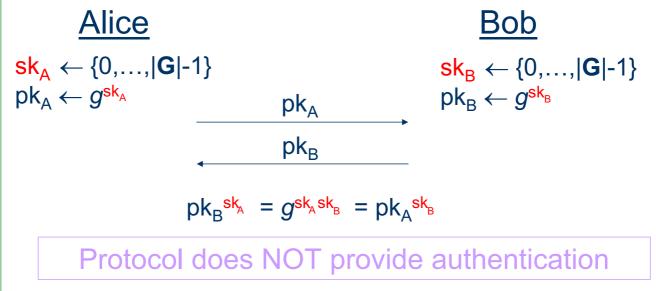

A Scalable Password-based Group Key Exchange Protocol in the Standard Model

David Pointcheval École normale supérieure & CNRS

Joint work with: Michel Abdalla


Authenticated Key Exchange (AKE)

Goal: Secure channel

- Allows two parties to establish a common secret in an authenticated way
- Intuitive goal: implicit authentication
 - The session key should only be known to the parties involved in the protocol
- Formally: semantic security
 - the session key should be *indistinguishable* from a random string

Diffie-Hellman Protocol

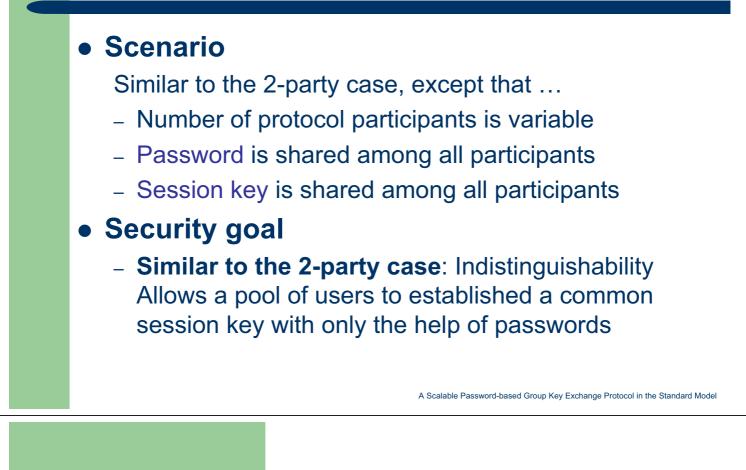
Let **G** be a group in which the DDH problem is hard and let *g* be a generator for **G**

A Scalable Password-based Group Key Exchange Protocol in the Standard Model

Authentication Techniques

Asymmetric techniques

- Assume the existence of a public-key infrastructure
- Each party holds a pair of secret and public keys

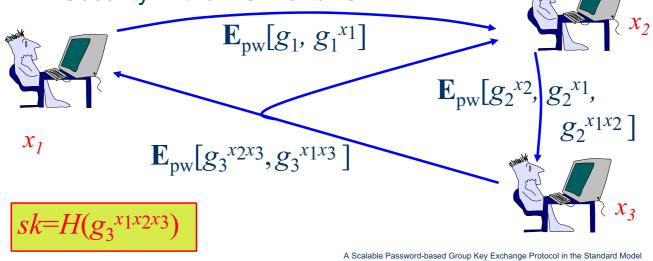

Symmetric techniques

- Users share a random secret key
- 2-party or 3-party settings

Password-based techniques

- Consider the case of weak secrets (e.g., a 4-digit PIN)

Group Password-based AKE (GPAKE)


Communication Model

- Users can have many protocol instances running concurrently
- Communication controlled by the adversary
 - Adversary can create, modify, or forward messages
 - The transmission of messages is done via specific oracle queries

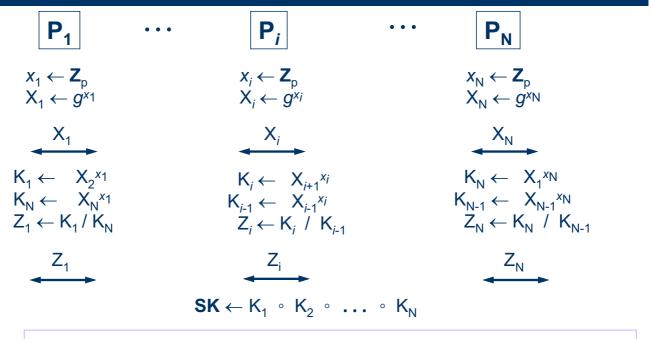
Previous Work on GPAKE

• [BressonChevassutP02]:

- Group Diffie-Hellman password-based key exchange
- Linear number of rounds
- Security in the ROM and ICM

Previous Work on GPAKE

• [LeeHwangLee04], [DuttaBarua06]


- Both based on the *Burmester-Desmedt protocol*
- Both proven secure in the ROM and ICM
- Both broken in [ABCP06]

• [AbdallaBressonChevassutP06],[TangChoo06]

- Based on the Burmester-Desmedt protocol
- Proven secure in the ROM and ICM

Constant-round

The Burmester-Desmedt GKE (BD94)

Protocol does NOT provide authentication

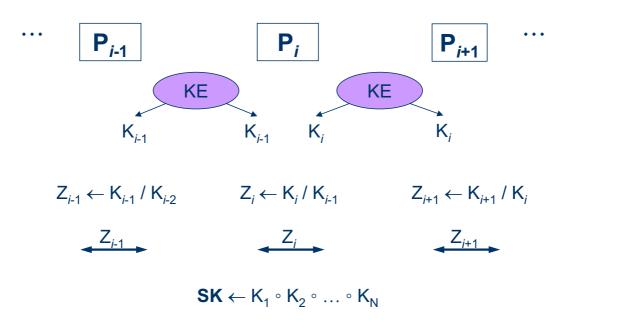
A Scalable Password-based Group Key Exchange Protocol in the Standard Model

Adding Password Authentication Ideal Cipher Model

• EKE approach

- Encrypt all flows using the password pw
- In both and $\mathbf{X}_i = E_{\mathbf{pw}}(\mathbf{X}_i)$ and $\mathbf{Z}_i = E_{\mathbf{pw}}(\mathbf{Z}_i)$

Problem


- In the BD protocol, $Z_1 \circ Z_2 \circ \ldots \circ Z_N = 1$
- Dictionary attack: Guess password pw
 - Compute Z_i= D_{pw}(**Z**_i) for *i*=1,...,N
 - Check if $Z_1 \circ Z_2 \circ \ldots \circ Z_N = 1$

• A provably secure approach: [AbdallaBressonChevassutP06]

Encrypt only the first round of the BD protocol
 With a key that depends on the password
 but also the session ID and the party ID

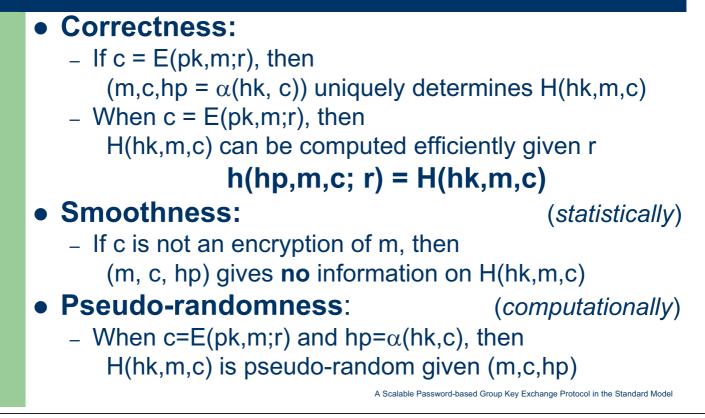
The Burmester-Desmedt GKE A Generic Version

A Scalable Password-based Group Key Exchange Protocol in the Standard Model

A GPAKE in the Standard Model Intuition

- Run an instance of the PAKE protocol between any two consecutive users
 - so that it generates 2 pairwise keys
- Each user should authenticate its predecessor and successor (using one of the pairwise keys)
- Use the 2 other pairwise keys to generate group session key (Burmester-Desmedt)
- Signatures authenticate the transcript of all messages that were broadcast in previous rounds, and that have to be linked together

A GPAKE in the Standard Model Outline


Smooth Projective Hash Functions [Gennaro-Lindell's variant]

- Hash key generation: hk = HK(pk)
 - pk public encryption key, hk hashing key
- Projected key generation: hp = α(hk, c)
 - hk hashing key, hp projected key, c = E(pk,m;r) – ciphertext

• Hashing algorithm: $H(hk, m, c) \in G$

- m message, c = E(pk,m;r) ciphertext,
 hk hashing key
- Projected hashing algorithm: h = h(hp, m, c; r)
 hp projected key, r random coins, c = E(pk,m;r)

Smooth Projective Hash Functions Security Properties

The Gennaro-Lindell Construction

Alice

 $\begin{array}{l} \mathsf{sk^{R}, vk^{R} \leftarrow Sig\text{-}KG} \\ \mathsf{c^{R} \leftarrow E_{\mathsf{pk}}(\mathsf{pw} \parallel \mathsf{vk^{R}} \ ; \ \mathsf{r^{R}})} \end{array}$

hk^R ← hashKey hp^R ← α(hk^R, c^L, vk^L) σ^{R} ← Sign(sk^R,Transcript)

Alice, vk^R, c^R

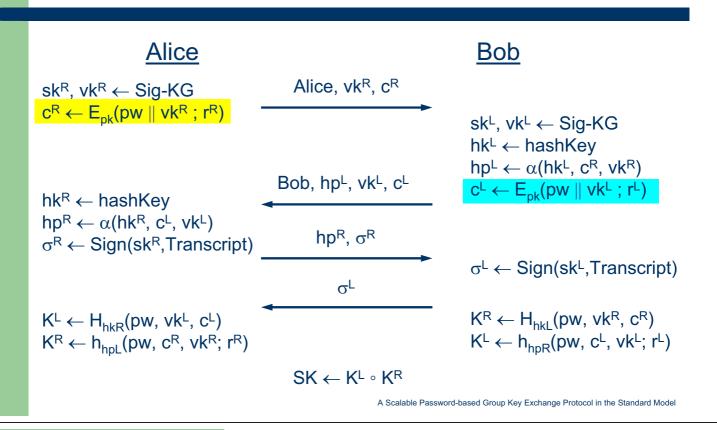
Bob, hp^L, vk^L, c^L

hp^R, σ^R

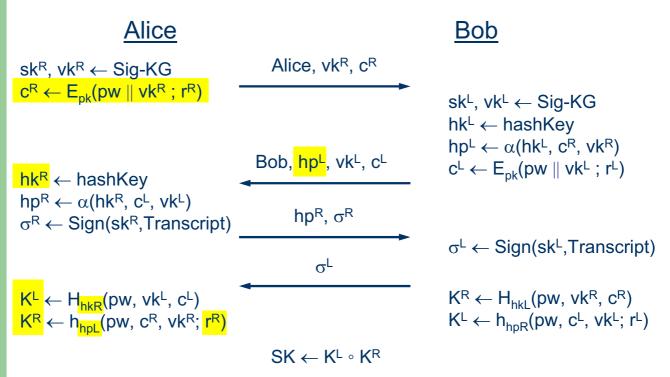
 σ^{L}

 $\begin{array}{l} \mathsf{K}^{\mathsf{L}} \leftarrow \mathsf{H}_{\mathsf{h}\mathsf{k}\mathsf{R}}(\mathsf{p}\mathsf{w},\,\mathsf{v}\mathsf{k}^{\mathsf{L}},\,\mathsf{c}^{\mathsf{L}}) \\ \mathsf{K}^{\mathsf{R}} \leftarrow \mathsf{h}_{\mathsf{h}\mathsf{p}\mathsf{L}}(\mathsf{p}\mathsf{w},\,\mathsf{c}^{\mathsf{R}},\,\mathsf{v}\mathsf{k}^{\mathsf{R}};\,\mathsf{r}^{\mathsf{R}}) \end{array}$

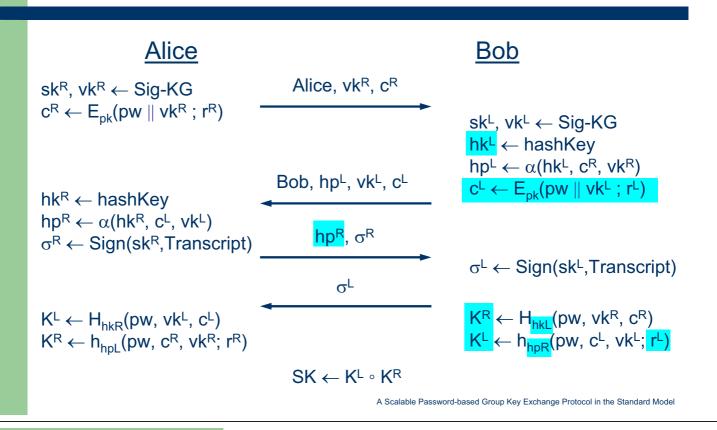
 $SK \leftarrow K^L \circ K^R$

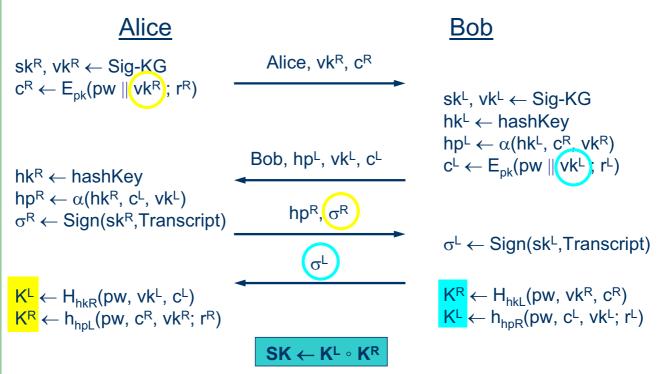

Bob

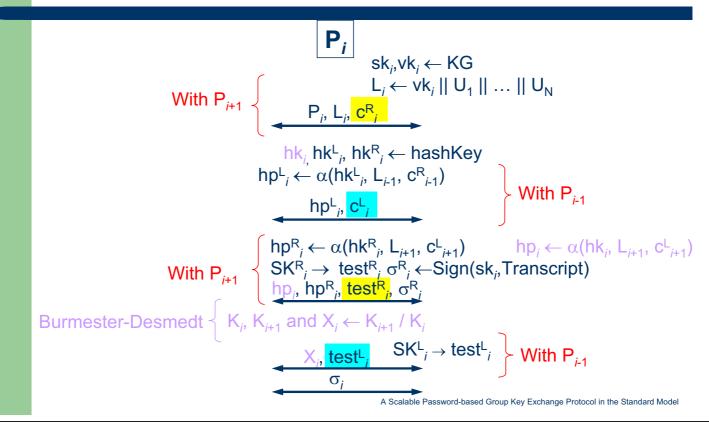
 $\begin{array}{l} \mathsf{sk}^{\mathsf{L}},\,\mathsf{vk}^{\mathsf{L}}\leftarrow\mathsf{Sig}\text{-}\mathsf{KG}\\ \mathsf{hk}^{\mathsf{L}}\leftarrow\mathsf{hashKey}\\ \mathsf{hp}^{\mathsf{L}}\leftarrow\alpha(\mathsf{hk}^{\mathsf{L}},\,\mathsf{c}^{\mathsf{R}},\,\mathsf{vk}^{\mathsf{R}})\\ \mathsf{c}^{\mathsf{L}}\leftarrow\mathsf{E}_{\mathsf{pk}}(\mathsf{pw}\parallel\mathsf{vk}^{\mathsf{L}}\,;\,\mathsf{r}^{\mathsf{L}}) \end{array}$


 $\sigma^{L} \leftarrow \text{Sign}(\text{sk}^{L}, \text{Transcript})$

 $\begin{array}{l} \mathsf{K}^{\mathsf{R}} \leftarrow \mathsf{H}_{\mathsf{hkL}}(\mathsf{pw},\,\mathsf{vk}^{\mathsf{R}},\,\mathsf{c}^{\mathsf{R}}) \\ \mathsf{K}^{\mathsf{L}} \leftarrow \mathsf{h}_{\mathsf{hpR}}(\mathsf{pw},\,\mathsf{c}^{\mathsf{L}},\,\mathsf{vk}^{\mathsf{L}};\,\mathsf{r}^{\mathsf{L}}) \end{array}$


The Gennaro-Lindell Construction


The Gennaro-Lindell Construction


The Gennaro-Lindell Construction

The Gennaro-Lindell Construction

A GPAKE in the Standard Model Details

A GPAKE in the Standard Model Security

• IF

- LPKE is a labeled encryption IND-CCA
- HASH is a family of smooth projective hash functions
- UH, UH', UH" are families of universal hash functions
- SIG is a signature scheme SUF-CMA (2-time secure)

THEN

 The protocol described in the previous slides is a secure GPAKE protocol

Adv $\leq O(q_{send} / D) \leq O(N q_{session} / D)$

Concluding Remarks

• Efficient GPAKE

- 5 rounds
- 2 encryptions, 3 projections
- 3 hashings, 3 projected hashings
- 5 universal hashings
- 2 signatures, N verifications: 2-time signatures
- Secure GPAKE in the standard model
 - Under classical assumptions (DDH, QR, HR)

• TCC07: [AbdallaBohliGonzalezSteinwandt07]

- Generic compiler from 2-party to group AKE
- With the same authentication mode
- Proven secure in the standard model