
ESSA3 workshop, Bertinoro, 2023

Brice Minaud

Searchable Encryption and Memory Efficiency

Based on joint works with Léonard Assouline, Raphael Bost, Angèle Bossuat,
Pierre-Alain Fouque, Charalampos Papamanthou, Michael Reichle

Memory efficiency

2

“Memory efficiency” = “Locality” ∪ “Page efficiency”

Cash & Tessaro, Eurocrypt ’14
Asharov, Naor, Segev, Shahaf, STOC ’16
Demertzis, Papamanthou, Sigmod ’17
Miers, Mohassel, NDSS ’17
Demertzis, Papadopoulos, Papamanthou, Crypto ’18
Asharov, Segev, Shahaf, Crypto ’18
Bossuat, Bost, Fouque, Minaud, Reichle, Crypto ’21
Minaud, Reichle, Crypto ’22
Assouline, Minaud, Eurocrypt ’23

https://static.appointmentreminder.com/web/images/v3/svg/Colou...

1 sur 1 04/12/2019 à 11:22

A simple scenario

3

Client Server

Minimalist requirements:
‣ Just storing encrypted files. No search.
‣ Willing to reveal query and access pattern.

‣ Static.

Only goal: insulate leakage between files.

When fetching file F, leakage should only depend on F.

→ Should leak nothing about sizes of other files (except total DB size).

Wait, how is this about SSE?

4

id1 id2 id3 ...

Reverse index:
“car” ↦ id1, id3

“duck” ↦ id2, id3, id6, ...

...

Single-keyword SSE

5

id1 id2 id3 ...

Reverse index:

...

Single-keyword SSE: Setup

6

https://static.appointmentreminder.com/web/images/v3/svg/Colou...

1 sur 1 04/12/2019 à 11:22

Reverse index: Encrypted reverse index:

Enc() =
Enc() =

Legend:

Single-keyword SSE: Search

7

https://static.appointmentreminder.com/web/images/v3/svg/Colou...

1 sur 1 04/12/2019 à 11:22

?

Encrypted reverse index:

Dec

id1, id3, ...

Enc() =

Insulated leakage problem occurs on search index, and on files.

On search index, “file” size = #matching docs.

Naive solutions

8

https://static.appointmentreminder.com/web/images/v3/svg/Colou...

1 sur 1 04/12/2019 à 11:22

Attempt #1: encrypt files separately.

...

...

...

Position of one file depends on sizes of other files.

Attempt #2: encrypt files sequentially.

Insulated file storage

9

https://static.appointmentreminder.com/web/images/v3/svg/Colou...

1 sur 1 04/12/2019 à 11:22

...

Server
memory

Insulated file storage, cont’d

10

Server
memory

Security: OK.
File of length 𝓁 = 𝓁 unif. random memory accesses.

Efficiency: Terrible.

Worst-case cost for Hard Disk Drives: reading contiguous memory
much cheaper than random locations.

Example : 𝛴𝜊𝜑𝜊𝜍 [B16].

Is the issue inherent?

11

‣ Memory efficiency asks:

data position is correlated with content.

‣ Security asks:

data position is not correlated with content.

In pictures

12

Formalizing the problem

13

Locality: #discontinuous memory accesses to fetch enc. file.

Read efficiency: #memory words accessed to fetch enc. file / p
#memory words of plaintext file.

Storage efficiency: #memory words to store encrypted DB / imp
#memory words of plaintext DB.

Cash & Tessaro EC ’15

Theorem (Cash & Tessaro EC’15):

Insulated file system cannot have O(1) in all 3 measures.

Spawned long line of work.

Locality

Multiple-choice allocation

15

…n balls

O(n) bins

One-choice

O(log n)

O(log log n)

…n balls

O(n) bins

Two-choice

1

…n balls

>2n bins

Cuckoo hash
revisit choices

Asharov et al. construction

16

…files (stacks), n
balls total

O(n) bins

One-choice

O(log n)

Two-choice variant: O(log log n)

…assuming largest file size < n1 - 1/log log 𝜆.

Static local SSE

17

Scheme Locality Storage eff. Read eff.

[ANSS16] 1C O(1) O(1) Õ(log N)

[ANSS16] 2C O(1) O(1) Õ(log log N)*

[DP17] L O(log N/log L) O(1)

[DPP18] O(1) O(1) O(log2/3+ε N)

[MR22] O(1) O(1) O(logε N)

*under condition: longest list size ≤ N1-1/log log N

N = size of DB

Matching lower
bounds in

restricted models

[ASS18]

Feasibility results
w/ ORAM

Conjecture: static server memory ⇒ this is impossible:

Locality Storage eff. Read eff.

O(1) O(1) o(log N)

Page efficiency

In pictures

19

Server
memory

One page

Page-level access enforced by OS and physical memory.

Page efficiency

20

Now:

Storage efficiency: #memory words to store encrypted DB / imp
#memory words of plaintext DB.

Page efficiency: #memory pages accessed to answer a query /
p #memory pages of plaintext answer.

Before:

Storage efficiency + Locality + Read efficiency

Idea was already implicit in [MM17], to some degree [CJJ+13].

Page efficiency

21

Locality + Read efficiency + Storage efficiency.

Theorem (Cash & Tessaro EC ’15):

Secure SSE cannot have O(1) in all 3 measures.

Page efficiency + Storage efficiency.

[MR22]: can add dynamism with Õ(log log n) page efficiency.

Side product: dynamic scheme matching Asharov et al. local construction.

[MR23]: can add forward security “for free” (asymptotically).

Scheme Storage eff. Page eff.

[BBFMR21] O(1) O(1)

Performance evaluation

22

Theory

Implementation

Open-source optimized implementation: https://github.com/OpenSSE/

https://github.com/OpenSSE/

Weighted allocation mechanisms

Problem recap

24

One page

Server
memory …

(+ Stash)

Files …
store

One page

WLOG all files are of size at most one page:

1 page 1 page 1 page <1 page

split

Multiple-choice allocation

25

…n balls

O(n) bins

One-choice

O(log n)

O(log log n)

…n balls

O(n) bins

Two-choice

1

…n balls

>2n bins

Cuckoo hash
revisit choices

Weighted one-choice

26

…n balls

O(n) bins

One-choice

O(log n)

1 1 1

…
Σwi ≤ n

O(n) bins

Weighted one-choice
w1 wi ≤ 1w2 w3

O(log n) [BFHM08]

Multiple-choice allocation

27

… One-choice

O(log n)

O(log log n)

… Two-choice

1

… Cuckoo hash

O(log n)
[BFHM08]

… Weighted one-choice
w1 wi ≤ 1, Σwi ≤ nw2 w3

?*

1
[BBFMR21]

1 1 1

… Weighted two-choice

… Weighted cuckoo

*Weighted two-choice allocation

28

Conjecture: insert balls of weight (wi) with weighted two-choice.

If: ∀i,wi≤1 and Σwi≤n

Then: most loaded bin has load O(log log n) w.h.p.

Known results:
[TW07,TW14] conjecture is true when ball weights are drawn independently
from sufficiently smooth distribution.

[MR22] conjecture is true for slight variant of two-choice.

[BFHM08] argues majorization arguments won’t suffice.

A few more conjectures

29

Conjecture: in weighted cuckoo hashing [BBFMR21], ∃ way to
perform insertions in O(1) expected time.

Conjecture: Impossible to have O(1) page efficiency, O(1)
storage efficiency, with O(𝜆) bits of client storage.

Optimal static insulated scheme

30

Files … One page

1. split

Chunks … One page

…Server memory

One page

2. Weighted
Cuckoo

Applications

31

[BBFMR21]:

Weighted cuckoo hashing ⇒ scheme with O(1) page eff. O(1) storage eff.

Same technique likely applies to all reasonable cuckoo variants (e.g. [Y22]).

[PPYY19] uses (unweighted) cuckoo for length-hiding scheme.

Hierarchical ORAM uses cuckoo hashing.

Common point: static hash tables.

[MR22]:

Weighted two-choice ⇒ dynamic scheme w/ O(log log) page eff. O(1) storage eff.

[APPYY23] uses (unweighted) two-choice for dynamic length-hiding scheme.

Weighted ORAM

32

[AM23]: Weighted Tree ORAM (same proof techniques).

Application to SSE:
Want to hide Access Pattern and length. B = upper bound on largest file size.

Recipe:

1. Use Path ORAM with block size B, dimensioned to accomodate Σwi/B blocks.

2. Put all your files into ORAM tree without padding. Use ORAM normally.
3. It just works.

Conclusion

Perspectives

34

Very simple problem. Just want to read a file without leaking info about
lengths of other files. That’s it.

Sub-problem of SSE.

Nice fallout: weighted cuckoo hashing, weighted ORAM.

In practice:

Access pattern:

very damaging.
vs.

This entire talk:
paying heavily to

insulate subtle length
leakage.

Conjecture: with forward security, impossible to have O(1) page
efficiency, O(1) storage efficiency.

Thank you!

