Feuille de TD n° 6 : Correction (1^e partie)

Espaces vectoriels

Exercice 3

5) Soient α et β des scalaires réels tels que $\alpha(u_n) + \beta(v_n) = 0$ où 0 est la suite nulle.

Autrement dit, pour tout $n \in \mathbb{N}$, $\alpha r^n + \beta n r^n = 0$ où 0 est cette fois-ci le réel nul.

Comme $r \neq 0$, il suit que pour tout $n \in \mathbb{N}$, $\alpha + \beta n = 0$.

Avec deux valeurs distincts n_1 et n_2 de n (par exemple $n_1 = 0$ et $n_2 = 1$), on obtient un système homogène de 2 équations à 2 inconnues α et β dont le déterminant est non nul (sa valeur est $n_2 - n_1$). L'unique solution est donc $\alpha = \beta = 0$.

On a montré que pour tous α et β réels, $\alpha(u_n) + \beta(v_n) = 0$ implique $\alpha = \beta = 0$, donc la famille $((u_n), (v_n))$ est linéairement indépendantes.

6) Soient α et β des scalaires réels tels que $\alpha A + \beta B + \gamma I = 0$ où 0 est la matrice nulle 3×3 .

On en déduit un système de 9 équations portant sur chaque coefficient de la matrice nulle 3×3 . Comme il s'agit d'un système linéaire homogène à 3 inconnues, pour conclure à l'unicité de la solution $\alpha = \beta = \gamma = 0$, il suffit de trouver un sous-système de 3 équations dont le déterminant est non nul.

Par exemple on choisit les équations portant sur les coefficients d'indices (1,1), (2,1) et (3,1). On obtient le système suivant d'inconnues α , β et γ :

$$\begin{cases} 3\alpha + \beta + \gamma = 0 \\ \alpha + \beta = 0 \\ 2\alpha + \beta = 0 \end{cases}$$

Le déterminant du système est $\begin{vmatrix} 3 & 1 & 1 \\ 1 & 1 & 0 \\ 2 & 1 & 0 \end{vmatrix} = \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix} = -1$ (développement par rapport à la dernière colonne).

Ce déterminant est non nul donc le système admet pour unique solution $\alpha=\beta=\gamma=0.$

On a montré que pour tous α , β et γ réels, $\alpha A + \beta B + \gamma I = 0$ implique $\alpha = \beta = \gamma = 0$, donc la famille (A, B, I_n) est linéairement indépendantes.

Exercice 4

- 1) v_1 et v_2 ne sont pas colinéaires car leurs composantes ne sont pas proportionnelles, de même pour v_1 et v_3 , puis v_2 et v_3 .
- 2) (v_1, v_2, v_3) est linéairement indépendante si et seulement si c'est une base de \mathbb{R}^3 (car on a 3 vecteurs dans un espace de dimension 3), autrement dit si le déterminant de (v_1, v_2, v_3) dans une base quelconque est non nul.

En notant \mathcal{B}_0 la base canonique de \mathbb{R}^3 , on a (développement par rapport à la première colonne):

$$\det_{\mathcal{B}_0} = \begin{vmatrix} 1 & 4 & 2 \\ 1 & 1 & -1 \\ 0 & 4 & 4 \end{vmatrix} = \begin{vmatrix} 1 & -1 \\ 4 & 4 \end{vmatrix} - \begin{vmatrix} 4 & 2 \\ 4 & 4 \end{vmatrix} = 8 - 16 + 8 = 0$$

Donc (v_1, v_2, v_3) n'est pas linéairement indépendante.

Conclusion : une famille de 3 vecteurs (ou plus) peut être liée bien que ses vecteurs soient tous deux à deux non colinéaires.

Exercice 9

2) On note G le sous espace de \mathbb{R}^3 dont une équation paramétrique est

$$\begin{cases} x = s - t \\ y = -s - t \text{ où } s \text{ et } t \text{ sont dans } \mathbb{R}. \\ z = 2s - t \end{cases}$$

En notant a = (1, -1, 2) et b = (-1, -1, -1), cette définition est équivalente à $G = \langle a, b \rangle$, autrement dit, (a, b) est une famille génératrice de G. De plus a et b ne sont pas colinéaires, donc (a, b) est une base de G.

Un vecteur u=(x,y,z) de \mathbb{R}^3 appartient à G si et seulement si u vérifie l'équation paramétrique de G, autrement dit si et seulement si le système suivant admet des solutions s et t dans \mathbb{R} :

$$\begin{cases} s - t = x \\ -s - t = y \\ 2s - t = z \end{cases}$$

En utilisant la méthode du pivot de Gauss, on obtient les systèmes équivalents suivants:

Le système admet des solutions si et seulement si x + y + 2(z - 2x) = -3x + y + 2z = 0. On en déduit que G a pour équation 3x - y - 2z = 0.

Exercice 10

2) $(x, 1, 1, y) \in \langle e_1, e_2 \rangle$ si et seulement si il existe α et β tels que $(x, 1, 1, y) = \alpha e_1 + \beta e_2$, autrement dit si le système suivant d'inconnues α et β admet des solutions :

$$\begin{cases} \alpha + \beta = x \\ 2\alpha - 2\beta = 1 \\ 3\alpha + 3\beta = 1 \\ 4\alpha - 4\beta = y \end{cases}$$

En utilisant la méthode du pivot de Gauss, on obtient les systèmes équivalents suivants :

$$\begin{pmatrix} 1 & 1 & | & x \\ 2 & -2 & | & 1 \\ 3 & 3 & | & 1 \\ 4 & -4 & | & y \end{pmatrix} \quad \begin{pmatrix} 1 & 1 & | & x \\ 2 & -2 & | & 1 \\ 3 & 3 & | & 1 \\ 0 & 0 & | & y - 2 \end{pmatrix} \begin{pmatrix} L_1 & | & 1 & | & x \\ L_2 & | & L_3 & | & 1 \\ L_3 & | & L_4 - 2L_2 \end{pmatrix} \begin{pmatrix} 1 & 1 & | & x \\ 0 & -4 & | & 1 - 2x \\ 0 & 0 & | & 1 - 3x \\ 0 & 0 & | & y - 2 \end{pmatrix} \begin{pmatrix} L_1 & | & 1 & | & x \\ L_2 - 2L1 & | & L_3 - 3L1 \\ L_3 - 3L1 & | & L_4 - 2L_2 \end{pmatrix}$$

Le système admet des solutions si et seulement si 1-3x=0 et y-2=0 c'est à dire $x=\frac{1}{3}$ et y=2.

On conclut que $(x, 1, 1, y) \in \langle e_1, e_2 \rangle$ si et seulement si $x = \frac{1}{3}$ et y = 2.

Exercice 11

Chercher les relations de dépendance linéaires entre les vecteurs $(v_1, v_2, v_3, v_4, v_5)$ signifie chercher tous les réels λ_1 , λ_2 , λ_3 , λ_4 et λ_5 tels que $\lambda_1 v_1 + \lambda_2 v_2 + \lambda_3 v_3 + \lambda_4 v_4 + \lambda_5 v_5 = 0$.

On résout donc le système suivant d'inconnues $(\lambda_1, \lambda_2, \lambda_3, \lambda_4, \lambda_5)$:

$$\begin{pmatrix} 1 & 1 & 3 & 10 & 1 & | & 0 \\ 1 & 2 & 1 & 4 & 7 & | & 0 \\ 1 & 3 & 4 & 13 & 8 & | & 0 \\ 1 & 4 & 2 & 7 & 14 & | & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 & 3 & 10 & 1 & | & 0 \\ 0 & 1 & -2 & -6 & 6 & | & 0 \\ 0 & 2 & 1 & 3 & 7 & | & 0 \\ 0 & 3 & -1 & -3 & 13 & | & 0 \end{pmatrix} \begin{pmatrix} L_1 \\ L_2 - L_1 \\ L_3 - L_1 \\ L_4 - L_1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 5 & 16 & -5 & | & 0 \\ 0 & 1 & -2 & -6 & 6 & | & 0 \\ 0 & 0 & 5 & 15 & -5 & | & 0 \\ 0 & 0 & 5 & 15 & -5 & | & 0 \end{pmatrix} \begin{pmatrix} L_1 - L_2 \\ L_2 \\ L_3 - 2L_2 \\ L_4 - 3L_2 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 1 & 0 & | & 0 \\ 0 & 1 & -2 & -6 & 6 & | & 0 \\ 0 & 0 & 1 & 3 & -1 & | & 0 \\ 0 & 0 & 0 & 0 & 0 & | & 0 \end{pmatrix} \begin{pmatrix} L_1 - L3 \\ L_2 \\ L_3 / 5 \\ L_4 - L_3 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 & 1 & 0 & | & 0 \\ 0 & 1 & 0 & 0 & 4 & | & 0 \\ 0 & 0 & 1 & 3 & -1 & | & 0 \end{pmatrix} \begin{pmatrix} L_1 \\ L_2 + 2L_3 \\ L_3 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 0 & 0 & 1 & 0 & | & 0 \\ 0 & 1 & 0 & 0 & 4 & | & 0 \\ 0 & 0 & 1 & 3 & -1 & | & 0 \end{pmatrix} \begin{pmatrix} L_1 \\ L_2 + 2L_3 \\ L_3 \end{pmatrix}$$

On obtient donc le système équivalent : (S) $\begin{cases} \lambda_1 = -\lambda_4 \\ \lambda_2 = -4\lambda_5 \\ \lambda_3 = -3\lambda_4 + \lambda_5 \end{cases}$

En choisissant $(\lambda_4, \lambda_5) = (1, 0)$ on obtient que $(\lambda_1, \lambda_2, \lambda_3) = (-1, 0, -3)$ et donc que $v_4 = v_1 + 3v_3$.

En choisissant $(\lambda_4, \lambda_5) = (0, 1)$ on obtient que $(\lambda_1, \lambda_2, \lambda_3) = (0, -4, 1)$ et donc que $v_5 = 4v_2 - v_3$.

Donc $\langle v_1, v_2, v_3, v_4, v_5 \rangle$ est engendré par (v_1, v_2, v_3) .

De plus (v_1,v_2,v_3) est une famille linéairement indépendante car pour tous $\lambda_1,\,\lambda_2$ et $\lambda_3,\,$ $\lambda_1 v_1 + \lambda_2 v_2 + \lambda_3 v_3 = 0$ s'écrit $\lambda_1 v_1 + \lambda_2 v_2 + \lambda_3 v_3 + \lambda_4 v_4 + \lambda_5 v_5 = 0$ avec $(\lambda_4, \lambda_5) = (0, 0)$.

D'après la résolution précédente, cela implique $(\lambda_1, \lambda_2, \lambda_3) = (0, 0, 0)$.

On en conclut que (v_1, v_2, v_3) est une base de l'espace engendré par $(v_1, v_2, v_3, v_4, v_5)$ et par conséquent rang $(v_1, v_2, v_3, v_4, v_5) = 3$.

Exercice 12

4) On cherche les relations de dépendance linéaires entre les vecteurs $v_1 = (2, 4, 3, -1, -2, 1)$, $v_2 = (1, 1, 2, 1, 3, 1), v_3 = (0, -1, 0, 3, 6, 2),$ cela signifie chercher tous les réels λ_1, λ_2 et λ_3 tels que $\lambda_1 v_1 + \lambda_2 v_2 + \lambda_3 v_3 = 0$.

On résout donc le système (S) suivant d'inconnues $(\lambda_1, \lambda_2, \lambda_3)$: $\begin{pmatrix}
4 & 1 & -1 & 0 \\
3 & 2 & 0 & 0 \\
-1 & 1 & 3 & 0 \\
-2 & 3 & 6 & 0 \\
1 & 1 & 2 & 0
\end{pmatrix}$

Or le sous-système $\begin{pmatrix} 2 & 1 & 0 & 0 \\ 4 & 1 & -1 & 0 \\ 3 & 2 & 0 & 0 \end{pmatrix}$ a pour déterminant $\begin{vmatrix} 2 & 1 & 0 \\ 4 & 1 & -1 \\ 3 & 2 & 0 \end{vmatrix} = \begin{vmatrix} 2 & 1 \\ 3 & 2 \end{vmatrix} = 1$ (développement par sur le la contraction of the contraction of th

(développement par rapport à la dernière colonne).

Le déterminant est non nul donc l'unique solution du sous-système est (0,0,0), par conséquent le système homogène (S) a aussi pour unique solution (0,0,0).

On en conclut que la famille (v_1, v_2, v_3) est linéairement indépendante et donc rang $(v_1, v_2, v_3) = 3$.

4) On cherche les relations de dépendance linéaires entre les vecteurs $v_1 = (2, 1, 3, -1, 4, -1)$, $v_2 = (-1, 1, -2, 2, -3, 3), v_3 = (1, 5, 0, 4, -1, 7),$ cela signifie chercher tous les réels λ_1, λ_2 et λ_3 tels que $\lambda_1 v_1 + \lambda_2 v_2 + \lambda_3 v_3 = 0$.

On résout donc le système suivant d'inconnues $(\lambda_1, \lambda_2, \lambda_3)$

$$\begin{pmatrix} 2 & -1 & 1 & 0 \\ 1 & 1 & 5 & 0 \\ 3 & -2 & 0 & 0 \\ -1 & 2 & 4 & 0 \\ 4 & -3 & -1 & 0 \\ -1 & 3 & 7 & 0 \end{pmatrix} \quad \begin{pmatrix} 1 & 1 & 5 & 0 \\ 0 & -3 & -9 & 0 \\ 0 & -5 & -15 & 0 \\ 0 & 3 & 9 & 0 \\ 0 & -7 & -21 & 0 \\ 0 & 4 & 12 & 0 \end{pmatrix} \quad \begin{matrix} L_2 \\ L_1 - 2L_2 \\ L_3 - 3L_2 \\ L_4 + L_2 \\ L_5 - 4L_2 \\ L_6 + L_2 \end{pmatrix} \quad \begin{pmatrix} 1 & 1 & 5 & 0 \\ 0 & 1 & 3 & 0 \\ 0 & 1 & 3 & 0 \\ 0 & 1 & 3 & 0 \\ 0 & 1 & 3 & 0 \\ 0 & 1 & 3 & 0 \\ 0 & 1 & 3 & 0 \\ 0 & 1 & 3 & 0 \\ 0 & 1 & 3 & 0 \\ 0 & 1 & 3 & 0 \end{pmatrix} \quad \begin{matrix} L_1 \\ -L_2/3 \\ -L_3/5 \\ L_4/3 \\ -L_5/7 \\ L_6/4 \end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 2 & 0 \\
0 & 1 & 3 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

$$\begin{array}{c}
L_1 - L_2 \\
L_2 \\
L_3 - L_2 \\
L_4 - L_2 \\
-L_5 - L_2 \\
L_6 - L_2$$

On obtient donc le système équivalent : (S) $\begin{cases} \lambda_1 = -2\lambda_3 \\ \lambda_2 = -3\lambda_3 \end{cases}$

En choisissant $\lambda_3 = 1$ on obtient que $(\lambda_1, \lambda_2) = (-2, -3)$ et donc que $v_3 = 2v_1 + 3v_2$.

Il suit que $\langle v_1, v_2, v_3 \rangle$ est engendré par (v_1, v_2)

De plus (v_1, v_2) est une famille linéairement indépendante car v_1 et v_2 ne sont pas colinéaires.

On en conclut que (v_1, v_2) est une base de l'espace engendré par (v_1, v_2, v_3) et donc rang $(v_1, v_2, v_3) = 3$.

Exercice 13

Etudions d'abord si la famille (u_1, u_2, u_3) est de rang 3.

 (u_1, u_2, u_3) est de rang 3 si et seulement si c'est une base de \mathbb{R}^3 car on a 3 vecteurs dans un espace de dimension 3.

On note \mathcal{B}_0 la base canonique, en développant selon la première colonne,

$$\det_{\mathcal{B}_0}(u_1, u_2, u_3) = \begin{vmatrix} 1 & 1 & t \\ 0 & 1 & 0 \\ t & t & 1 \end{vmatrix} = 1 - t^2$$

Donc rang $(u_1, u_2, u_3) = 3$ si et seulement si $t \neq 1$ et $t \neq -1$.

Cas t = 1: on a $u_1 = u_3 = (1, 0, 1)$ et $u_2 = (1, 1, 1)$. Comme u_1 et u_2 ne sont pas colinéaires, on en déduit que l'espace engendré par (u_1, u_2, u_3) est de dimension 2 donc rang $(u_1, u_2, u_3) = 2$.

Cas t = -1: on a $u_1 = -u_3 = (1, 0, -1)$ et $u_2 = (1, 1, -1)$. Comme u_1 et u_2 ne sont pas colinéaires, on en déduit que l'espace engendré par (u_1, u_2, u_3) est de dimension 2 donc rang $(u_1, u_2, u_3) = 2$.

Exercice 14

Les vecteurs $(1, a, a^2)$, $(1, b, b^2)$ et $(1, c, c^2)$ forment une base de \mathbb{R}^3 si et seulement si leur déterminant dans la base canonique est non nul.

Ce déterminant est
$$D = \begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{vmatrix}$$

En faisant l'opération $C_2 \to C_2 - C_1$ et $C_3 \to C_3 - C_1$ puis en utilisant la linéarité par rapport à la 2ème puis la 3ème colonne, et enfin en développant par rapport à la première

ligne, on obtient:

$$D = \begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{vmatrix} = \begin{vmatrix} 1 & 0 & 0 \\ a & b - a & c - a \\ a^2 & b^2 - a^2 & c^2 - a^2 \end{vmatrix} = (b - a)(c - a) \begin{vmatrix} 1 & 0 & 0 \\ a & 1 & 1 \\ a^2 & b + a & c + a \end{vmatrix}$$
$$= (b - a)(c - a) \begin{vmatrix} 1 & 1 \\ b + a & c + a \end{vmatrix} = (b - a)(c - a)(c + a - b - a) = (b - a)(c - b)(c - a)$$

Conclusion : Les vecteurs $(1,a,a^2)$, $(1,b,b^2)$ et $(1,c,c^2)$ forment une base de \mathbb{R}^3 si et seulement si a, b et c sont deux à deux distincts.

Exercice 15

A chaque fois, il faut résoudre le système défini par les équations du sous-espaces. A partir de l'expression paramétrique des solutions, on obtient une famille génératrice dont on vérifie l'indépendance linéaire.

1. On note F_1 le sous espace défini par l'équation de la **question 1**.

Le système admet pour unique solution le vecteur nul, donc $F_1 = \{(0,0)\}$ de dimension 0. Il n'y a pas de base (on peut aussi dire que l'unique base est la famille vide).

2. On note F_2 le sous espace défini par l'équation de la **question 2**.

L'ensemble des solutions du système est

$$\{(x,y,z)\in\mathbb{R}^3/\text{ il existe }\lambda\text{ et }\mu\text{ dans }\mathbb{R}\text{ tels que }(x,y,z)=(\frac{3}{2}\lambda-\frac{1}{2}\mu,\lambda,\mu)\}$$

Comme
$$(\frac{3}{2}\lambda - \frac{1}{2}\mu, \lambda, \mu) = \lambda(\frac{3}{2}, 1, 0) + \mu(-\frac{1}{2}, 0, 1)$$

Comme $(\frac{3}{2}\lambda - \frac{1}{2}\mu, \lambda, \mu) = \lambda(\frac{3}{2}, 1, 0) + \mu(-\frac{1}{2}, 0, 1),$ en posant $u = (\frac{3}{2}, 1, 0)$ et $v = (-\frac{1}{2}, 0, 1)$, on en déduit que (u, v) engendre F_2 .

De plus u et v ne sont pas colinéaires donc (u, v) est une base de F_2 et dim $F_2 = 2$.

3. On note F_3 le sous espace défini par l'équation de la **question 3**.

L'ensemble des solutions du système est

$$\{(x,y,z)\in\mathbb{R}^3/\text{ il existe }\lambda\in\mathbb{R}\text{ tels que }(x,y,z)=(-\lambda,\lambda,\lambda)\}$$

En posant u = (-1, 1, 1), on en déduit que (u) est une base de F_3 et dim $F_3 = 1$.

4. On note F_4 le sous espace défini par l'équation de la **question 4**.

Le déterminant du système est non nul, donc il admet pour unique solution le vecteur nul. $F_4 = \{(0,0,0)\}\$ de dimension 0. Il n'y a pas de base (on peut aussi dire que l'unique base est la famille vide).

5. On note F_5 le sous espace défini par l'équation de la **question 5**.

L'ensemble des solutions du système est

$$\{(x,y,z)\in\mathbb{R}^4/\text{ il existe }\lambda\text{ et }\mu\text{ dans }\mathbb{R}\text{ tels que }(x,y,z,t)=(-\lambda-3\mu,\lambda-2\mu,\lambda,\mu)\}$$

Comme
$$(-\lambda - 3\mu, \lambda - 2\mu, \lambda, \mu) = \lambda(-1, 1, 1, 0) + \mu(-3, -2, 0, 1),$$

en posant u = (-1, 1, 1, 0) et v = (-3, -2, 0, 1), on en déduit que (u, v) engendre F_5 .

De plus u et v ne sont pas colinéaires donc (u, v) est une base de F_5 et dim $F_5 = 2$.