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Introduction

Signature Scheme = Authentication
Key-Gen: outputs a pair of secret-public keys

Sign: on input a message and the secret key,
outputs a signature Sig

Ver: on input a message, a signature and a
public key, checks whether the signature
has been produced, on this message, using
the secret key related to the public one
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Security Notions

(existential) unforgeability
(under adaptively chosen-message attacks):

no adversary, who has access
to a signature oracle, can produce
a new pair message-signature
but with negligible probability
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Previous Results

Random Oracle Model:
some objects are seen ideal

e.g. hash function = ideal random function

[ RSA-based:
FDH-RSA, PSS (Bellare-Rogaway EC ‘96)

[] DL-based.:
Schnorr (JoC ‘91 - Pointcheval-Stern EC ‘96)

David Pointcheval ) o ) ) ) )
ENS-CNRS Design Validations for Discrete Logarithm Based Signature Schemes - PKC ‘2000 - 5

DL-based Signatures

El Gamal (1985)

p large prime and g 0 Z " of large order
Key-Gen: XUZ , and Y=g* mod p

secret key: X and public key: Y
Sign(M): kOZ ;" and R=g* mod p

then S= (M-XR) / k mod p-1

-0=(R Y
Ver(M,o): check whether YRRS= g™ mod p
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Security

[ El Gamal (1985): existential forgery

[1 Schnorr (1989): many improvements

In a prime subgroup (efficiency)
message hashed together with r

[1 unforgeability (Random Oracle Model [PS96])
[1 DSA (1994) and KCDSA (1998):
message hashed alone: unforgeability?

Standards # Provably Secure Schemes!
[1 many attacks (e.g. ISO 9796-1)
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DL-based Signatures

p and g large primes such that g | p-1
and g0 Z " of order q

Key-Gen: XUZ, and Y=g* mod p
secret key: X
public key: Y

Sign(M): kOZ,;” and R= g*mod p
and ...
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DL-based Standards

[1 Digital Signature Algorithm (DSA)

Sign(M): (k, R), T= Rmod g and U = H(M)
then S= (U+XT)/k mod q > 0=(T,9

Ver(M,o): with U=H(M), QU T
Tz% SY S mod p%ﬂodq

[1 Korean Certificate-based
Digital Signature Algorithm (KCDSA)
Sign(M): (k, R), T= G(M) and U = H(R)
then S= (k- T O U)/Xmod g -0=(U, 9
Ver(M,0): with T=G(M), |j=nH (gTDuYs T p)
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DSA-Variants

DSA(M): kZ" and R= gtmod p,
T=Rmodq and U = H(M)
then S= (U+XT)/k mod q > 0=(T,9
DSA-I(M): T= G(R) and U = H(M)

? u T
T :G%SYS mod p%where U=H(M)

DSA-II(M): T= G(R) and U = H(M,T)
2 ur
T :G%SYS mod p%ﬂ/here U=H(M,T)
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Security

DSA - DSA-I: x - xmod q replaced by G

DSA-I: provably unforgeable
If both G and H are random oracles

But “x - xmod g” # random oracle!
[1 no consequences for DSA

KCDSA: provably unforgeable
If both G and H are random oracles

Can we weaken the assumptions:
Two Random Oracles?
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Hash Functions

Classical properties for Hash Functions:
random oracle: ideal random function

|-collision-freeness:
there do not exist | pairwise distinct
elements (xy, ... , X) such that

h(x) = ... = h(x)
|-collision-resistance:
it is computationally impossible to find
| pairwise distinct elements (X, ... , X)

such that
h(x) = ... = h(x)
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Trusted El Gamal Type
Signature Schemes

[] pand qlarge primes such that g | p-1
and g 0 Z " of order g

[1 G and H two hash functions:
G:{0,1}" - Gand H:{0,1}" - H
such that g/2 < |G|,|H| < ¢

G Is seen as a random oracle
H has just practical properties

Key-Gen: XUZ, and Y=g* mod p
Sign(M): kOZ;” and R= g*mod p
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TEGTSS Characteristics

[1 Three Functions:

F.Z,xZ,xGxH - Z,
FrrZ,xGxH - Z,
Fi: Z,xGXxH - Z,

such that, for all (a,b,T,U) 0 Z,x Z,x G x H
F,(F,(a,b,T,U),T,U) + b F5(F,(a,b, T,U),T,U) =amod q
[ TEGTSS Verification Equation:

David Pointcheval

a tuple (W,ST,U) is said “valid” if

W= g% YEymod p
where Eg=F,(ST,U) and E, = F4(ST,U)
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TEGTSS - |

Sign(M): (k, R), T= G(M) and U = H(R)
then S= F,(k,X,T,U) - 0=(ST,U)
Ver(M,o): check if T= G(M) and U = H(W),
where W= g&G YEY mod p
with E; = F,(ST,U) and E, = F4(ST,U)
Properties: for two tuples (W,,§,T;,U)), 1=1,2
Tl a T2 L] F3(SL’T1’U1) 7 FS(SZ’TZUZ)

(WS, T,,U,) fixed, U, - T, one-to-one map
such that F5(S;,T;,U;) = F4(S,,T,,U,)
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TEGTSS - I: Security

KCDSA: F,(kX,T,U) = (k- T O U)/X mod g
F,(ST,U)=T0O U modq
and F;(ST,U) =Smod g

Security Claim:
If H Is a random oracle
but G is just collision-resistant then
existential forgery = extraction of X

Proof:
- __use of the Forking Lemma [PS96]
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TEGTSS - |

Sign(M): (k, R), T= G(R) and U = H(M,T)
then S= F,(k,X,T,U) - 0=(§T,U)
Ver(M,o): check if T= G(W) and U = H(M,T),
where W= g&G Y=Y mod p
with E;= F,(ST,U) and E, = F4(ST,U)
Properties: for given (T, Eg, E,), there exists
a unique pair (U,S) such that
E.=F,(ST,U)and E, = F;(ST,U)
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TEGTSS - Il: Security

DSA-II: F,(k,X,T,U) = (U + XT)/k mod q
F,(ST,U) = U/Smod q
and F;(ST,U) =T/Smod g

Security Claim:
If H is a random oracle, but
X - G(X) is (I + 1)-collision-resistant
OR x - G(g*mod p) is (I + 1)-collision-free
then existential forgery = extraction of X
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Improved Forking Lemma

Existential forgery: Probability of success = ¢
Queries to H (M,T)

- (M, T,S,,U
W Answers from H Po ( SD 0)
o; - (M.T,S,U))
- (MT.S,U)
P

(M,T,S,,U,) valid after 1/e attempts: prob. > 1/3
Good “beginning” (before H(M,T)): prob. > 1/8

Other valid output after 24Qlog(2l)/e attempts:
prob. > 1/3

(] [+1 valid outputs, same (M,T): prob. > 1/72
but distinct |+1 oracle answers: _prob. > 1/96
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Proof

Using the Improved Forking Lemma, after less
than 25lQlog(2l)/e executions of the adversary,
- M, T, (S§,Uy), (S,Uy), ..., (§,U,)) such that
W, = gtGi YBYi = gt mod p

with Eg = Fo(S.T,U), E,; = F4(S,T,U)) and t,= E5+X E,,
Then T=G(g% mod p) for every |
with pairwise distinct E,;
G I+1-CR: [i#] W=W then X
G(g) 1+1-CF: [0#] t=t; then X
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Applications: KCDSA

KCDSA:

[1 provably unforgeable
If both G and H are random oracles

[ provably unforgeable
If H Is a random oracle
but G just collision-resistant
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Applications: DSA-II

DSA-II:

[] provably unforgeable
If both G and H are random oracles

[] provably unforgeable
If H is a random oracle but

R - G(R) just multi-collision-resistant
or X - G(g¥) just multi-collision-free
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Applications: DSA

DSA-II:

[1 for any random G, x —» G(g* mod p)
IS likely (log g)-collision-free

DSA:
[1 a collision for
X - (g*mod p) mod g

would lead to an important weakness in
the original DSA
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Consequences

TEGTSS-II: unforgeability if
H is a random oracle
X —» G(X) is (I + 1)-collision-resistant
1 a random function G: {0,1}" - {0,1} 8
IS 5-collision-resistant
[ a signature is a pair (ST) 0 Z,x G
[1 only 200 bit-long
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Conclusion

Many standards have been broken
(e.g. 1ISO 9796-1) whereas efficient
provably secure schemes exist.

[1 DSA, why?

Whereas many slight variants
would have been provably secure?

[1 KCDSA is provably secure
(even with only one random oracle)
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