

SetUp

We consider tasks consisting in a mapping \mathcal{T} between a variable-sized input set

 $X = \{x_1, \ldots, x_n\}, x_j \in \mathcal{X} \text{ into an ordered set}$ $Y = \{y_1, \ldots, y_{m(n)}\}, y_j \in \mathcal{Y}.$

We are interested in tasks that are self-similar across scales, meaning that \mathcal{T} can be decomposed as $\forall n, \forall X, |X| = n$;

$$\mathcal{T}(X) = \mathcal{M}(\mathcal{T}(\mathcal{S}_1(X)), \dots, \mathcal{T}(\mathcal{S}_s(X))),$$

$$|\mathcal{S}_j(X)| < n, \ \cup_{j \le s} \mathcal{S}_j(X) = X$$

where both \mathcal{M} and $\mathcal{S} = (\mathcal{S}_1, \ldots, \mathcal{S}_s)$ are *indepen*dent of n.

TRAINING

Given a training set of pairs $\{(X^l, Y^l)\}_{l < L}$, the DiCoNet optimizes the following loss:

$$\mathcal{L}(\theta,\phi) = \frac{1}{L} \sum_{l \leq L} \mathbb{E}_{\mathcal{P}(X)} \mathbf{s}_{\theta}(\mathbf{z})$$

with $p_{\phi}(Y \mid \mathcal{P}(X)) = \mathbf{M}_{\phi}(\mathcal{P}(X))$

• *Merge gradients*: As a vanilla PtrNet. The output stochastic matrix over indexes is replaced by the product of all the output stochastic matrices across scales (composing the permutations).

$$\nabla_{\phi} \mathcal{L}(\theta, \phi) = \frac{1}{L} \sum_{l \leq L} \mathbb{E}_{\mathcal{P}(X)}$$

• Split gradients: Approximated by samples using REINFORCE. Merge loss is used as a cost (or minus reward) for the split phase.

$$\nabla_{\theta} \mathbb{E}_{\mathcal{P}(X) \sim \mathbf{S}_{\theta}(X)} F(\mathcal{P}(X)) = \mathbb{E}_{\mathcal{P}(X)}$$

where $F(\mathcal{P}(X)) = \log p_{\phi}(Y^l \mid \mathcal{P}(X^l))$ and

REFERENCES

- [1] Vinyals, Oriol and Bengio, Samy and Kudlur, Manjunath Order matters: Sequence to sequence for sets arXiv preprint arXiv:1511.06391
- [2] Vinyals, Oriol and Fortunato, Meire and Jaitly, Navdeep Pointer networks Advances in Neural Information Processing Systems

DIVIDE AND CONQUER NETWORKS (DICONET)

ALEX NOWAK DAVID FOLQUÉ JOAN BRUNA Center for Data Science, Courant Institute of Mathematical Sciences, NYU

CONTRIBUTIONS

- 1. We introduce a new dynamic architecture that incorporates the inductive bias from recursive tasks.
- 2. We show that it **can be trained end-to-end** with weak supervision, and whose average computational **complexity can be opti**mized with gradient descent.
- 3. We provide empirical evidence that the dynamic programming principle can be efficiently learnt on tasks such as planar convex-hull, hierarchical clustering, knapsack problem.

 $(X) \log p_{\phi}(Y^l \mid \mathcal{P}(X^l))$

 $_{\sim \mathbf{S}_{\theta}(X)} \nabla_{\phi} \log p_{\phi}(Y^l \mid \mathcal{P}(X^l))$

 $F_{X} \sim \mathbf{S}_{\theta}(X) F(\mathcal{P}(X)) \nabla_{\theta} \log f_{\theta}(\mathcal{P}(X))$

CONCLUSIONS

We have presented a novel neural architecture that can discover and exploit scale invariance in discrete algorithmic tasks, and can be trained with weak supervision. Our model learns how to split

RESULTS

• PLANAR CONVEX HULL

Given a set of n points in the plane, find the ordered sequence of extremal points of the convex hull.

	n=25	n = 50	n=100	n=200
Baseline	81.3	65.6	41.5	13.5
t + Random Split	59.8	37.0	23.5	10.29
DiCoNet	88.1	83.7	73.7	52.0
Net + Split Reg	89.8	87.0	80.0	67.2

• CLUSTERING

Group n elements into k clusters. The DiCoNet will work well for problems with hierarchical structure.

	Gaussian $(d=2)$		Gaussian $(d=10)$			CIFAR-10 patches			
	k=4	k=8	k=16	k=4	k=8	k=16	k=4	k=8	k=16
ine / Lloyd	1.8	3.1	3.5	1.14	5.7	12.5	1.02	1.07	1.41
′ Lloyd	2.3	2.1	2.1	1.6	6.3	8.5	1.04	1.05	1.2
e / Rec. Lloyd	0.7	1.5	1.7	0.15	0.65	1.25	1.01	1.04	1.21
ec. Lloyd	0.9	1.01	1.02	0.21	0.72	0.85	1.02	1.02	1.07

• KNAPSACH

Given a set of n items, each with weight $w_i \geq 0$ and value $v_i \in R$, the 0-1 Knapsack problem consists in selecting the subset of the input set that maximizes the total value, so that the total weight does not exceed a given

$$\begin{array}{ll} uaximize_{x_i} & \sum_i x_i v_i \\ ubject \ to & x_i \in \{0,1\}, \ \sum_i x_i w_i \leq W \end{array}.$$

	n=50			n=100			n=200		
	$\cos t$	ratio	splits	$\cos t$	ratio	splits	$\cos t$	ratio	splits
le	19.82	1.0063	0	38.79	1.0435	0	74.71	1.0962	0
et	19.85	1.0052	3	40.23	1.0048	5	81.09	1.0046	7
y	19.73	1.0110	_	40.19	1.0057	_	81.19	1.0028	-
m	19.95	1	-	40.42	1	-	81.41	1	-

The source code to reproduce the experiments will be available soon at: https://github.com/alexnowakvila/DiCoNet

large inputs recursively, then learns how to solve each subproblem and finally how to merge partial solutions.

namely **split** S_{θ} and **merge** \mathcal{M}_{ϕ} .

• *Split*: Splits the input *X* recursively by sampling from binary probabilities $p(z \mid X)$. It is modeled with a Set2Set or Graph Neural-*Net*. The recursive stochastic procedure results in a probability distribution over hierarchical partitions of X $\mathcal{P}(X) \sim \mathbf{S}_{\theta}(X)$

• *Merge*: Merges the input recursively traversing upwards the tree associated to $\mathcal{P}(X)$. It can be modeled with a *PtrNet* [2].

SOURCE CODE