

Techniques in Cryptography and Cryptanalysis

Brice Minaud

<u>email:</u> brice.minaud@inria.fr <u>website:</u> www.di.ens.fr/brice.minaud/

MPRI, 2019

What is Cryptography?

Cryptography: design and analysis of secure communications.

Cryptanalysis: subfield that focuses on analyzing the security of those designs, including attacks.

Cryptography serves as a foundation of computer security.

What is this course?

"Techniques in Cryptography and Cryptanalysis": will cover (a choice of) important areas of cryptography.

Current plan:

Bases: public-key encryption, signatures, symmetric cryptography...

Some more advanced topics: lattices, zero-knowledge proofs, multi-party computation, identity-based encryption.

Teachers:

Brice Minaud

8 x 1.5h, 1st period

Michel Abdalla

8 x 1.5h, 2nd period

What is security?

Historically, most basic goal = protecting the confidentiality of data exchanges.

Kerckhoff's (first three) principles:

- 1. The system must be practically, if not mathematically, indecipherable.
- 2.It should not require secrecy, and it should not be a problem should it fall into enemy hands.
- 3.It must be possible to [...] change or modify [the key] at will.

One-Time Pad

Modern version: the algorithms are public. They are parametrized by a (secret) key.

One-Time Pad.

Message space: $M \leftarrow \{0,1\}^n$ Key space: $K \leftarrow \{0,1\}^n$ Encryption(M): $C = M \oplus K$ Decryption(C): $M = C \oplus K$

Security of One-Time Pad

One-Time Pad.

Message space: $M \leftarrow \{0,1\}^n$ Key space: $K \leftarrow \{0,1\}^n$ Encryption(M): $C = M \oplus K$ Decryption(C): $M = C \oplus K$

Naive security: impossible for Eve to find M from C.

Not great. Encryption could leak last bit of *M* and still be secure by that definition.

We want to express that Eve learns *nothing* about *M*.

Perfect secrecy

Perfect secrecy, historical version, Shannon, 1949.

Prior distribution: distribution of *M* known a priori to Eve.

Posterior distribution: distribution of *M* known to Eve after seeing the encryption $Enc_{\kappa}(M)$ of *M* (for uniform *K*).

Perfect secrecy: posterior distribution = prior distribution.

Perfect secrecy, equivalent modern version, folklore, 20th century.

Let M_0 and M_1 be two arbitrary messages.

Perfect secrecy: $Enc_{\mathcal{K}}(M_0) = Enc_{\mathcal{K}}(M_1).$

The equality is an equality of distributions. The randomness is over the uniform choice of *K*.

OTP and perfect secrecy

Proposition. The One-Time Pad achieves perfect secrecy.

Proof. Enc(M_0) = C iff $K = C \oplus M_0$.

So there is exactly one *K* that yields each possible *C*. Since *K* is uniform, so is *C*. Thus:

 $Enc(M_0) = Unif(\{0,1\}^n) = Enc(M_1).$

(Note: this would hold in any group.)

Theorem (Shannon '49). If perfect secrecy holds, it must be the case that the two parties share some prior information (a key) with: length(key) \geq length(message) where length denotes the bit length.

So OTP is essentially the only perfectly secure scheme.

Measuring Security

Advantage

Previous solution is infeasible in most cases.

→ we must be content with *imperfect* security.

The relevant notion to formally express that Eve cannot learn anything is often about the *indistinguishability* of two distributions.

Roadmap of a security definition: the **adversary** is an algorithm attempting to infer secret information.

Often, this will be expressed as the adversary trying to distinguish two distributions.

Advantage.

Let D_0 and D_1 be two probability distributions. The advantage of an adversary A (i.e. an algorithm, here with output in {0,1}) is:

$$Adv^{D_0,D_1}(A) = |2Pr_{b \leftarrow \$\{0,1\}}(A(D_b) = b) - 1|$$

Types of security

let M_0 and M_1 be two arbitrary messages...

Perfect security:

Enc_{*K*}(*M*₀) = Enc_{*K*}(*M*₁) (as distributions, for uniform *K*). *Equivalently:* Adv^{EncK(M₀), EncK(M₁)(*A*) = 0, for every *A*.}

Statistical security:

Adv^{Enc_K(M_0), Enc_K(M_1)(A) is negligible, for every A.}

Computational security:

Adv^{Enc_K(M₀), Enc_K(M₁)(A) is negligible, for every efficient adversary A.}

Quantifying negligibility, efficiency

Security parameter, often denoted λ : used to quantify security.

- "Asymptotic" security: used in more theoretical results. λ remains a variable.
- "Concrete" security: used in more practical results. Typically $\lambda = 80$, 128, or 256. (e.g. "128-bit" security.)

	"Asymptotic" security	"Concrete" security
Negligible (probability)	O(λ⁻ჺ) for all c	usually $\leq 2^{-\lambda/2}$ or $2^{-\lambda}$
Efficient (adversary)	Poly(λ)	significantly less than 2^{λ} operations

Concreteness of security

Bits of security	Practical significance	
32	Your phone can do it, instantly.	
66	Bitcoin hashes per second worldwide.	
80	Bitcoin hashes per year worldwide. (Some state actors could do it?)	
128	Considered secure. Standard choice. (Watch out for trade-offs, like time/data or multi-target)	
256	Arguments for impossibility based on physics. (Relevant for very long-term or quantum security.)	

Bitcoin data from https://www.blockchain.com/en/charts/hash-rate in 2019.

Types of security, again

let M_0 and M_1 be two arbitrary messages...

Perfect security:

Enc_{*K*}(*M*₀) = Enc_{*K*}(*M*₁) (as distributions, for uniform *K*). *Equivalently:* Adv^{EncK(M₀), EncK(M₁)(*A*) = 0, for every *A*.}

Statistical security:

Adv^{Enc_K(M_0), Enc_K(M_1)(A) is negligible, for every A.}

Computational security:

Adv^{Enc_K(M₀), Enc_K(M₁)(A) is negligible, for every efficient adversary A.}

Statistical distance

Good tool to bound or analyze advantage.

Statistical distance.

Let D_0 and D_1 be two probability distributions over some set X.

$${\sf Dist}(D_0,D_1)=rac{1}{2}\sum_{x\in X}|D_0(x)-D_1(x)|$$

Proposition 1. This is, in fact, a distance.

Proof. x, $y \mapsto |y - x|$ is a distance. So $Dist(\cdot, \cdot)$ is a sum of distances. (Can also write it out.)

Statistical distance, cont'd

Proposition 2. The statistical distance $Dist(D_0,D_1)$ is equal to the advantage of the best adversary trying to distinguish D_0 from D_1 .

Proof. Let A be the adversary such that, given $x \leftarrow D_b$, A outputs 0 iff $D_0(x) \ge D_1(x)$. A is clearly best possible.

$$\begin{aligned} \mathsf{Adv}^{D_0,D_1}(A) &= 2\mathsf{Pr}_{x \leftarrow D_b(x), b \leftarrow_{\$}\{0,1\}}(A(x) = b) - 1 \\ &= 2\sum_{x'} \sum_{b'} \mathsf{Pr}(A(x) = b | x = x', b = b') \\ &\cdot \mathsf{Pr}_{x \leftarrow D_b}(x = x' | b = b') \mathsf{Pr}_{b \leftarrow_{\$}\{0,1\}}(b = b') - 1 \\ &= \sum_{x'} \sum_{b'} \mathbbm{1}_{A(x') = b'} D_b(x') - 1 \\ &= \sum_{x'} \max(D_0(x'), D_1(x')) - 1 \\ &= \mathsf{Dist}(D_0, D_1) \quad \text{using:} \max(a, b) = \frac{1}{2}(a + b + |b - a|). \end{aligned}$$

Statistical distance, cont'd

Corollary. Let A be any algorithm. Then: $Dist(A(D_0), A(D_1)) \le Dist(D_0, D_1)$

Proof. Let *B* be the best adversary distinguishing D_0 from D_1 , and *C* be the best adversary distinguishing $A(D_0)$ from $A(D_1)$.

 $Dist(A(D_0), A(D_1)) = Adv^{A(D_0), A(D_1)}(C) = Adv^{D_0, D_1}(C \circ A)$

 $\leq \operatorname{Adv}^{D_0,D_1}(B) = \operatorname{Dist}(D_0,D_1).$

Proposition 3. For all *n*, $Dist(D_0^n, D_1^n) \le nDist(D_0, D_1)$.

Proof.

 $\mathsf{Dist}(A^n, B^n) \le \mathsf{Dist}(A^n, A^{n-1}B) + \mathsf{Dist}(A^{n-1}B, A^{n-2}B^2) + \dots + \mathsf{Dist}(A^{n-1}, B^n).$

Sometimes called the "hybrid" argument, although the same term is also used in more general settings.

Computational version

Advantage of the best adversary = statistical distance. By extension:

Advantage of a class of adversaries.

Let D_0 and D_1 be two probability distributions, and **A** a set of adversaries. Define:

 $Adv^{D_0,D_1}(A) = \sup\{Adv^{D_0,D_1}(A) : A \in A\}$

Define A(t) the set of adversaries that terminate in time t. Let:

$$\mathsf{Adv}^{D_0,D_1}(t) = \mathsf{Adv}^{D_0,D_1}(\mathbf{A}(t))$$

This is still a distance! (exercise)

NB For asymptotic security, what matters usually is to distinguish two *families* of distributions. We want (abuse of notation):

 $Adv^{D_0,D_1}(Poly(\lambda)) = Negl(\lambda)$

with D_0 , D_1 (implicitly) parametrized by λ .

Types of security, revisited

let M_0 and M_1 be two arbitrary messages...

Perfect security:

 $Enc_{\kappa}(M_0) = Enc_{\kappa}(M_1)$ (as distributions, for uniform K).

Equivalently: Dist(Enc_K(M_1), Enc_K(M_2)) = 0.

Equivalently: $Adv^{EncK(M_0), EncK(M_1)}(\{all A\}) = 0.$

Statistical security:

Dist(Enc_{κ}(M_1), Enc_{κ}(M_2)) is negligible. Equivalently: Adv^{Enc_{κ}(M_0), Enc_{κ}(M_1)({all A}) is negligible.}

Computational security:

Adv^{Enc_{$K}(M_0)$, Enc_{$K}(M_1)({efficient A}) is negligible.}</sub></sub>$

A simple example

Consider a Bernoulli (coinflip) distribution *B* with $B(0) = 1/2 - \varepsilon$ and $B(1) = 1/2 + \varepsilon$. Let *U* be the uniform distribution on {0,1}. Observe: Dist(*B*,*U*) = ε .

Assume we are doing a one-time pad with an imperfect randomness source, where the key bits are drawn according to *B*:

 $K \leftarrow B^n$ (instead of U^n)

Say ε is negligible (asymptotic sense).

Is this still secure?

Perfect security? Statistical? Computational?

A simple example, cont'd

For M_0 , $M_1 \in \{0,1\}^n$. Dist(Enc_K(M_0),Enc_K(M_1)) \leq Dist(Enc_K(M_0), U^n) + Dist(Enc_K(M_1), U^n) $\leq 2n\epsilon$

Note that $n \cdot \text{Negl}(n) = \text{Negl}(n)$ so this is (statistically) secure!

(A more refined analysis shows this grows in $\sqrt{n\epsilon}$. The hybrid argument is a little crude here.)

Defining Security

Symmetric encryption: definition

Symmetric Encryption.

Message space **M**, ciphertext space **C**, key space **K**.

Setup: Pick key $K \leftarrow_{\$} K$.

Encryption: encryption of $M \in \mathbf{M}$ is $C = Enc_{\mathcal{K}}(M) \in \mathbf{C}$.

Decryption: decryption of *C* is $M = Dec_{\mathcal{K}}(C)$.

These three algorithms/protocols are assumed to be efficient.

Symmetric encryption: confidentiality

Symmetric Encryption.

Message space **M**, ciphertext space **C**, key space **K**. **Setup:** Pick key $K \leftarrow_{\$} K$. **Encryption:** encryption of $M \in M$ is $C = Enc_K(M) \in C$. **Decryption:** decryption of C is $M = Dec_K(C)$.

Cryptographic definitions usually require two properties: **Correctness:** scheme fulfills desired functionality. **Security:** scheme is secure. (Usually the hard one.)

Here, for symmetric encryption:

Correctness: for all $M \in M$,

 $Dec_{\mathcal{K}}(Enc_{\mathcal{K}}(M)) = M.$

Summary of the previous episodes

Proposition. The One-Time Pad achieves perfect secrecy.

...as long as a fresh key of the same length of the message is used for each message. Impractical. We have seen Shannon's theorem: this is essentially the only perfectly secret scheme.

Hence we are content with:

Computational security:

Adv^{Enc_K(M_1), Enc_K(M_2)(A) is negligible, for every efficient adversary A.}

Is this enough?

No: we want security even if adversary knows encryption of **known**, or **chosen** plaintexts.

IND: indistinguishability game

Adversary wins iff b' = b.

Computational security: the advantage of an efficient adversary in this game is negligible.

(This is just an equivalent statement of what was before, using games.)

IND-CPA: indist. under Chosen-Plaintext Attacks

Adversary wins iff b' = b.

IND-CCA: indist. under Chosen-Ciphertext Attacks

Symmetric encryption: complete definition

Symmetric Encryption.

Message space M, ciphertext space C, key space K.

Setup: Pick key $K \leftarrow_{\$} K$.

Encryption: encryption of $M \in \mathbf{M}$ is $C = Enc_{\mathcal{K}}(M) \in \mathbf{C}$.

Decryption: decryption of C is $M = Dec_{\kappa}(C)$.

Correctness: for all $M \in M$,

 $Dec_{\kappa}(Enc_{\kappa}(M)) = M.$

Security: typically IND-CPA, or IND-CCA...

Caveats:

- Deterministic scheme cannot be IND-CPA or IND-CCA. Need randomness, or nonces.

- "Security" above only covers confidentiality, not integrity.

Publick-key encryption: definition

Publick-Key Encryption.

```
Message space M, ciphertext space C,
```

and secret (a.k.a. private) key space SK, public key space PK.

Setup: output private/public key pair (SK,PK) from (SK, PK).

Encryption: encryption of $M \in \mathbf{M}$ is $C = \text{Enc}_{PK}(M) \in \mathbf{C}$.

Decryption: decryption of C is $M = \text{Dec}_{SK}(C)$.

Public-key encryption

Publick-Key Encryption.

Message space **M**, ciphertext space **C**,

and secret (a.k.a. private) key space SK, public key space PK.

Setup: output private/public key pair (SK, PK) from (SK, PK).

Encryption: encryption of $M \in \mathbf{M}$ is $C = \text{Enc}_{PK}(M) \in \mathbf{C}$.

Decryption: decryption of C is $M = \text{Dec}_{SK}(C)$.

You encrypt with the public key, decrypt with the private key.

Correctness: for all $M \in M$, if (SK,PK) is output by **Setup**, then Dec_{SK}(Enc_{PK}(M)) = M.

Security: typically IND-CPA, or IND-CCA... (note: IND = IND-CPA.)

So how do you prove security?

Short answer: we cannot. We don't even know $P \neq NP$.

Illustration: say that a PKE scheme exists iff the **Setup**, **Enc**, **Dec** algorithms are polynomial, and the scheme is correct and IND-CPA secure (against polynomial adversaries).

Question: does a public-key encryption scheme exist? Answer: we don't know.

Workaround: rely on problems that are *assumed* intractable for polynomial-time adversaries, like integer factorization.

General paradigm: hard problem + trapdoor.

The trapdoor is typically the private key. Without it, decryption is hard; with it, it is easy. (e.g. easy = polynomial-time.)

Security reduction

To prove the security of a construction, we **reduce** it to the hardness of a standard problem.

That means a security proof proves something of the form :

If there exists an efficient adversary A achieving a non-negligible advantage against the cryptographic scheme,

Then there exists an efficient adversary **B** achieving a nonnegligible advantage against the hard problem.

 \rightarrow if the hard problem *is* in fact hard, the scheme is secure.

Typically, the proof builds **B** from **A**.

Rivest, Shamir, Adleman '77.

- Select a pair of random primes p, q. Set N = pq.
- Select integers d, e such that $de = 1 \mod (p-1)(q-1)$.
 - The public key is pk = (e, N).
 - ► The secret key is *sk* = *d*.

Encryption: for a message $m \in \mathbb{Z}^*_N$, the ciphertext is: $c = m^e \mod N$. **Decryption**: for a ciphertext c, the message is: $m = c^d \mod N$.

You can think of e = 3.

Hard problem: computing third root modulo N. Trapdoor: knowledge of prime decomposition $N = p \cdot q$.

RSA: basic facts

Caveats:

- This was "textbook" RSA. It is not IND-CPA or IND-CCA. Why?
- Basic RSA is malleable. It is multiplicatively homomorphic:

 $Enc(a)Enc(b) = a^{e}b^{e} = (ab)^{e} = Enc(ab)$

- If e = 3 and $m < N^{1/3}$, Enc(m) = m^3 over the integers!
- many other issues...

This is because RSA is not actually a PKE scheme. It is a trapdoor permutation.

In order to use it as PKE, it must be combined with a mode of operation such as OAEP. (Often implicit when people say "RSA".)

Hardness of RSA

If you can factorize N = pq, you recover the secret key.

The converse is not true: the security of RSA does not reduce to integer factorization (well-known hard problem).

Security of RSA. Given N = pq, e, and x^e mod N for x $\leftarrow \mathbb{Z}^*_N$, find x mod N.

Essentially ad-hoc, but the best known attack is integer factorization. Much better than brute-force (sub-exponential).

See course by Morain/Blanchet to learn (much) more!

Hardness of integer factorization

Check out https://www.keylength.com/en/3/

ECRYPT recommendations:

Protection	Symmetric	Factoring Modulus
Legacy standard level Should not be used in new systems	80	1024
Near term protection Security for at least ten years (2019-2028)	128	3072
Long-term protection Security for thirty to fifty years (2019-2068)	256	15360

ANSSI recommendations:

Date	Symmetric	Factoring Modulus
2014 - 2020	100	2048
2021 - 2030	128	2048
> 2030	128	3072

Key exchange

Problem: Alice and Bob do not share a key. Assume a secure channel with an eavesdropper.

Goal: Alice and Bob will generate a shared key. Eve learns nothing.

Diffie-Hellman key exchange

Fix a cyclic group **G** of order N, generated by g. These parameters are public and can be reused. (There is no "trapdoor".)

In the end, Alice and Bob can both compute g^{ab} = the shared key.

Security of computational Diffie-Hellman.

Given **G**, *g*, *g*^{*a*}, *g*^{*b*}, for a, b $\leftarrow \mathbb{Z}_N$, find *g*^{*ab*}.

Like RSA, essentially ad-hoc. But best known attack is to compute the **discrete logarithm**.

Diffie-Hellman: security

Security of computational Diffie-Hellman (CDH).

Given **G**, *g*, *g*^{*a*}, *g*^{*b*}, for a, b $\leftarrow \mathbb{Z}_N$, find *g*^{*ab*}.

That is: Eve cannot compute the shared key.

Security of decisional Diffie-Hellman (DDH).

Given **G**, g, distinguish (g^a , g^b , g^{ab}) from (g^a , g^b , g^c) for a,b,c $\leftarrow \mathbb{Z}_N$.

That is: Eve knows *nothing* about the shared key.

```
Discrete logarithm.
```

Given **G**, *g*, and g^a , for a $\leftarrow \mathbb{Z}_N$, find **a**.

If you can solve the discrete logarithm, you can solve DDH. No converse, but it is the best known attack. Note: *N* is usually known.

 $\mathsf{DDH} \leq \mathsf{CDH} \leq \mathsf{DL}$

Security of the discrete logarithm

Typical groups for Diffie-Hellman (hence, DL is hard):

- subgroup of prime order of \mathbb{Z}_{p}^{*} . Note: not \mathbb{Z}_{p}^{*} itself.
- elliptic curves.

To learn more, see the Morain/Blanchet course.

For secure size of *N*, in \mathbb{Z}_{p}^{*} , same recommendations as RSA! For both ECRYPT and ANSSI.

Deep connections between integer facorization & DL algorithms.

In elliptic curves, for security parameter λ , 2λ bits is enough. Elliptic curves behave roughly like a **generic group**: best attacks are generic "square root" attacks that work in any group.

NB: like RSA, all this is broken by quantum computers...

From Diffie-Hellman to ElGamal

Diffie-Hellman:

If Alice wants to send a message $m \in G$ to Bob, she can send:

 $c = m \cdot g^{ab}$

Indeed, DDH says g^{ab} is indistinguishable from random, so $m \cdot g^{ab}$ is essentially a one-time pad.

ElGamal encryption

- Assume a group **G** of order *N*, generator *g*, where DDH is hard.
- Pick *k* ←_{\$} ℤ_N.
 - The public key is $pk = (g^k)$.
 - The secret key is sk = k.

Encryption: to encrypt $m \in \mathbf{G}$, pick $r \leftarrow_{\$} \mathbb{Z}_N$. The ciphertext is: $c = (g^r, m \cdot g^{kr}).$ **Decryption**: for a ciphertext $c = (c_1, c_2)$, the message is: $m = c_2 / c_1^k.$

Hard problem: DDH in G.

Trapdoor: knowledge of discrete logarithm k of g^k .

ElGamal security

Proposition. If DDH is hard, then ElGamal is IND-CPA secure.

Reduction: Assume adversary **A** against ElGamal.

Build **B** against DDH:

- **B** receives sample (x,y,z) ← D_b from DDH challenge, $b \in \{0,1\}$.
- **B** calls **A**, who provides m_0, m_1 .
- **B** picks $c \leftarrow \$ \{0,1\}$, sends ciphertext:

(y,z · m_c)

- **B** receives c' from **A**.
- **\boldsymbol{B}** outputs ($\boldsymbol{c} = \boldsymbol{c}$ ').

Note: ElGamal is not IND-CCA secure. It is malleable.

ElGamal security

Proof of reduction:

- If b = 0, (x,y,z) is a real DDH instance, and (y,z · m_c) is a valid ElGamal encryption of m_c. So Adv^{DDH}(B) = Adv^{ElGamal}(A).
- If b = 1, (x,y,z) is uniform, and so is (y,z · m_c). So Adv^{DDH}(B) = 0. Hence:

$$Adv^{DDH}(B) = 2Pr(B(x, y, z) = b) - 1$$

= $Pr(B(x, y, z) = b|b = 0) + Pr(B(x, y, z) = b|b = 1) - 1$
= $\frac{1}{2}(Adv^{ElGamal}(A) + 1) + \frac{1}{2} - 1$
= $\frac{1}{2}Adv^{ElGamal}(A)$

Hybrid Encryption

Symmetric crypto: very fast, limited functionality. Used to encrypt the bulk of data and communications.

Publick-key crypto: slow, rich functionality. Used sparely, for critical security properties.

Example.

Hybrid encryption: use PKE to send a symmetric key, then use that key to encrypt the rest of the data.