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Memory efficiency
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A simple scenario

3

Client Server

Minimalist requirements: 
‣ Just storing encrypted files. No search. 
‣ Willing to reveal query and access pattern.

‣ Static.

Only goal: insulate leakage between files.

When fetching file F, leakage should only depend on F.


→ Should leak nothing about sizes of other files (except total DB size).



Wait, how is this about SSE?
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id1 id2 id3 ...

Reverse index:
“car” ↦ id1, id3

“duck” ↦ id2, id3, id6, ...

...



Single-keyword SSE
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id1 id2 id3 ...

Reverse index:

...



Single-keyword SSE: Setup
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Reverse index: Encrypted reverse index:

Enc(        ) = 
Enc(        ) = 

Legend:



Single-keyword SSE: Search
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?

Encrypted reverse index:

Dec

id1, id3, ...

Enc(        ) = 

Insulated leakage problem occurs on search index, and on files.

On search index, “file” size = #matching docs.



Naive solutions
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Attempt #1: encrypt files separately.

...

...

...

Position of one file depends on sizes of other files.

Attempt #2: encrypt files sequentially.



Insulated file storage
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...

Server 
memory



Insulated file storage, cont’d
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Server 
memory

Security: OK.
File of length 𝓁 = 𝓁 unif. random memory accesses.

Efficiency: Terrible.

Worst-case cost for Hard Disk Drives: reading contiguous memory 
much cheaper than random locations.


Example : 𝛴𝜊𝜑𝜊𝜍 [B16].



Is the issue inherent?
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‣ Memory efficiency asks:

data position is correlated with content.


‣ Security asks:

data position is not correlated with content.



In pictures
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Formalizing the problem
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Locality: #discontinuous memory accesses to fetch enc. file.


Read efficiency: #memory words accessed to fetch enc. file /   p                          
#memory words of plaintext file.


Storage efficiency: #memory words to store encrypted DB / imp                           
#memory words of plaintext DB.

Cash & Tessaro EC ’15

Theorem (Cash & Tessaro EC’15):

Insulated file system cannot have O(1) in all 3 measures.

Spawned long line of work.



Locality



Multiple-choice allocation
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…n balls

O(n) bins

One-choice

O(log n)

O(log log n)

…n balls

O(n) bins

Two-choice

1

…n balls

>2n bins

Cuckoo hash 
revisit choices



Asharov et al. construction
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…files (stacks), n 
balls total

O(n) bins

One-choice

O(log n)

Two-choice variant: O(log log n)


…assuming largest file size < n1 - 1/log log 𝜆.



Static local SSE
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Scheme Locality Storage eff. Read eff.

[ANSS16] 1C O(1) O(1) Õ(log N)

[ANSS16] 2C O(1) O(1) Õ(log log N)*

[DP17] L O(log N/log L) O(1)

[DPP18] O(1) O(1) O(log2/3+ε N)

[MR22] O(1) O(1) O(logε N)

*under condition: longest list size ≤ N1-1/log log N

N = size of DB

Matching lower 
bounds in 

restricted models

[ASS18] 

Feasibility results 
w/ ORAM

Conjecture: static server memory ⇒ this is impossible:

Locality Storage eff. Read eff.

O(1) O(1) o(log N)



Page efficiency



In pictures
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Server 
memory

One page

Page-level access enforced by OS and physical memory.



Page efficiency

20

Now: 

Storage efficiency: #memory words to store encrypted DB / imp                           
#memory words of plaintext DB. 


Page efficiency: #memory pages accessed to answer a query /   
p                          #memory pages of plaintext answer.


Before: 

Storage efficiency + Locality + Read efficiency

Idea was already implicit in [MM17], to some degree [CJJ+13].



Page efficiency
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Locality + Read efficiency + Storage efficiency.

Theorem (Cash & Tessaro EC ’15):

Secure SSE cannot have O(1) in all 3 measures.

Page efficiency + Storage efficiency.

[MR22]: can add dynamism with Õ(log log n) page efficiency.

Side product: dynamic scheme matching Asharov et al. local construction.

[MR23]: can add forward security “for free” (asymptotically).

Scheme Storage eff. Page eff.

[BBFMR21] O(1) O(1)



Performance evaluation
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Theory

Implementation

Open-source optimized implementation: https://github.com/OpenSSE/

https://github.com/OpenSSE/


Weighted allocation mechanisms



Problem recap
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One page

Server 
memory …

(+ Stash)

Files …
store

One page

WLOG all files are of size at most one page:

1 page 1 page 1 page <1 page

split



Multiple-choice allocation
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…n balls

O(n) bins

One-choice

O(log n)

O(log log n)

…n balls

O(n) bins

Two-choice

1

…n balls

>2n bins

Cuckoo hash 
revisit choices



Weighted one-choice
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…n balls

O(n) bins

One-choice

O(log n)

1 1 1

…
Σwi ≤ n

O(n) bins

Weighted one-choice
w1 wi ≤ 1w2 w3

O(log n) [BFHM08]



Multiple-choice allocation
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… One-choice

O(log n)

O(log log n)

… Two-choice

1

… Cuckoo hash

O(log n)
[BFHM08]

… Weighted one-choice
w1 wi ≤ 1, Σwi ≤ nw2 w3

?*

1
[BBFMR21]

1 1 1

… Weighted two-choice

… Weighted cuckoo



*Weighted two-choice allocation
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Conjecture: insert balls of weight (wi) with weighted two-choice.

If: ∀i,wi≤1 and Σwi≤n

Then: most loaded bin has load O(log log n) w.h.p.

Known results: 
[TW07,TW14] conjecture is true when ball weights are drawn independently 
from sufficiently smooth distribution.

[MR22] conjecture is true for slight variant of two-choice.

[BFHM08] argues majorization arguments won’t suffice.



A few more conjectures
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Conjecture: in weighted cuckoo hashing [BBFMR21], ∃ way to 
perform insertions in O(1) expected time.

Conjecture: Impossible to have O(1) page efficiency, O(1) 
storage efficiency, with O(𝜆) bits of client storage.



Optimal static insulated scheme
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Files … One page

1. split

Chunks … One page

…Server memory

One page

2. Weighted 
Cuckoo



Applications
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[BBFMR21]:

Weighted cuckoo hashing ⇒ scheme with O(1) page eff. O(1) storage eff.


Same technique likely applies to all reasonable cuckoo variants (e.g. [Y22]).

[PPYY19] uses (unweighted) cuckoo for length-hiding scheme.

Hierarchical ORAM uses cuckoo hashing.

Common point: static hash tables.

[MR22]:

Weighted two-choice ⇒ dynamic scheme w/ O(log log) page eff. O(1) storage eff.


[APPYY23] uses (unweighted) two-choice for dynamic length-hiding scheme.



Weighted ORAM
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[AM23]: Weighted Tree ORAM (same proof techniques).

Application to SSE: 
Want to hide Access Pattern and length. B = upper bound on largest file size.


Recipe:

1. Use Path ORAM with block size B, dimensioned to accomodate Σwi/B blocks.

2. Put all your files into ORAM tree without padding. Use ORAM normally. 
3. It just works.



Conclusion



Perspectives
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Very simple problem. Just want to read a file without leaking info about 
lengths of other files. That’s it. 

Sub-problem of SSE.


Nice fallout: weighted cuckoo hashing, weighted ORAM.

In practice:

Access pattern: 

very damaging.
vs.

This entire talk: 
paying heavily to 

insulate subtle length 
leakage.

Conjecture: with forward security, impossible to have O(1) page 
efficiency, O(1) storage efficiency.

Thank you!


