# Public Key Cryptography PKC ' 2000

18-20 january 2000 - Melbourne - Australia

Design Validations for Discrete Logarithm Based Signature Schemes

> Ernest Brickell David Pointcheval Serge Vaudenay Moti Yung



#### **Overview**

- Introduction
- DL-based standards
- Trusted El Gamal Types
   Signature Schemes
- Security Properties
- Some Applications
- Conclusion

## Introduction

Signature Scheme = Authentication Key-Gen: outputs a pair of secret-public keys Sign: on input a message and the secret key, outputs a signature *Sig* 

Ver: on input a message, a signature and a public key, checks whether the signature has been produced, on this message, using the secret key related to the public one

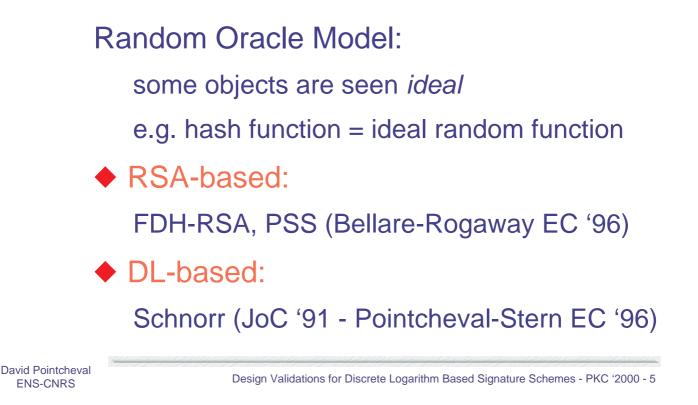
David Pointcheval ENS-CNRS

Design Validations for Discrete Logarithm Based Signature Schemes - PKC '2000 - 3

# **Security Notions**

(existential) unforgeability (under adaptively chosen-message attacks): no adversary, who has access to a signature oracle, can produce a new pair message-signature but with negligible probability

## **Previous Results**



# **DL-based Signatures**

El Gamal (1985) p large prime and  $g \in \mathbb{Z}_p^*$  of large order Key-Gen:  $X \in \mathbb{Z}_{p-1}$  and  $Y = g^X \mod p$ secret key: X and public key: YSign(M):  $k \in \mathbb{Z}_{p-1}^*$  and  $R = g^k \mod p$ then  $S = (M - XR) / k \mod p - 1$   $\rightarrow \sigma = (R, S)$ Ver( $M, \sigma$ ): check whether  $Y^R R^S = g^M \mod p$ 

# **Security**

 ◆ El Gamal (1985): existential forgery
 ◆ Schnorr (1989): many improvements

 in a prime subgroup (efficiency)
 message hashed together with r

 ⇒ unforgeability (Random Oracle Model [PS96])
 ◆ DSA (1994) and KCDSA (1998): message hashed alone: unforgeability? Standards ≠ Provably Secure Schemes! ⇒ many attacks (e.g. ISO 9796-1)

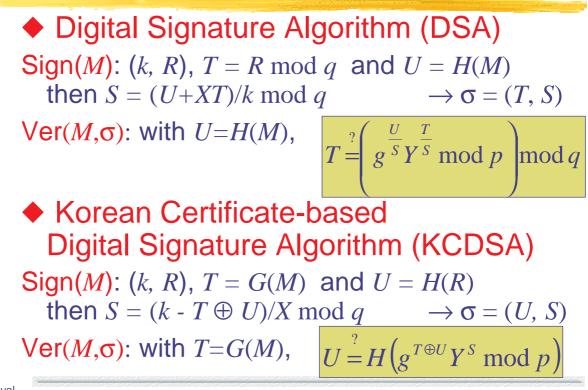
David Pointcheval ENS-CNRS

Design Validations for Discrete Logarithm Based Signature Schemes - PKC '2000 - 7

# **DL-based Signatures**

*p* and *q* large primes such that q | p-1and  $g \in \mathbb{Z}_p^*$  of order *q* Key-Gen:  $X \in \mathbb{Z}_q$  and  $Y = g^X \mod p$ secret key: *X* public key: *Y* Sign(*M*):  $k \in \mathbb{Z}_q^*$  and  $R = g^k \mod p$ and ...

# **DL-based Standards**



David Pointcheval ENS-CNRS

Design Validations for Discrete Logarithm Based Signature Schemes - PKC '2000 - 9

#### **DSA-Variants**

DSA(M):  $k \in \mathbb{Z}_q^*$  and  $R = g^k \mod p$ ,  $T = R \mod q$  and U = H(M)then  $S = (U+XT)/k \mod q \longrightarrow \sigma = (T, S)$ DSA-I(M): T = G(R) and U = H(M)  $T \stackrel{?}{=} G\left(g^{\frac{U}{S}}Y^{\frac{T}{S}} \mod p\right)$  where U = H(M)DSA-II(M): T = G(R) and U = H(M,T) $T \stackrel{?}{=} G\left(g^{\frac{U}{S}}Y^{\frac{T}{S}} \mod p\right)$  where U = H(M,T)

# **Security**

DSA  $\rightarrow$  DSA-I:  $x \rightarrow x \mod q$  replaced by G DSA-I: provably unforgeable if both G and H are random oracles But " $x \rightarrow x \mod q$ "  $\neq$  random oracle!  $\Rightarrow$  no consequences for DSA KCDSA: provably unforgeable if both G and H are random oracles Can we weaken the assumptions: Two Random Oracles?

David Pointcheval ENS-CNRS

Design Validations for Discrete Logarithm Based Signature Schemes - PKC '2000 - 11

# **Hash Functions**

**Classical properties for Hash Functions:** 

random oracle: ideal random function

• *l*-collision-freeness: there do not exist *l* pairwise distinct elements  $(x_1, ..., x_l)$  such that

 $h(x_1) = \ldots = h(x_l)$ 

*l*-collision-resistance: it is computationally impossible to find *l* pairwise distinct elements (x<sub>1</sub>, ..., x<sub>l</sub>) such that

$$h(x_1) = \ldots = h(x_l)$$

David Pointcheval ENS-CNRS

#### Trusted El Gamal Type Signature Schemes

*p* and *q* large primes such that *q* | *p*-1 and *g* ∈ Z<sub>*p*</sub><sup>\*</sup> of order *q G* and *H* two hash functions: *G*: {0,1}\* → G and *H*: {0,1}\* → H such that *q*/2 < |G|,|H| < q</li> *G* is seen as a random oracle *H* has just practical properties
Key-Gen: *X*∈ Z<sub>*q*</sub> and *Y*=*g*<sup>*X*</sup> mod *p*Sign(*M*): *k*∈ Z<sub>*q*</sub>\* and *R* = *g*<sup>*k*</sup> mod *p*

David Pointcheval ENS-CNRS

Design Validations for Discrete Logarithm Based Signature Schemes - PKC '2000 - 13

#### **FIGTSS Characteristics** • Three Functions: • $F_1: \mathbb{Z}_q \times \mathbb{Z}_q \times G \times H \to \mathbb{Z}_q$ • $F_2: \mathbb{Z}_q \times G \times H \to \mathbb{Z}_q$ • $F_3: \mathbb{Z}_q \times G \times H \to \mathbb{Z}_q$ such that, for all $(a,b,T,U) \in \mathbb{Z}_q \times \mathbb{Z}_q \times G \times H$ $F_2(F_1(a,b,T,U),T,U) + b F_3(F_1(a,b,T,U),T,U) = a \mod q$ • TEGTSS Verification Equation: a tuple (W,S,T,U) is said "valid" if $W = g^{E_g} Y^{E_Y} \mod p$ where $E_G = F_2(S,T,U)$ and $E_Y = F_3(S,T,U)$

David Pointcheval ENS-CNRS

Design Validations for Discrete Logarithm Based Signature Schemes - PKC '2000 - 14

## **TEGTSS - I**

Sign(*M*): (*k*, *R*), T = G(M) and U = H(R)then  $S = F_1(k, X, T, U) \rightarrow \sigma = (S, T, U)$ Ver(*M*, $\sigma$ ): check if T = G(M) and U = H(W), where  $W = g^{E_G} Y^{E_Y} \mod p$ with  $E_G = F_2(S, T, U)$  and  $E_Y = F_3(S, T, U)$ Properties: for two tuples  $(W_i, S_i, T_i, U_i)$ , *i*=1,2 •  $T_1 \neq T_2 \Rightarrow F_3(S_1, T_1, U_1) \neq F_3(S_2, T_2, U_2)$ •  $(W_1, S_1, T_1, U_1)$  fixed,  $U_2 \rightarrow T_2$  one-to-one map such that  $F_3(S_1, T_1, U_1) = F_3(S_2, T_2, U_2)$ 

David Pointcheval ENS-CNRS

Design Validations for Discrete Logarithm Based Signature Schemes - PKC '2000 - 15

# **TEGTSS - I: Security**

**KCDSA:**  $F_1(k,X,T,U) = (k - T \oplus U)/X \mod q$  $F_2(S,T,U) = T \oplus U \mod q$ and  $F_3(S,T,U) = S \mod q$ 

#### **Security Claim:**

If *H* is a random oracle

but *G* is just collision-resistant then existential forgery = extraction of X

#### Proof: use of the Forking Lemma [PS96]

#### **TEGTSS - II**

Sign(*M*): (*k*, *R*), T = G(R) and U = H(M,T)then  $S = F_1(k,X,T,U) \rightarrow \sigma = (S,T,U)$ Ver(*M*, $\sigma$ ): check if T = G(W) and U = H(M,T), where  $W = g^{E_G} Y^{E_Y} \mod p$ with  $E_G = F_2(S,T,U)$  and  $E_Y = F_3(S,T,U)$ Properties: for given (*T*,  $E_G$ ,  $E_Y$ ), there exists a unique pair (*U*,*S*) such that  $E_G = F_2(S,T,U)$  and  $E_Y = F_3(S,T,U)$ 

David Pointcheval ENS-CNRS

Design Validations for Discrete Logarithm Based Signature Schemes - PKC '2000 - 17

# **TEGTSS - II: Security**

**DSA-II:**  $F_1(k,X,T,U) = (U + XT)/k \mod q$  $F_2(S,T,U) = U/S \mod q$ and  $F_3(S,T,U) = T/S \mod q$ 

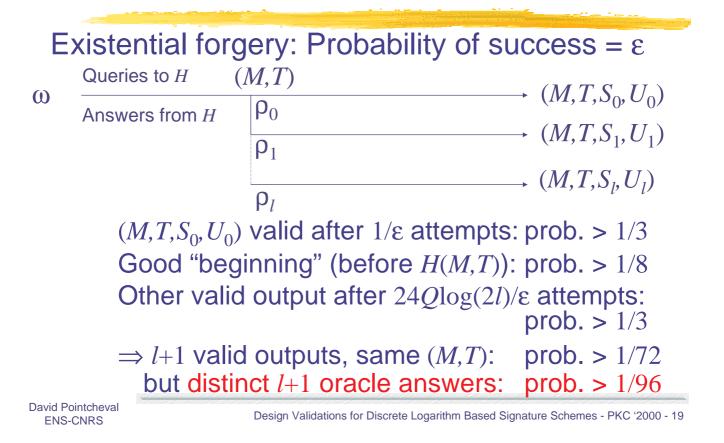
#### **Security Claim:**

If *H* is a random oracle, but

- $x \to G(x)$  is (l + 1)-collision-resistant
- **OR**  $x \to G(g^x \mod p)$  is (l+1)-collision-free

then existential forgery = extraction of X

# **Improved Forking Lemma**



#### Proof

Using the Improved Forking Lemma, after less than  $25lQ\log(2l)/\epsilon$  executions of the adversary,  $\rightarrow M, T, (S_0, U_0), (S_1, U_1), \dots, (S_l, U_l)$  such that  $W_i = g^{E_{G_i}} Y^{E_{Y_i}} = g^{t_i} \mod p$ with  $E_{G_i} = F_2(S_i, T, U_i), E_{Y_i} = F_3(S_i, T, U_i)$  and  $t_i = E_{G_i} + X E_{Y_i}$ Then  $T = G(g^{t_i} \mod p)$  for every iwith pairwise distinct  $E_{y_i}$  $\bullet G l+1$ -CR:  $\exists i \neq j W_i = W_i$  then X

• G l+1-CR.  $\exists l \neq j \ w_i \equiv w_j$  then X

Design Validations for Discrete Logarithm Based Signature Schemes - PKC '2000 - 20

# **Applications: KCDSA**

KCDSA:

provably unforgeable
 if both G and H are random oracles

provably unforgeable
 if *H* is a random oracle
 but *G* just collision-resistant

David Pointcheval ENS-CNRS

Design Validations for Discrete Logarithm Based Signature Schemes - PKC '2000 - 21

# **Applications: DSA-II**

**DSA-II**:

- provably unforgeable
   if both G and H are random oracles
- provably unforgeable
   if *H* is a random oracle but
  - $R \rightarrow G(R)$  just multi-collision-resistant
  - or  $x \to G(g^x)$  just multi-collision-free

# **Applications: DSA**

DSA-II:

• for any random  $G, x \rightarrow G(g^x \mod p)$ is likely  $(\log q)$ -collision-free

DSA:

a collision for

 $x \to (g^x \mod p) \mod q$ 

would lead to an important weakness in the original DSA

David Pointcheval ENS-CNRS

Design Validations for Discrete Logarithm Based Signature Schemes - PKC '2000 - 23

## Consequences

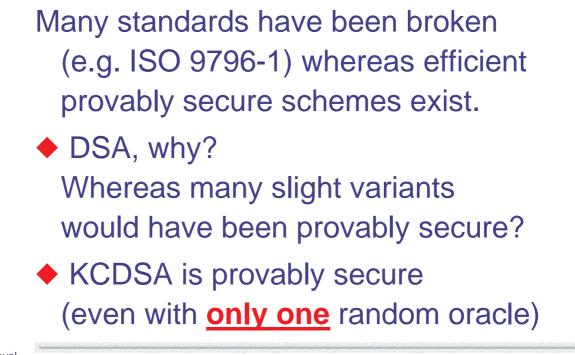
**TEGTSS-II**: unforgeability if

- *H* is a random oracle
- $x \rightarrow G(x)$  is (l + 1)-collision-resistant

• a random function  $G: \{0,1\}^* \rightarrow \{0,1\}^{80}$ is 5-collision-resistant

♦ a signature is a pair (S,T) ∈  $\mathbb{Z}_q \times \mathbb{G}$ ⇒ only 200 bit-long

#### Conclusion



David Pointcheval ENS-CNRS

Design Validations for Discrete Logarithm Based Signature Schemes - PKC '2000 - 25