
Ernest Brickell
David Pointcheval
Serge Vaudenay

Moti Yung

Public Key Cryptography
PKC ‘ 2000

18-20 january 2000 - Melbourne - Australia

Design Validations
for Discrete Logarithm Based

Signature Schemes

Design Validations for Discrete Logarithm Based Signature Schemes - PKC ‘2000 - 2
David Pointcheval

ENS-CNRS

OverviewOverview

◆ Introduction

◆ DL-based standards

◆ Trusted El Gamal Types
Signature Schemes

◆ Security Properties

◆ Some Applications

◆ Conclusion

Design Validations for Discrete Logarithm Based Signature Schemes - PKC ‘2000 - 3
David Pointcheval

ENS-CNRS

IntroductionIntroduction

Signature Scheme = Authentication

Key-Gen: outputs a pair of secret-public keys

Sign: on input a message and the secret key,
outputs a signature Sig

Ver: on input a message, a signature and a
public key, checks whether the signature

has been produced, on this message, using
the secret key related to the public one

Design Validations for Discrete Logarithm Based Signature Schemes - PKC ‘2000 - 4
David Pointcheval

ENS-CNRS

Security NotionsSecurity Notions

(existential) unforgeability
(under adaptively chosen-message attacks):

no adversary, who has access
to a signature oracle, can produce

a new pair message-signature
but with negligible probability

Design Validations for Discrete Logarithm Based Signature Schemes - PKC ‘2000 - 5
David Pointcheval

ENS-CNRS

Previous ResultsPrevious Results

Random Oracle Model:

some objects are seen ideal

e.g. hash function = ideal random function

◆ RSA-based:

FDH-RSA, PSS (Bellare-Rogaway EC ‘96)

◆ DL-based:

Schnorr (JoC ‘91 - Pointcheval-Stern EC ‘96)

Design Validations for Discrete Logarithm Based Signature Schemes - PKC ‘2000 - 6
David Pointcheval

ENS-CNRS

DLDL--based Signaturesbased Signatures

El Gamal (1985)

p large prime and g ∈ p
* of large order

Key-Gen: X∈ p-1 and Y=gX mod p
secret key: X and public key: Y

Sign(M): k∈ p-1
* and R=gk mod p

then S = (M-XR) / k mod p-1
→ σ = (R, S)

Ver(M,σ): check whether YR RS = gM mod p

Design Validations for Discrete Logarithm Based Signature Schemes - PKC ‘2000 - 7
David Pointcheval

ENS-CNRS

SecuritySecurity

◆ El Gamal (1985): existential forgery
◆ Schnorr (1989): many improvements

● in a prime subgroup (efficiency)
● message hashed together with r

⇒ unforgeability (Random Oracle Model [PS96])

◆ DSA (1994) and KCDSA (1998):
message hashed alone: unforgeability?

Standards ≠ Provably Secure Schemes!
⇒ many attacks (e.g. ISO 9796-1)

Design Validations for Discrete Logarithm Based Signature Schemes - PKC ‘2000 - 8
David Pointcheval

ENS-CNRS

DLDL--based Signaturesbased Signatures

p and q large primes such that q | p-1
and g ∈ p

* of order q

Key-Gen: X∈ q and Y=gX mod p

● secret key: X

● public key: Y
Sign(M): k∈ q

* and R = gk mod p

and …

Design Validations for Discrete Logarithm Based Signature Schemes - PKC ‘2000 - 9
David Pointcheval

ENS-CNRS

DLDL--based Standardsbased Standards

◆ Digital Signature Algorithm (DSA)
Sign(M): (k, R), T = R mod q and U = H(M)

then S = (U+XT)/k mod q → σ = (T, S)

Ver(M,σ): with U=H(M),

◆ Korean Certificate-based
Digital Signature Algorithm (KCDSA)

Sign(M): (k, R), T = G(M) and U = H(R)
then S = (k - T ⊕ U)/X mod q → σ = (U, S)

Ver(M,σ): with T=G(M),

qpYgT S

T

S

U

modmod
?

=

()pYgHU SUT mod
?

⊕=

Design Validations for Discrete Logarithm Based Signature Schemes - PKC ‘2000 - 10
David Pointcheval

ENS-CNRS

DSADSA--VariantsVariants

DSA(M): k∈ q
* and R = gk mod p,

T = R mod q and U = H(M)
then S = (U+XT)/k mod q → σ = (T, S)

DSA-I(M): T = G(R) and U = H(M)

DSA-II(M): T = G(R) and U = H(M,T)

)(mod
?

MHUpYgGT S

T

S

U

=

= where

),(mod
?

TMHUpYgGT S

T

S

U

=

= where

Design Validations for Discrete Logarithm Based Signature Schemes - PKC ‘2000 - 11
David Pointcheval

ENS-CNRS

SecuritySecurity

DSA → DSA-I: x → x mod q replaced by G
DSA-I: provably unforgeable

if both G and H are random oracles

But “x → x mod q” ≠ random oracle!
⇒ no consequences for DSA

KCDSA: provably unforgeable
if both G and H are random oracles

Can we weaken the assumptions:
Two Random Oracles?

Design Validations for Discrete Logarithm Based Signature Schemes - PKC ‘2000 - 12
David Pointcheval

ENS-CNRS

Hash FunctionsHash Functions

Classical properties for Hash Functions:
● random oracle: ideal random function
● l-collision-freeness:

there do not exist l pairwise distinct
elements (x1, … , xl) such that

h(x1) = … = h(xl)

● l-collision-resistance:
it is computationally impossible to find
l pairwise distinct elements (x1, … , xl)
such that

h(x1) = … = h(xl)

Design Validations for Discrete Logarithm Based Signature Schemes - PKC ‘2000 - 13
David Pointcheval

ENS-CNRS

Trusted El Gamal TypeTrusted El Gamal Type
Signature SchemesSignature Schemes

◆ p and q large primes such that q | p-1
and g ∈ �p

* of order q

◆ G and H two hash functions:
G: {0,1}* → G and H: {0,1}* → H
such that q/2 < |G|,|H| < q

● G is seen as a random oracle
● H has just practical properties

Key-Gen: X∈�q and Y=gX mod p

Sign(M): k∈�q
* and R = gk mod p

Design Validations for Discrete Logarithm Based Signature Schemes - PKC ‘2000 - 14
David Pointcheval

ENS-CNRS

TEGTSS CharacteristicsTEGTSS Characteristics

◆ Three Functions:
● F1: q × q × G × H → q

● F2: q × G × H → q

● F3: q × G × H → q

such that, for all (a,b,T,U) ∈ q × q × G × H

F2(F1(a,b,T,U),T,U) + b F3(F1(a,b,T,U),T,U) = a mod q

◆ TEGTSS Verification Equation:
a tuple (W,S,T,U) is said “valid” if

W = gEg YEY mod p
where EG = F2(S,T,U) and EY = F3(S,T,U)

Design Validations for Discrete Logarithm Based Signature Schemes - PKC ‘2000 - 15
David Pointcheval

ENS-CNRS

TEGTSS TEGTSS -- II

Sign(M): (k, R), T = G(M) and U = H(R)
then S = F1(k,X,T,U) → σ = (S,T,U)

Ver(M,σ): check if T = G(M) and U = H(W),
where W = gEG YEY mod p

with EG = F2(S,T,U) and EY = F3(S,T,U)

Properties: for two tuples (Wi,Si,Ti,Ui), i=1,2
● T1 ≠ T2 ⇒ F3(S1,T1,U1) ≠ F3(S2,T2,U2)

● (W1,S1,T1,U1) fixed, U2 → T2 one-to-one map
such that F3(S1,T1,U1) = F3(S2,T2,U2)

Design Validations for Discrete Logarithm Based Signature Schemes - PKC ‘2000 - 16
David Pointcheval

ENS-CNRS

TEGTSS TEGTSS -- I: SecurityI: Security

KCDSA: F1(k,X,T,U) = (k - T ⊕ U)/X mod q
F2(S,T,U) = T ⊕ U mod q
and F3(S,T,U) = S mod q

Security Claim:
If H is a random oracle
but G is just collision-resistant then
existential forgery = extraction of X

Proof:
use of the Forking Lemma [PS96]

Design Validations for Discrete Logarithm Based Signature Schemes - PKC ‘2000 - 17
David Pointcheval

ENS-CNRS

TEGTSS TEGTSS -- IIII

Sign(M): (k, R), T = G(R) and U = H(M,T)
then S = F1(k,X,T,U) → σ = (S,T,U)

Ver(M,σ): check if T = G(W) and U = H(M,T),
where W = gEG YEY mod p

with EG = F2(S,T,U) and EY = F3(S,T,U)

Properties: for given (T, EG, EY), there exists
a unique pair (U,S) such that

EG = F2(S,T,U) and EY = F3(S,T,U)

Design Validations for Discrete Logarithm Based Signature Schemes - PKC ‘2000 - 18
David Pointcheval

ENS-CNRS

TEGTSS TEGTSS -- II: SecurityII: Security

Security Claim:
If H is a random oracle, but

● x → G(x) is (l + 1)-collision-resistant
● OR x → G(gx mod p) is (l + 1)-collision-free

then existential forgery = extraction of X

DSA-II: F1(k,X,T,U) = (U + XT)/k mod q
F2(S,T,U) = U/S mod q
and F3(S,T,U) = T/S mod q

Design Validations for Discrete Logarithm Based Signature Schemes - PKC ‘2000 - 19
David Pointcheval

ENS-CNRS

Improved Forking LemmaImproved Forking Lemma

(M,T,S0,U0) valid after 1/ε attempts: prob. > 1/3
Good “beginning” (before H(M,T)): prob. > 1/8
Other valid output after 24Qlog(2l)/ε attempts:

prob. > 1/3
⇒ l+1 valid outputs, same (M,T): prob. > 1/72

but distinct l+1 oracle answers: prob. > 1/96

ω
Queries to H (M,T)
Answers from H ρ0

ρ1

ρl

(M,T,S0,U0)

(M,T,S1,U1)

(M,T,Sl,Ul)

Existential forgery: Probability of success = ε

Design Validations for Discrete Logarithm Based Signature Schemes - PKC ‘2000 - 20
David Pointcheval

ENS-CNRS

ProofProof

Using the Improved Forking Lemma, after less
than 25lQlog(2l)/ε executions of the adversary,
→ M, T, (S0,U0), (S1,U1), …, (Sl,Ul) such that
Wi = gEGi YEYi = gti mod p

with EGi = F2(Si,T,Ui), EYi = F3(Si,T,Ui) and ti = EGi+X EYi

Then T=G(gti mod p) for every i
with pairwise distinct Eyi

● G l+1-CR: ∃i≠j Wi=Wj then X

● G(gx) l+1-CF: ∃i≠j ti=tj then X

Design Validations for Discrete Logarithm Based Signature Schemes - PKC ‘2000 - 21
David Pointcheval

ENS-CNRS

Applications: KCDSAApplications: KCDSA

KCDSA:

◆ provably unforgeable
if both G and H are random oracles

◆ provably unforgeable
if H is a random oracle
but G just collision-resistant

Design Validations for Discrete Logarithm Based Signature Schemes - PKC ‘2000 - 22
David Pointcheval

ENS-CNRS

Applications: DSAApplications: DSA--IIII

DSA-II:

◆ provably unforgeable
if both G and H are random oracles

◆ provably unforgeable
if H is a random oracle but

● R → G(R) just multi-collision-resistant

● or x → G(gx) just multi-collision-free

Design Validations for Discrete Logarithm Based Signature Schemes - PKC ‘2000 - 23
David Pointcheval

ENS-CNRS

Applications: DSAApplications: DSA

DSA-II:

◆ for any random G, x → G(gx mod p)
is likely (log q)-collision-free

DSA:

◆ a collision for

x → (gx mod p) mod q

would lead to an important weakness in
the original DSA

Design Validations for Discrete Logarithm Based Signature Schemes - PKC ‘2000 - 24
David Pointcheval

ENS-CNRS

ConsequencesConsequences

TEGTSS-II: unforgeability if
● H is a random oracle

● x → G(x) is (l + 1)-collision-resistant

◆ a random function G: {0,1}* → {0,1}80

is 5-collision-resistant

◆ a signature is a pair (S,T) ∈ q × G
⇒ only 200 bit-long

Design Validations for Discrete Logarithm Based Signature Schemes - PKC ‘2000 - 25
David Pointcheval

ENS-CNRS

ConclusionConclusion

Many standards have been broken
(e.g. ISO 9796-1) whereas efficient
provably secure schemes exist.

◆ DSA, why?
Whereas many slight variants
would have been provably secure?

◆ KCDSA is provably secure
(even with only one random oracle)

