Correction du TD 2

Exercice 1:

(1) $\forall b \in B, \exists! a \in A, f(a) = b$

Autrement dit : $\forall b \in B, \exists a \in A, f(a) = b \land \forall c \in A, f(c) = b \Rightarrow c = a$

- (2) On exprime le fait que A est en bijection avec un entier (remarquer en effet que l'entier n est un ensemble contenant justement n éléments, ce qu'on peut montrer par récurrence). $\exists n \in \mathbb{N}, \exists f: n \to A, \forall a \in A, \exists ! m \in n, f(m) = a$
- (3) $\neg(\exists n \in \mathbb{N}, \exists g : n \to B, \forall b \in B, (\exists a \in A, f(a) = b) \Rightarrow (\exists m \in n, g(m) = b))$

Exercice 2:

(1) C'est vrai pour l'ensemble vide puisqu'il ne contient aucun élément (rappel, une proposition portant sur "tout élément de l'ensemble vide" est automatiquement vraie). Supposons maintenant que tout élément de n est un entier. Soit x un élément de $n^+ = n \cup \{n\}$:

$$x \in n \cup \{n\}$$

$$\Leftrightarrow x \in n \lor x \in \{n\}$$

$$\Leftrightarrow x \in n \lor x = n$$

Dans le cas $x \in n$ on sait que x est un entier par hypothèse de récurrence. Dans le cas x = n, x est aussi un entier.

(2) On a $\bigcup \emptyset^+ = \bigcup \{\emptyset\} = \emptyset$ donc la propriété est vraie pour \emptyset . Supposons que $\bigcup n^+ = n$. On a :

$$\bigcup n^{++} = \bigcup (n^+ \cup \{n^+\})$$

$$= (\bigcup n^+) \cup (\bigcup \{n\})$$

$$= n \cup n$$

$$= n \subset n^+$$

(pour obtenir l'avant-dernière ligne on utilise l'hypothèse de récurrence)

- (3) On fixe $m \in \mathbb{N}$, et on va faire un récurrence sur \mathbb{N} . La propriété qu'on veut montrer est : $m \in n \Rightarrow m \subset n$. C'est automatiquement vrai pour $n = \emptyset$ puisque $m \in \emptyset$ est automatiquement faux. Supponsons $m \in n \Rightarrow m \subset n$ pour un n quelconque. On veut montrer $m \in n^+ \Rightarrow m \subset n^+$. D'abord si $m \notin n^+$, la propriété est vraie puisque le premier terme de l'implication est faux. On suppose donc $m \in n^+$. Alors $m \in n \cup \{n\}$ donc $m \in n$ ou m = n. Dans le premier cas, par hypothèse de récurrence, $m \subset n$ donc $m \subset n^+$. Dans le second cas $n \in n^+$ donc on a encore $m \in n^+$.
- (4) On a $\emptyset \notin \emptyset$. Supposons $n \notin n$ pour la récurrence. Supposons $n^+ \in n^+$ par l'absurde. Alors comme précédemment $n^+ \in n$ ou $n^+ = n$. Le second cas est clairement faux puisque $n^+ = n \cup \{n\} \neq n$. Le premier cas dit $n \cup \{n\} \in n$, donc avec (3) on déduit $n \cup \{n\} \subset n$, donc en particulier $n \in n$, contradiction avec l'hypothèse de récurrence.
- (5)-(6) On procède de la même façon que (3).
 - (7) On procède de la même façon que (4).

Exercice 3: (Correction rapide pour le (1)) On pose la fonction $H(n,k): \mathbb{N} \to \{0,1\}$ qui pour tout $n \ge (n,0)$ associe 1 et $\ge (n,1)$ associe 0. Alors le théorème de définition par récurrence appliqué $\ge H$ avec = 00 comme valeur initiale donne la fonction souhaitée.

 $Exercice \ 4$: Première manière ("par le haut") : A est l'intersection de tous les ensembles contenant a et clos pour R.

Deuxième manière ("par le bas") : on définit $A_0 = \{a\}$ et $A_{n+1} = \{y : \exists x \in A_n, yRx\}$, et on prend $A = \bigcup_{n \in \mathbb{N}} A_n$.

Exercice 5 : Seulement les trois mots suivants (noter que P n'est pas une variable propositionnelle selon l'énoncé) : $((G \Leftrightarrow G) \Rightarrow G)$, C et $\neg (A \land B)$.

Exercice 6: Pour comprendre le correction, réviser la définition des F_n dans le cours. Noter tout d'abord que pour toute formule F on a $h[F] = \min\{n : F \in F_n\}$, donc en particulier on a toujours $F \in F_{h[F]}$.

Première partie:

- (1) $G \in F_{h[G]}$ donc $\neg G \in F_{h[G]+1}$. Donc $h[G] + 1 \in \{n : \neg G \in F_n\}$. Donc $h[\neg G] = \min\{n : \neg G \in F_n\} \le h[G] + 1$. (En effet si $x \in E$ alors $\min E \le x$)
- (2) $G \in F_{h[G]}$ et $H \in F_{h[H]}$. Posons $m = \max\{h[G], h[H]\}$. Alors $h[G] \leq m$ donc $F_{h[G]} \subset F_m$. De même $F_{h[H]} \subset F_m$. Donc en particulier $G \in F_m$ et $H \in F_m$. Donc $G\alpha H \in F_{m+1}$. Donc $h[G\alpha H] \leq m+1$ par le même raisonnement qu'en (1).

Deuxième partie:

- (1) Le théorème de lecture unique nous dit que la formule $\neg G$ ne peut être formée que comme la négation \neg d'une unique formule G. En particulier, la formule $\neg G$ ne peut apparaître dans la hiérarchie des F_n que comme la négation de la formule G qui doit donc nécessairement appartenir à F_{n-1} . Ainsi : $\neg G \in F_n \Leftrightarrow G \in F_{n-1}$. Or $\neg G \in F_{h[\neg G]}$ donc $G \in F_{h[\neg G]-1}$, donc $h[G] \leq h[\neg G] 1$, ce qu'on peut réécrire $h[\neg G] \geq h[G] + 1$. Or on a déjà démontré l'inégalité réciproque dans la première partie de l'exercice, donc $h[\neg G] = h[G] + 1$.
- (2) Le théorème de lecture unique dit que la formule $(G\alpha H)$ ne peut être formée que comme la conjonction d'un unique couple de formules (G,H) par l'opération α . La formule $(G\alpha H)$ ne peut donc apparaître dans la hiérarchie des F_n que comme conjonction des formules G et H, qui sont donc nécessairement présentes dans F_{n-1} . On en déduit que $h[F] \leq n-1$ et $h[G] \leq n-1$, ce qu'on peut réécrire en une seule formule : $\max\{h[F], h[G]\} \leq n-1$. Or $(G\alpha H) \in F_{h[(G\alpha H)]}$, donc on peut prendre $n=h[(G\alpha H)]$ dans le raisonnement qu'on vient de faire, et on obtient : $\max\{h[F], h[G]\} \leq h[(G\alpha H)] 1$, ce qu'on peut réécrire : $h[(G\alpha H)] \geq \max\{h[F], h[G]\} + 1$. Or on a déjà démontré l'inégalité réciproque dans la première partie de l'exercice, donc finalement $h[(G\alpha H)] = \max\{h[F], h[G]\} + 1$.

Exercice 7 : Le raisonnement est le même que dans l'exercice précédent.

Exercice 8 : Le raisonnement est le même que dans l'exercice précédent.

Exercice 9 : (Pour une question de place, la table est dessinée à 90° du sens habituel)

A	0	0	0	0	1	1	1	1
B	0	0	1	1	0	0	1	1
C	0	1	0	1	0	1	0	1
$(A \Rightarrow B) \wedge A$	0	0	0	0	0	0	1	1
$(A \vee \neg C) \Leftrightarrow B$	0	1	1	0	0	0	1	1
$(A \Rightarrow B) \land (\neg B \lor A)$	1	1	0	0	0	0	1	1
$(\neg A \Rightarrow \neg B) \lor (\neg A \Leftrightarrow B)$	1	1	1	1	1	1	1	1
$((A \land B) \lor \neg C) \Rightarrow \neg (B \lor C)$	1	1	0	1	1	1	0	0

Exercice 10: Réponse : $\neg F \Rightarrow \neg F$, $F \Rightarrow (G \Rightarrow F)$, $F \Rightarrow (G \lor F)$, $F \lor \neg \neg (F \Rightarrow \neg F)$.