. M’i

EncK(M’i)

Pick M”i. M”i

EncK(M”i)

Repeat
freely

Repeat
freely

Adversary wins iff b’ = b.

 28

Adversary Challenger

Pick M1, M2. M1, M2

Pick b ←$ {0,1}

Pick K ← {0,1}k.

C* = EncK(Mb)

Compute b’.

IND-CCA: indist. under Chosen-Ciphertext Attacks

Pick M’i. M’i

EncK(M’i)Repeat
freely Pick Ci. Ci

DecK(Ci)

Pick M”i, C’i…Same
as 1st
step

…

…with C’i ≠ C*

Symmetric encryption: complete definition

 29

Symmetric Encryption.

Message space M, ciphertext space C, key space K.

Setup: Pick key K ←$ K.

Encryption: encryption of M ∈ M is C = EncK(M) ∈ C.

Decryption: decryption of C is M = DecK(C).

Correctness: for all M ∈ M,

 DecK(EncK(M)) = M.

Security: typically IND-CPA, or IND-CCA…

Caveats:
- Deterministic scheme cannot be IND-CPA or IND-CCA. Need
randomness, or nonces.

- “Security” above only covers confidentiality, not integrity.

 30

message

Alice Bob
public
key PK

Publick-key encryption: definition

private
key SK

Publick-Key Encryption.

Message space M, ciphertext space C,

and secret (a.k.a. private) key space SK, public key space PK.

Setup: output private/public key pair (SK,PK) from (SK, PK).

Encryption: encryption of M ∈ M is C = EncPK(M) ∈ C.

Decryption: decryption of C is M = DecSK(C).

Public-key encryption

 31

Publick-Key Encryption.

Message space M, ciphertext space C,

and secret (a.k.a. private) key space SK, public key space PK.

Setup: output private/public key pair (SK,PK) from (SK, PK).

Encryption: encryption of M ∈ M is C = EncPK(M) ∈ C.

Decryption: decryption of C is M = DecSK(C).

Correctness: for all M ∈ M, if (SK,PK) is output by Setup, then

 DecSK(EncPK(M)) = M.

Security: typically IND-CPA, or IND-CCA… (note: IND = IND-CPA.)

You encrypt with the public key, decrypt with the private key.

So how do you prove security?

 32

Short answer: we cannot. We don’t even know P ≠ NP.

Illustration: say that a PKE scheme exists iff the Setup, Enc, Dec
algorithms are polynomial, and the scheme is correct and IND-CPA
secure (against polynomial adversaries).

Question: does a public-key encryption scheme exist?
Answer: we don’t know.

Workaround: rely on problems that are assumed intractable for
polynomial-time adversaries, like integer factorization.

General paradigm: hard problem + trapdoor.

The trapdoor is typically the private key. Without it, decryption is
hard; with it, it is easy. (e.g. easy = polynomial-time.)

Security reduction

 33

To prove the security of a construction, we reduce it to the
hardness of a standard problem.

That means a security proof proves something of the form :

If there exists an efficient adversary A achieving a non-negligible
advantage against the cryptographic scheme,

Then there exists an efficient adversary B achieving a non-
negligible advantage against the hard problem.

→ if the hard problem is in fact hard, the scheme is secure.

Typically, the proof builds B from A.

RSA

 34

• Select a pair of random primes p, q. Set N = pq.
• Select integers d, e such that de = 1 mod (p-1)(q-1).

‣ The public key is pk = (e,N).

‣ The secret key is sk = d.

Encryption: for a message m ∈ ℤ*N, the ciphertext is:

c = me mod N.

Decryption: for a ciphertext c, the message is:

m = cd mod N.

You can think of e = 3.

Hard problem: computing third root modulo N.

Trapdoor: knowledge of prime decomposition N = p ∙ q.

Rivest, Shamir, Adleman ’77.

RSA: basic facts

 35

Caveats:
- This was “textbook” RSA. It is not IND-CPA or IND-CCA. Why?

- Basic RSA is malleable. It is multiplicatively homomorphic:

Enc(a)Enc(b) = aebe = (ab)e = Enc(ab)

- If e = 3 and m < N1/3, Enc(m) = m3 over the integers!

- many other issues…

This is because RSA is not actually a PKE scheme. It is a trapdoor
permutation.

In order to use it as PKE, it must be combined with a mode of
operation such as OAEP. (Often implicit when people say “RSA”.)

Hardness of RSA

 36

If you can factorize N = pq, you recover the secret key.

The converse is not true: the security of RSA does not reduce to
integer factorization (well-known hard problem).

Security of RSA.

Given N = pq, e, and xe mod N for x ←ℤ*N, find x mod N.

Essentially ad-hoc, but the best known attack is integer
factorization. Much better than brute-force (sub-exponential).

See course by Morain/Blanchet to learn (much) more!

Hardness of integer factorization

 37

Check out https://www.keylength.com/en/3/

ECRYPT recommendations:

ANSSI recommendations:

https://www.keylength.com/en/3/

 38

no shared key

Alice Bob
?

Key exchange

?
Eve

Problem: Alice and Bob do not share a key. Assume a secure
channel with an eavesdropper.

Goal: Alice and Bob will generate a shared key. Eve learns nothing.

 39

Diffie-Hellman key exchange

ga

gb

Eve

Pick b ←ℤN.Pick a ←ℤN.

Alice Bob

Fix a cyclic group G of order N, generated by g. These parameters
are public and can be reused. (There is no “trapdoor”.)

Compute (gb)a Compute (ga)b

In the end, Alice and Bob can both compute gab = the shared key.

Security of computational Diffie-Hellman.

Given G, g, ga, gb, for a,b ←ℤN, find gab.

Like RSA, essentially ad-hoc. But best known attack is to compute
the discrete logarithm.

 40

Diffie-Hellman: security
Security of computational Diffie-Hellman (CDH).

Given G, g, ga, gb, for a,b ←ℤN, find gab.

That is: Eve cannot compute the shared key.

Security of decisional Diffie-Hellman (DDH).

Given G, g, distinguish (ga, gb, gab) from (ga, gb, gc) for a,b,c ←ℤN.

That is: Eve knows nothing about the shared key.

Discrete logarithm.

Given G, g, and ga, for a ←ℤN, find a.

If you can solve the discrete logarithm, you can solve DDH. No
converse, but it is the best known attack. Note: N is usually known.

DDH ≤ CDH ≤ DL

 41

Security of the discrete logarithm
Typical groups for Diffie-Hellman (hence, DL is hard):

- subgroup of prime order of ℤp*. Note: not ℤp* itself.

- elliptic curves.

To learn more, see the Morain/Blanchet course.

For secure size of N, in ℤp*, same recommendations as RSA! For
both ECRYPT and ANSSI.

Deep connections between integer facorization & DL algorithms.

In elliptic curves, for security parameter λ, 2λ bits is enough.
Elliptic curves behave roughly like a generic group: best attacks
are generic “square root” attacks that work in any group.

NB: like RSA, all this is broken by quantum computers…

 42

From Diffie-Hellman to ElGamal

ga

gb

Pick b ←ℤN.Pick a ←ℤN.

Alice Bob

Diffie-Hellman:

Compute (gb)a Compute (ga)b

If Alice wants to send a message m∈G to Bob, she can send:

c = m⋅gab

Indeed, DDH says gab is indistinguishable from random, so m⋅gab
is essentially a one-time pad.

 43

ElGamal encryption

• Assume a group G of order N, generator g, where DDH is hard.
• Pick k ←$ ℤN.

‣ The public key is pk = (gk).

‣ The secret key is sk = k.

Encryption: to encrypt m ∈ G, pick r ←$ ℤN. The ciphertext is:

c = (gr, m⋅gkr).

Decryption: for a ciphertext c = (c1, c2), the message is:

m = c2 / c1k.

Hard problem: DDH in G.

Trapdoor: knowledge of discrete logarithm k of gk.

 44

ElGamal security

Proposition. If DDH is hard, then ElGamal is IND-CPA secure.

Reduction: Assume adversary A against ElGamal.

Build B against DDH:

B receives sample (x,y,z) ← Db from DDH challenge, b ∈ {0,1}.

B calls A, who provides m0,m1.

B picks c ←$ {0,1}, sends ciphertext:

(y,z⋅mc)

B receives c’ from A.

B outputs (c = c’).

Note: ElGamal is not IND-CCA secure. It is malleable.

 45

ElGamal security
Proof of reduction:
• If b = 0, (x,y,z) is a real DDH instance, and (y,z⋅mc) is a valid

ElGamal encryption of mc. So AdvDDH(B) = AdvElGamal(A).

• If b = 1, (x,y,z) is uniform, and so is (y,z⋅mc). So AdvDDH(B) = 0.

Hence:
AdvDDH(B)

= 2Pr(B(x , y , z) = b)� 1

= Pr(B(x , y , z) = b|b = 0) + Pr(B(x , y , z) = b|b = 1)� 1

=
1

2
(AdvElGamal(A) + 1) +

1

2
� 1

=
1

2
AdvElGamal(A)

<latexit sha1_base64="8aBRbcN/1JbOv9Cxj9Sdf/m0guY=">AAAEBnicdVJNb9NAEHUSoMV8pXDksiJqldA0sgMSXCKlUEQvSEEibaVuiNbrcbLqrm3trkODa4kjv4Yb4srf4BfwN1g7QYrTdCSvn968eTuaHS/mTGnH+VOp1m7dvrO1fde+d//Bw0f1nccnKkokhSGNeCTPPKKAsxCGmmkOZ7EEIjwOp97F2zx/OgOpWBR+0vMYRoJMQhYwSrShxvW/eymWAh36s+xzgY6OjrPmmxbGdg+jvW7BDaShmpfteftrq+e10AFyl/kNaXSFvJ7TQvvopqS76oADSWjqZmk3a6618o6/J4LwrHnY2ndzwxXtZoebDcb1htNxikDXgbsEDWsZg/FOdQv7EU0EhJpyotS568R6lBKpGeWQ2ThREBN6QSZwbmBIBKhRWrxIhnYN46MgkuYLNSrY1YqUCKXmwjNKQfRUredycmPO88Ta1Tp4PUpZGCcaQrq4OUg40hHK3xv5TALVfG4AoZKZ5hGdEjMxbbbC3l31ngKfgS7ZpyooWrGxhBC+0EgIEvrPUxwQwfjch4AkXJu5q+A/3jSXtj9jsVqO6HIxIxtz0DiSbMJCwjkEGudHmTa/qcbFWW4hLcTm4ry9KIYwzQpIeaQAexMZJXHJPFuvL0yNAQnMJBZ6KJctFLZZHXd9Ua6Dk27HfdHpfnzZ6Pe/LZZo23pqPbOalmu9svrWsTWwhhatfKioylUlq32v/aj9rP1aSKuV5eI9sUpR+/0PB61SIg==</latexit>

 46

Hybrid Encryption
Symmetric crypto: very fast, limited functionality. Used to encrypt
the bulk of data and communications.

Publick-key crypto: slow, rich functionality. Used sparely, for
critical security properties.

Example.

Hybrid encryption: use PKE to send a symmetric key, then use
that key to encrypt the rest of the data.

