
Advances in Cryptology – Proceedings of CRYPTO ’2003 (17 – 21 august 2003, Santa Barbara, California, USA)
D. Boneh Ed. Springer-Verlag, LNCS 2729, pages 226–246.

The Impact of Decryption Failures

on the Security of NTRU Encryption

Nick Howgrave-Graham1, Phong Q. Nguyen2, David Pointcheval2,
John Proos3, Joseph H. Silverman1, Ari Singer1, and William Whyte1

1 NTRU Cryptosystems, 5 Burlington Woods, Burlington, MA 02144
{nhowgravegraham,jhs,asinger,wwhyte}@ntru.com
2 CNRS/ENS–DI, 45 rue d’Ulm, 75005 Paris, France

{phong.nguyen,david.pointcheval}@ens.fr
3 University of Waterloo, 200 University Ave. West, Waterloo, Canada N2L 3G1

japroos@math.uwaterloo.ca

Abstract. NTRUEncrypt is unusual among public-key cryptosystems in that, with
standard parameters, validly generated ciphertexts can fail to decrypt. This affects the
provable security properties of a cryptosystem, as it limits the ability to build a simulator
in the random oracle model without knowledge of the private key. We demonstrate
attacks which use decryption failures to recover the private key. Such attacks work for
all standard parameter sets, and one of them applies to any padding. The appropriate
countermeasure is to change the parameter sets and possibly the decryption process so
that decryption failures are vanishingly unlikely, and to adopt a padding scheme that
prevents an attacker from directly controlling any part of the input to the encryption
primitive. We outline one such candidate padding scheme.

1 Introduction

An unusual property of the NTRU public-key cryptosystem is the presence of de-

cryption failures: with standard parameters, validly generated ciphertexts may fail to
decrypt. In this paper, we show the importance of decryption failures with respect
to the security of the NTRU public-key cryptosystem. We believe this fact has been
much overlooked in past research on NTRU.

First, we notice that decryption failures cannot be ignored, as they happen much
more frequently than one would have expected. If one strictly follows the recommen-
dations of the EESS standard [3], decryption failures happen as often as every 212

messages with N = 139, and every 225 messages with N = 251. It turns out that the
probability is somewhat lower (around 2−40) with NTRU products, as the key gener-
ation implemented in NTRU products surprisingly differs from the one recommended
in [3]. In any case, decryption failures happen sufficiently often that one cannot dismiss
them, even in NTRU products.

One may a priori think that the only drawback with decryption failures is that the
receiver will not be able to decrypt. However, decryption failures have a big impact
on the confidence we can have in the security level, because they limit the ability to
build a simulator in the random oracle model without knowledge of the private key.
This limitation is independent of the padding used. This implies that all the security
proofs known (see [14, 21]) for various NTRU paddings may not be valid after all,
because decryption failures have been ignored in such proofs. This also means that
existing generic padding schemes (such as REACT [23]) may not apply to NTRU as,
to our knowledge, no existing padding scheme takes into account the possibility of de-
cryption failures, perhaps because the only competitive cryptosystem that experiences
decryption failures is NTRUEncrypt.

c© IACR 2003.

2

From a security point of view, the situation is even worse. It turns out that decryp-
tion failures not only influence the validity of a security proof, they leak information on
the private key. We demonstrate this fact by presenting new efficient chosen-ciphertext
attacks on NTRUEncrypt (with or without padding) that recover the private key.
These chosen-ciphertext attacks are very different from chosen-ciphertext attacks [17,
15] formerly known against NTRU: they only use valid ciphertexts, while the attacks
of [17, 15] use fake ciphertexts and can therefore be easily thwarted. Moreover, these
chosen-ciphertext attacks do not use the full power of chosen-ciphertext attacks, but
reaction attacks only [9]: Here, the attacker selects various messages, encrypts them,
and checks whether the receiver is able to correctly decrypt the ciphertexts: eventually,
the attacker has gathered sufficiently many decryption failures to be able to recover
the private key. The only way to avoid such chosen-ciphertext attacks is to make sure
that it is computationally infeasible to find decryption failures. This requires different
parameter sets and certain implementation changes in NTRUEncrypt, which we
hint in the final section of this paper.

The rest of the paper is organized as follows. In Sections 2 and 3, we recall NTRU-

Encrypt and the padding used in EESS [4]. In Section 4, we explain decryption
failures, and their impact on security proofs for NTRU paddings. In Section 5, we
present several efficient attacks based on decryption failures: some are tailored to cer-
tain paddings, while the most powerful one applies to any padding. In Appendix A, we
give additional information on NTRUEncrypt, pointing out the difference between
the specification of the EESS standard and the implementation in NTRU products.
In Appendix B, we describe an alternative attack based on decryption failures that
work against certain NTRU paddings.

2 The NTRU Encryption Scheme

2.1 Definitions and Notation

NTRUEncrypt operations take place in the quotient ring of polynomials P =
Z[X]/(XN − 1). In this ring, addition of two polynomials is defined as pairwise addi-
tion of the coefficients of the same degree, and multiplication is defined as convolution
multiplication. The convolution product h = f ∗ g of two polynomials f and g is given
by taking the coefficient of Xk to equal hk =

∑

i+j≡k mod N fi · gj . Several different
measures of the size of a polynomial turn out to be useful. We define the norm of
a polynomial f in the usual way, as the square root of the sum of the squares of its
coefficients. We define the width of a polynomial f as the difference between its largest
coefficient and its smallest coefficient.

The fundamental parameter in NTRUEncrypt is N , the ring dimension. The
parameter N is taken to be prime to prevent attacks due to Gentry [6], and sufficiently
large to prevent lattice attacks. We also use two other parameters, p and q, which are
relatively prime. Standard practice is to take q to be the power of 2 between N/2 and
N , and p to be either the integer 3 or the polynomial 2 + X. We thus denote p as
a polynomial p in the following, and we focus on the case p = 2 + X as p = 3 is no
longer recommended in NTRU standards [3, 4].

2.2 Overview

The basic NTRUEncrypt key generation, encryption, and decryption primitives are
as follows.

3

Key Generation — Requires a source of (pseudo-)random bits, and subspaces Lf ,Lg ⊆
P from which the polynomials f and g are drawn. These subspaces have the property
that all polynomials in them have small width – for example, they are now commonly
taken to be the space of all binary polynomials with df , dg 1s respectively.

– Input: Values N , p, q.
• Randomly choose f ∈ Lf and g ∈ Lg in such a way that both f and g are

invertible modq;
• Set h = p ∗ g ∗ f−1 mod q.

– Public output: The input parameters and h.
– Private output: The public output, f, and fp ≡ f−1 mod p.

Encryption — Requires a source of (pseudo-)random bits, subspaces Lr and Lm from
which the polynomials r and m are to be drawn, and an invertible meansM of convert-
ing a binary message m to a message representative m ∈ Lm. The subspaces Lr,Lm

also have the property that all polynomials in them have low width.

– Input: A message m and the public key h.
• Convert m to the message representative m ∈ Lm: m =M(m);
• Generate random r ∈ Lr.

– Output: The ciphertext e = h ∗ r + m mod q.

Decryption —

– Input: The ciphertext e, the private key f, fp and the parameters p and q.
• Calculate a = f ∗ e mod q. Here, “mod q” denotes reduction of a into the

range [A,A+ q− 1], where the “centering value” A is calculated by a method
to be discussed later;
• Calculate m = fp ∗ a mod p, where the reduction is to the range [0, 1].

– Output: The plaintext m, which is m converted from a polynomial in Lm to a
message.

2.3 Decryption Failures

In calculating a = f ∗ e mod q, one actually calculates

a = f ∗ e = f ∗ (r ∗ h + m) = p ∗ r ∗ g + f ∗ m mod q. (1)

The polynomials p, r, g, m, and f are chosen to be small in P, and so the polynomial
p ∗ r ∗ g + f ∗ m will, with “very high probability”, have width less than q. If this
is the case, it is possible to reduce a into a range [A,A + q − 1] such that the mod
q equality in the Equation (1) is an exact equality in Z. If this equality is exact, the
second convolution gives

fp ∗ a = p ∗ (fp ∗ r ∗ g) + fp ∗ f ∗ m = 0 + 1 ∗ m = m mod p, recovering m.

Decryption only works if the equality modq in Equation (1) is also an equality
in Z. This condition will not hold if A has been incorrectly chosen so that some
coefficients of p ∗ r ∗ g + f ∗ m lie outside the centering range, or if p ∗ r ∗ g + f ∗ m

happens to have a width greater than q (so that there is no mod q range that makes
the Equation (1) an exact equality). In this case, the recovered m will differ from the
encrypted m by some multiple of q mod p. These events are the decryption failures at
the core of this paper.

Before NTRUEncrypt can be used, the subspaces Lf ,Lg,Lr must be specified.
See appendix A for details of the precise form of the polynomials f, g, r used in the
standard [3] and the (slightly) different one deployed in NTRU Cryptosystems’ prod-
ucts.

4

2.4 The NTRU Assumption

Among all the assumptions introduced in [21], the most important one is the one-
wayness of the NTRU primitive, namely that the following problem is asymptotically
hard to solve:

Definition 1 (The NTRU Inversion Problem). For a given security parameter
k, which specifies N , p, q and the spaces Lf , Lg, Lm, and Lr, as well as a random
public key h and e = h ∗ r + m, where m ∈ Lm and r ∈ Lr, find m. We denote by
Succow

ntru(A) the success probability of any adversary A.

Succow
ntru(A) = Pr

[

(h, ?)← K(1k),m ∈ Messages, r ∈ Random,
e = h ∗ r + m mod q : A(e, h) = m

]

.

3 The NTRU Paddings

For clarity reasons, in the description of the paddings, we consider the encryption
scheme Π = (K, E ,D), which is an improvement of the plain NTRU cryptosystem
that includes the two public encodingsM and R:

K(1k) = (pk = h, sk = (f, fp)),
Epk(m; r) =M(m) +R(r) ∗ h mod q,
Dsk(e) =M−1((e ∗ f mod q)A ∗ fp)

with,
M : Messages = {0, 1}mLen →Lm

R : Random = {0, 1}rLen →Lr

Because of the encodings, without any assumption, recovering the bit-string m is as
hard as recovering the polynomial m =M(m). However, recovering ` bits of m does
not necessarily provide ` bits of the polynomial m =M(m), which is the reason why
stronger assumptions were introduced in [21].

3.1 Description

Following the publication of [17], several padding schemes were proposed in [14, 13]
to protect NTRUEncrypt against adaptive chosen-ciphertext attacks. The result-
ing schemes were studied in [21], but under the assumption that the probability of
decryption failures was negligible. We briefly review one of these schemes, known as
SVES-1 and standardized in [3].

Let m be the original plaintext represented by a k1-bit string. For each encryp-
tion, one generates a random string b, whose bit-length k2 is between 40 and 80 [14].
However, k1 + k2 ≤ mLen. Let ‖ denote bit-string concatenation.

To encrypt, first split each of m and b into equal size pieces m = m ‖m and
b = r ‖ r. Then, use two hash functions F and G that map {0, 1}k1/2+k2/2 into itself,
to compute:

m1 = (m ‖ r)⊕ F (m ‖ r) and m2 = (m ‖ r)⊕G(m1).

A third hash function, H : {0, 1}mLen → {0, 1}rLen , is applied to yield the ciphertext:

E3
pk(m; b) = Epk(m1 ‖m2;H(m ‖ b)).

The decryption algorithm consists of recovering m, b from the plain NTRU de-
cryption, and re-encrypting to check whether one obtains the given ciphertext. This
is equivalent to extracting, from m and e, the alleged r, and check whether it is equal
to R(H(m ‖ b)). We denote by Π3 the corresponding encryption scheme.

5

3.2 Chosen-Ciphertext Attacks

First of all, one may note that because of the random polynomial r that is generated
from H(m ‖ b), nobody can generate a valid ciphertext without knowing both the
plaintext m and the random b, except with negligible probability, for well-chosen
conversion R (which is not necessarily injective, according to [3, 4]). Indeed, for a
given ciphertext e, at most one r is acceptable. Without having asked H(m ‖ b), the
probability for R(H(m ‖ b)) to be equal to r is less than εr:

εr = max
r
{ Pr

x∈{0,1}rLen
[r = R(x)]}.

However, to lift any security level from the CPA scenario to the CCA-one, one
needs a good simulation of the decryption oracle: since any valid ciphertext has been
correctly constructed, one looks at the list of the query-answers to the H-oracle,
and can re-encrypt each possible plaintext to check which one is the good one. This
perfectly simulates the decryption of validly generated ciphertexts, unless a decryption

failure occurs (Fail event). In the latter case, the output decrypted plaintext is not
the encrypted one, whereas the output simulated plaintext is: the probability of bad
simulation is finally less than εr + p(m, r, h), where

p(m, r, h) = Pr
f,g

[Df,fp(Eh(m, r)) Fail | h = p ∗ g ∗ f−1 (mod q)].

The security analyses in [21] were performed assuming that p(m, r, h) is negligible (and
even 0). But we shall see later that this is unfortunately not the case. We thus refine
the security analyses and even show that the parameters have to be chosen differently.

4 Decryption Failures and Provable Security

4.1 Wrap Failures and Gap Failures

When decrypting, the recipient must place the coefficients of a = f ∗ e mod q into
the correct range [A,A + q − 1]. To calculate A, we use the fact that convolution
multiplication respects the homomorphism (a ∗ b)(1) = a(1) · b(1), where a(1) is the
sum of the coefficients of the polynomial a. The decrypter knows r(1) and h(1), and
so he can calculate I = m(1) = e(1) − r(1) · h(1) mod q. Assuming m(1) lies in the
range [N/2 − q/2, N/2 + q/2], we can calculate the average value of a coefficient of
p ∗ r ∗ g + f ∗ m and set

A =

⌊

p(1) · r(1) · g(1) + f(1) · I
N

⌉

− q

2
.

The assumption about the form of m is a reasonable one, because for randomly chosen
m with N = 251 there is a chance of less than 2−56 that m(1) will be less than N/2−q/2
or greater than N/2 + q/2. In any case, the value of m(1) is known to the encrypter,
so they do not learn anything from a decryption failure based on m being too thick
or too thin.

Having obtained A, we reduce a into the range [A,A + q − 1]. If the actual values
of any of the coefficients of p ∗ r ∗ g + f ∗ m lie outside this range, decryption will
produce the wrong message and this will be picked up in the re-encryption stage of
decryption. However, if p ∗ r ∗ g+ f ∗ m has a width less than q, there is still an A for

6

which decryption is possible. This case, where the initial choice of A does not work
but there is a choice of A which could work, is referred to as a “wrap failure”.

Wrap failures are more common than “gap failures”, where the width of p ∗ r ∗
g + f ∗ m is strictly greater than q. The standard [3] therefore recommends that, on
the occurrence of a decryption failure, the decrypter adjusts the decryption range by
setting A′ successively equal to A ± 1,±2, . . . , placing the coefficients of a into the
new range [A′, A′ + q− 1], and performing the mod p reduction. This is to be carried
out until A′ differs from A by some set T , the “wrapping tolerance”; if decryption has
not succeeded at that point, the decryption function outputs the invalid symbol ⊥.

This method increases the chance that a ciphertext will eventually decrypt; how-
ever, an attacker with access to timing information can tell when this recentering has
occurred. For standard N = 251 parameters and NTRUEncrypt implemented as in
NTRU products, a wrap failure on random m occurs once every 221 messages, while
a gap failure occurs about once every 243 messages. The centering method above will
therefore leak information at least once every million or so decryptions, and possibly
more often if the attacker can carry out some precomputation as in [19]. For NTRU-

Encrypt as implemented following the EESS standard, the number of messages is
much lower: for N = 251, a gap failure occurs once every 225 message.

4.2 Provable Security

In order to deal with any padding, one needs more precise probability informations
than just p(m, r, h):

p0 = Eh[maxm,r{p(m, r, h)}];
p(m, h) = Prr[p(m, r, h)] p1 = Eh[maxm{p(m, h)}];

p(h) = Prm[p(m, h)] = Prm,r[p(m, r, h)] p2 = Eh[p(h)].

Note that all of these probabilities are averages over the whole space of h. Implicit in
these definitions is the assumption that, even if some keys (f, g) are more likely than
others to experience decryption failures, an adversary cannot tell from the public key
h which private key is more failure-prone.

Clearly, one cannot ensure that p(m, r, h) is small, so p0 is likely to be non-
negligible. However, in several paddings, r = R(H(m ‖ b)), where H is a random
oracle, therefore the probability of bad simulation involves at least p1, or even p2.
As discussed above, with recommended parameters, p2 can be as small as 2−43. Even
this is not negligible, but better parameters may hopefully make these values negligi-
ble. However, there is a gap between the existence of such a pair (m, r) that makes a
decryption failure, and the feasibility, for an adversary, to find/build some:

SuccAfail(h) = Pr
f,g

[Df,fp(Eh(m, r)) Fail | h = p ∗ g ∗ fp mod q, (m, r)← A(h)].

As above, one needs to study the probabilities over some classes of adversaries, or
when the adversary does not have the entire control over m or r:

p̃0(t) = max{Eh[SuccAfail(h)], |A| ≤ t}
p̃1(t,Q) = idem where (m, y)← A(h), r = G(m, y)

p̃2(t,Q) = idem where (x, y)← A(h),m = F (x, y), r = G(x, y).

In the above bounds, for p̃0(t), we consider any adversary whose running time is
bounded by t. For p̃1(t,Q) and p̃2(t,Q), F and G are furthermore assumed to be

7

random oracles, to which the adversary can ask up to Q queries. Clearly, for any t
and any Q,

p̃0(t) ≤ p0 p̃1(t,Q) ≤ Q× p1 p̃2(t,Q) ≤ Q× p2.

We now reconsider the SVES-1 padding scheme, keeping these probabilities in
mind. We note that the adversary controls m, by deriving m and b from the required
m1 and m2. However, r is out of the adversary’s control. Therefore after qD queries
to the decryption oracle and qH queries to the random oracle H, the probability
of a decryption failure is less than qD × p̃1(t, qH), where t is the running time of
the adversary. Denoting by TE the time for one encryption, one gets the following
improvement for a CCA attacker over a CPA one:

Advind−cca
Π3 (t) ≤ Adv

ind−cpa

Π3 (t + qHTE) + 2qD × (εr + p̃1(t, qH)) .

4.3 Improved Paddings

In [21], new paddings have been suggested, with better provable security (based on
the NTRU inversion problem only). But decryption failures have been ignored again.

The OAEP-based Scheme — The first suggestion was similar to the SVES-1 padding,
also using two more hash functions

F : {0, 1}k1 → {0, 1}k2 and G : {0, 1}k2 → {0, 1}k1 .

One first computes s = m ⊕ G(b) and t = b ⊕ F (s). The ciphertext consists of
Epk(s ‖ t;H(m ‖ b)). Of course, the decryption checks the validity of r, relatively to
H(m ‖ b). The OAEP construction provides semantic security, while the H function
strengthens it to chosen-ciphertext security (as already explained).

Here, the adversary can choose s, t directly, then reverse the OAEP construction
to obtain m, b. However, they cannot control r. Therefore

Advind−cca
oaep′ (t) ≤ 2Succow

ntru(t + QTE) + 2qD × (εr + p̃1(t, qH)) +
4qH

2k1
+

2qG

2k2
.

where Q = qF qG + qH . But this makes a quadratic reduction, as for any OAEP-based
cryptosystem [2, 5]. The particular above construction admits a better reduction, but
under a stronger computational assumption.

SVES-2 — The successor to SVES-1 proposed for standardization is a minor variant
of the above [4], designed to handle variable length messages. In SVES-2, one uses
two hash functions F and G, and form M1 = b ‖ len(m) ‖m1, M2 = m2 ‖ 000 In
SVES-2, the message length is restricted to be an integer number of bytes, and the
length is encoded in a single byte. The final N mod 8 bits of M2 will always be zeroes
(we use N8 to denote N mod 8). We form s = M2 ⊕ F (M1), t = M1 ⊕ G(s), and
calculate the ciphertext as Epk(t ‖ s;H(m ‖ b)). On decryption, the usual checks are
performed, and in addition the decrypter checks that the length is valid and that M2

consists of 0s from the end of the message onwards.
In this case, an attacker who chooses s, t and reverses the OAEP construction must

get the correct length of m and the correct 0 bits at the end. However, an attacker
can choose s, then select t such that t⊕G(s) has the correct form to be M1, that is,
such that len(m) is its maximum value. The reverse OAEP operation on s, t will then
yield a valid M1,M2 if the last N8 bits of s⊕F (M1) are 0. Therefore an attacker can

8

control all the bits of s, t with probability 28+N8 , or all but 8 of the bits of s, t with
probability 2N8 . Therefore

Advind−cca
SVES−2

(t) ≤ 2Succow
ntru(t + QTE) + 2qD ×

(

εr +
p̃1(t, qH)

2N8

)

+
4qH

2k1
+

2qG

2k2
.

where Q = qF qG + qH .

NTRU-REACT — Thanks to the OW-PCA–security level of the NTRU primitive
(granted the pseudo-inverse of h), one can directly use the REACT construction [23],
in which the decryption algorithm of course checks the validity of c, but also the valid-
ity of r. The semantic security is clear, since the adversary has no advantage without
having asked some crucial queries to the hash functions. With chosen-ciphertext at-
tacks, the adversary cannot produce a valid ciphertext without having built correctly
the authentication tag, except with probability 1/2k2 . Therefore, the simulation of the
decryption oracle is perfect, unless a decryption failure occurs: the adversary knows
b and thus m, but makes a decryption failure, that is not detected by the simulation.
Since the adversary has the control over both m and r, the security against chosen-
ciphertext attacks is not very high:

Advind−cca
react (t) ≤ 2Succow

ntru(t + (qG + qH)TE) + 2qD ×
(

1

2k2
+ p̃0(t)

)

.

In the Improved NTRU-REACT, the adversary completely loses control over r, which
improves the security level, but not enough, since p̃0(t) is replaced by p̃1(t) only.

4.4 Comments

It is clear that decryption failures on valid ciphertexts mean that NTRUEncrypt

with the parameter sets given cannot have provable security to the level claimed. In
the presence of decryption failures, it is impossible to correctly simulate the decryption
oracle: the simulator will output a valid decryption on certain ciphertexts which the
genuine decryption engine will fail to decrypt. Without knowledge of the private key,
it is impossible to build a simulator; and if the simulator requires knowledge of the
private key, it is impossible to have provable security. In the next section we will see
how to use this information to recover the private key with considerably less effort
than a standard lattice attack would take.

5 Some Attacks Based on Decryption Failures

In this section we present some attacks against NTRUEncrypt as implemented in
NTRU Cryptosystems’ products for the N = 251 parameter set. See [4] for details of
this parameter set, and Appendix A for information about the precise structure of f, g
and r used. We stress that the attacks work even better on the EESS standard [3, 4],
because decryption failures arise much more frequently there. Although no paddings
can prevent decryption failures, it turns out that some paddings are more prone to
attacks based on decryption failures: this is because the attacker has more or less
flexibility on the choice of the actual message and random nonce actually given as
input to the encryption primitive, depending on the padding used.

9

5.1 Review: The Reversal of a Polynomial

Before outlining the attacks, we review the notion of the reversal c̄(X) ≡ c(X−1) of a
polynomial c. If we represent c as the array c = [c0, c1, c2, . . . , cN−1] then its reversal is
c̄ = [c0, cN−1, cN−2, . . . , c1]: this is a ring automorphism. We denote by ĉ the product
of c and c̄. This product has the property that ĉi = c · (X i ∗ c), or in other words that
the successive terms of ĉ are obtained by taking the dot product of c with successive
rotations of itself. The significance of this is that we know that ĉ0 =

∑

i c
2
i = ‖c‖2,

while the other terms of ĉ will be O(‖c‖) in size.

We therefore know that f ∗ f̄ has one term of size df , and the others are of size
about

√

df . The polynomial f ∗ f̄ is therefore of great width compared to a product of
two arbitrary polynomials of the same norm as f. We therefore assume that whenever
p ∗ r ∗ g + f ∗ m is of great width, it means that r is correlated significantly with ḡ

and m is correlated significantly with f̄.

5.2 A General Attack

We derive a powerful chosen-ciphertext attack that works independently of the padding
used. Indeed, assume that an attacker is able to collect many triplets (m, r, e) such that
e is an encryption of m with random nonce r, which cannot be correctly decrypted. If
the probability of decryption failure is sufficiently high, an attacker could obtain such
triplets by mounting a weak chosen-ciphertext attack, independently of the padding,
by simply selecting random messages, encrypting them until decryption failures occur
(which can be checked thanks to the decryption oracle). Interestingly, such an attack
only uses valid ciphertexts.

For such a triplet (m, r, e), we know that p ∗ r ∗ g + f ∗ m is of great width, and
the previous section suggests that there is an integer i such that r somehow looks like
Xi ∗ ḡ and m somehow looks like X i ∗ f̄. Unfortunately, we do not know the value of
i, otherwise it would be trivial to recover f̄ by simply taking the average of X−i ∗ m.
However, we can get rid of the unknown i by using the reversal: if m and r look like
respectively X i ∗ f̄ and X i ∗ ḡ, then m̂ and r̂ must look like respectively f̂ and ĝ. Once
f̂ and ĝ are derived by averaging methods, f and g themselves may be recovered in
polynomial time using an algorithm due to Gentry and Szydlo [7]. Strictly speaking,
to apply [7], one also needs to determine the ideal spanned by f which can be derived
from f̂ = f ∗ f̄ and f ∗ ḡ (which is itself obtained by multiplying from H̄ and f̂ = f ∗ f̄).

To check the validity of this attack, we would need to find a lot of decryption
failures, which is relatively time-consuming, depending on the parameters. Instead,
we checked that the attack worked, by experimenting with a weaker attack based on
the following oracle OB : When the oracle OB is queried on a valid ciphertext e, it
indicates whether or not the width of p ∗ r ∗ g + f ∗ m is greater than B. Thus, the
oracle Oq simply detects gap failures. By using values of B much smaller than q, we
are able to verify the behavior of our attack in a reasonable time, with the following
algorithm:

1. Set u, v = 0.

2. Generate a large number of valid ciphertexts e = r ∗ h + m mod q. For each
ciphertext e:

(a) Call OB(e).

(b) If OB(e) shows the width of a as being greater than B, set u = u + m̂; set
v = v + r̂.

10

3. Divide u and v by the number of valid ciphertexts used.

Over a long enough transcript, u and v should converge to f̂ and ĝ. We investigated this
for f binary and for f = 1+p ∗ F, to see how many messages with width greater than B
were necessary to recover f̂ exactly. The results are shown in tables 1. Experimentally,
we find that we approximate f̂ best by f̂i= (〈m̂〉i − 61.24747)/0.007882857.

B Messages

18 100,000

B Messages Norm (guess - f̂)

36 500,000 15.5

36 1,400,000 7.38

binary f f = 1 + p ∗ F

Table 1. Messages to recover f̂ for various values of B using OB .

When the distance from the guess to f̂ is about
√

N/2 ≈ 7.9, we can essentially
recover f̂ by rounding. We can conclude that from a real decryption oracle (k2 ≤
128) no more than a million decryption failures, and perhaps considerably fewer, are
necessary to recover f̂ and ĝ. This validates our general chosen-ciphertext attack which
applies to all paddings, and shows that the security of NTRU encryption in the EESS
standard [3, 4] clearly falls far short of the hoped-for level of 280.

We note that one could imagine an even more powerful attack, where the attacker
would simply average ê for those e that cause wraps. For a sufficiently long transcript,
this will converge to A + B f̂ + C ĝ. We have not investigated this idea in full – it will
undoubtedly involve longer convergence times than the other attacks outlined above
– but it is interesting that a successful attack may be mounted even by an entirely
passive attacker.

5.3 A Specific Attack Based on Controlling m

The previous attack works against any padding and already emphasizes the impor-
tance of decryption failures on the security of NTRU encryption. Here, we describe a
slightly more efficient chosen-ciphertext attack tailored to the SVES-1 padding scheme,
based on the fact that an attacker essentially controls m directly (see above). This at-
tack shows that certain paddings are weaker than others with respect to attacks based
on decryption failures. We denote by rm the value of r obtained from the m and b ob-
tained from a given m in valid encryption. The strategy will be to try and cause wrap
failures. We introduce the notation

Bi = {binary polynomials with i 1s and N − i zeroes},

and denote by Flat(c) the operation of taking c and setting all terms that are 1 or more
to be exactly equal to 1. Experimentally, the average width of the various polynomials
is:

〈Width(p ∗ r ∗ g)〉 ≈ 41; 〈Width(f ∗ m)〉 ≈ 47; 〈Width(p ∗ r ∗ g + f ∗ m)〉 ≈ 62.

If the attacker can increase the width of p ∗ r ∗ g + f ∗ m to 128, he will cause a gap
failure; alternatively, if he can add about 33 to the largest term in p ∗ r ∗ g+f ∗m while
leaving the others essentially unchanged, this will cause a wrap failure. The following
attack exploits this observation

11

Step 1: first cleaning of random strings. The attacker picks a random F15 ∈ B15,
D ∈ B5, and forms

m = Flat((1 + X) ∗ D ∗ F15).

On decryption (with p = 2 + X), a will include a term approximately equal to

(1 + X) ∗ (2 + X) ∗ f ∗ D ∗ F15 = (2 + 3X + X2) ∗ f ∗ D ∗ F15.

If the 1s in F15 match a set of 15 1s in f̄, then we know that at least one term in
p ∗ F ∗ m will be 45 or more because of the 3 in (1 + X) ∗ (2 + X). With high
odds, this will mean that p ∗ F ∗ m has greater than average width, and so greater
than average chance of causing a decryption failure. This lets the attacker attempt to
identify substrings of F̂:

Attack: Step 1. The attacker picks a random F15 ∈ B15, D ∈ B5 and forms m =
Flat((1 + X) ∗ D ∗ F15). For all rotations of m, he submits e = rm ∗ h + m mod q to
the decryption oracle. If any rotation of m causes a wrap, he stores F15; otherwise, he
discards it.

Obviously, there will be a large number of false positives in this step. An m might
cause a decryption failure purely through luck; alternatively, an F15 which has an
overlap of 14 rather than 15 with F̄ will have a good chance of causing a wrap failure.
We cannot distinguish between the cases immediately, so the strategy is to take an
initial set of random F15s, and use the decryption oracle to “clean” them so that the
resulting set has a greater proportion of strings of high overlap with f.

Table 2 shows the effect of the first cleaning on a set of 230 random F15s. The wrap
probabilities were determined experimentally, using our knowledge of f, by generating
strings of a specific overlap and testing to see if they caused wraps. The final column
is given by 230 ·Pr[overlap] ·Pr[wrap] ·N , as we try all the rotations of each of the 230

ms. The total number of queries to the decryption oracle is N · 230 ≈ 238.

Overlap Pr[Overlap] Pr[Overlap]) Pr[Wrap] No. Left
(Theoretical) (Experimental) from 230 F15s

15 2−20.7 – 2−14.4 10

14 2−15.135 2−14.7 2−15.5 200

13 2−10.698 2−10.70 2−16.6 2,000

12 2−6.981 2−7.116 2−17.5 20,000

11 2−3.857 2−4.030 2−18.5 80,000

10 2−1.423 2−1.693 2−22 40,000

9 – 2−0.91 2−23 25,000

8 – 2−3.49 2−24 2,000

7 – 2−14.5 – –

Table 2. Effects of first cleaning on a set of 230 F15

From table 2 we see that even the first cleaning is very effective: from a random
set of size 230 where most F15s have an overlap of 9 with f, we have created a set of
size about 217 where the most commonly occurring overlap is 11. We now want to
further improve the quality of our set of F15s.

Step 2: second cleaning. The attacker now queries each surviving F15 by using
different values of D to create ms, and observing whether or not these cause wraps.

12

Attack: Step 2. For each F15 that survived the first cleaning step, the attacker picks
several D ∈ B5. For each D, he forms m = Flat((1 + X) ∗ D ∗ F15). For all rotations
of m, he submits e = rm ∗ h + m mod q to the decryption oracle. If any rotation of m

causes a wrap, he stores F15; otherwise, he discards it.
Table 3 shows the results of performing this step, choosing 28 Ds for each F15.

After this cleaning, there are almost no F15s left with an overlap of less than 11. The
total work in this stage is 28 · 217 ·N ≈ 233, and there are about 212 F15s left.

Overlap No. Tested No. Left

15 10 3

14 200 40

13 2,000 120

12 20,000 800

11 80,000 1500

10 40,000 2

9 25,000 1

8 2,000 0
Table 3. Effects of second cleaning on the set of F15

Now that the attacker has a relatively good set of F15, he can try and assemble
them to recover F.

Step 3: find correct relative rotations. Here the challenge is to find the correct
rotations of the F15 relative to each other. One possibility would be to pick two F15s
and test the ms obtained by all rotations of the two against each other. However, it
appears that we get better results by picking sets of three F15s and trying all their
relative rotations.

Attack: Step 3. Let F1,F2,F3 be any three of the F15 that survived the second cleaning
step. For each 0 ≤ i, j < N , set

F∼45 = Flat(F1 + XiF2 + XjF3)

(Note that F∼45 will typically have slightly fewer than 45 1s). Set m = Flat((1 + X) ∗
F∼45). For all rotations of m, submit e = rm ∗ h + m mod q to the decryption oracle.
Store the number of wraps caused by m. Once all i, j pairs have been exhausted, pick
another three F1,F2,F3 and repeat. Continue until all the F15 have been used.

Figure 1 shows the wrap probability for m obtained as specified above. If F1,F2,F3

are rotated correctly relative to each other, the overlap with F̄ will typically be 33 or
more, leading to a significantly greater chance of a wrap. Note that, because of the
(2+X) in f, if F1 +XiF2 +XjF3 is the correct relative alignment of F1,F2,F3, a large
number of wraps will also be caused by F1 + Xi±1F2 + Xj±1F3. This helps us to weed
out freak events: rather than simply taking the relative rotation of F1,F2,F3 that gives
the highest number of wraps, we look for the set of three consecutive rotations that
give the highest total number of wraps and pick the rotation in the middle.

This step takes about N 3 · 212 ≈ 236 work, and at the end of it we have about 210

strings of length about 45, which will in general have an overlap of 33 or more with
F̄. The remaining task is to rotate these strings correctly relative to each other and
recover F̄ from them, but this is relatively trivial.

13

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

20253035404550

Overlap

P
 (

W
ra

p
)

Fig. 1. Wrap probability on a single test for strings of length 45

Step 4: from 45s to F̄. We here use the fact that the F∼45 will be better correlated
with each other when rotated correctly than in other rotations.

Attack: Step 4. Sort the F∼45 from the previous step in order by the number of wraps
they caused. Set u equal to the F∼45 at the top of the list. For each other F∼45, find
the X i that maximizes the overlap of X i · F and the reference F. Set u = u + X i · F.
When all the Fs have been added, take the top df entries of u and set them equal to
1. Set the other entries to 0. This recovers Frev .

Since there are 72 1s in F̄ and 179 0s, and since the F∼45 have typically 33 correct
1s and 12 incorrect 1s, we expect the entries in u corresponding to 1s in frev to have
an average value of 33/72 ≈ 0.46, and the entries in u corresponding to 0s in frev to
have an average value of 12/179 ≈ 0.06. This makes it easy to distinguish between the
two. We have not implemented this part of the attack, but we do not anticipate any
problems in its execution.

SVES-1 attack: Summary We have presented an attack on the SVES-1 scheme
that allows an attacker with access to decryption timing information to recover the
private key in about 240 queries to a decryption oracle with N = 251. This is a level
of security that clearly falls far short of the hoped-for level of 280.

6 Countermeasures

NTRUEncrypt as specified in [3] clearly falls short of the desired security levels,
since it only involves the probability p̃1. With the given parameters, even p̃2 is likely
to be non-negligible. One should thus recommend at least the following two counter-
measures.

6.1 Changing the parameters

The parameters, and perhaps the form of f, g, and r, should be altered so that decryp-
tion failures occur no more often than the claimed security level of the parameter set,

14

so that the probability p̃2, or even p2, is indeed negligible. (For example, for N = 251,
an attacker should be required to carry out 280 work to find a single gap failure).
Unfortunately, no efficient method is known to provably compute such a probability,
though the paper [27] provides calculations under some simplifying assumptions.

6.2 Changing the padding

A padding scheme with the appropriate provable security properties should be adopted.
We have presented both theoretical and experimental reasons for preferring an NTRU-

Encrypt padding scheme in which an attacker can control neither m nor r. Theoret-
ically, only this padding scheme allows us to use p2, the smallest of the expected de-
cryption failure probabilities. Experimentally, we have demonstrated an attack which
uses direct control of m to recover the private key faster than the attack which does
not use control of m.

We therefore suggest the following padding scheme, which we call NAEP, as one
that might be suitable for NTRUEncrypt. The construction uses the hash functions

G : {0, 1}mLen → {0, 1}rLen and H : P → {0, 1}mLen .

As before, m is the plaintext of length k1 bits, and b is a random string, unique for
each message, of length k2 = mLen − k1 bits. One computes r = R(G(m ‖ b)) and
R = r ∗ h mod q. Then the ciphertext consists of Epk((m ‖ b) ⊕ H(R);G(m ‖ b)). Of
course, the decryption checks the validity of r, relatively to G(m ‖ b).

We do not make any claim on the provable security of this scheme. An analysis of
the properties of a variant of this scheme, with a specific instantiation of H, appears
in [16] and claims a security result which depends on p̃2 only (and of course the
intractability of the basic NTRU primitive.)

Acknowledgments

We would like to thank Jeff Hoffstein and Jill Pipher for fruitful discussions and
contributions.

References

1. M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. Relations among Notions of Security for
Public-Key Encryption Schemes. In Crypto ’98, LNCS 1462, pages 26–45. Springer-Verlag, Berlin,
1998.

2. M. Bellare and P. Rogaway. Optimal Asymmetric Encryption – How to Encrypt with RSA. In
Eurocrypt ’94, LNCS 950, pages 92–111. Springer-Verlag, Berlin, 1995.

3. EESS: Consortium for Efficient Embedded Security. Efficient Embedded Security Stan-
dards #1: Implementation Aspects of NTRU and NSS. Draft Version 3.0 available at
http://www.ceesstandards.org, July 2001.

4. EESS: Consortium for Efficient Embedded Security. Efficient Embedded Security Standards
#1: Implementation Aspects of NTRUEncrypt and NTRUSign. Version 1.0 available at
http://www.ceesstandards.org, November 2002.

5. E. Fujisaki, T. Okamoto, D. Pointcheval, and J. Stern. RSA–OAEP is Secure under the RSA
Assumption. In Crypto ’01, LNCS 2139, pages 260–274. Springer-Verlag, Berlin, 2001.

6. C. Gentry. Key Recovery and Message Attacks on NTRU-Composite. In Eurocrypt ’01, LNCS
2045, pages 182–194. Springer-Verlag, Berlin, 2001.

7. C. Gentry and M. Szydlo. Cryptanalysis of the Revised NTRU Signature Scheme. In Eurocrypt

’02, LNCS 2332, pages 299–320 Springer-Verlag, Berlin, 2002.
8. S. Goldwasser and S. Micali. Probabilistic Encryption. Journal of Computer and System Sciences,

28:270–299, 1984.

15

9. C. Hall, I. Goldberg, and B. Schneier. Reaction Attacks Against Several Public-Key Cryptosys-
tems. In Proc. of ICICS ’99, LNCS, pages 2–12. Springer-Verlag, 1999.

10. J. Hoffstein and J. Pipher and J. H. Silverman. NTRU: A Ring-Based Public Key Cryptosystem.
In Proc of ANTS 3, LNCS 1423, pages 267–288. Springer-Verlag, 1998.

11. J. Hoffstein and J. H. Silverman. Random Small Hamming Weight Products With Applications
To Cryptography. Discrete Applied Mathematics. To appear, available at [22].

12. J. Hoffstein and J. H. Silverman. Invertibility in Truncated Polynomial Rings. Technical report,
NTRU Cryptosystems, October 1998. Report #009, version 1, available at [22].

13. J. Hoffstein and J. H. Silverman. Optimizations for NTRU. In Public-key Cryptography and

Computational Number Theory. DeGruyter, 2000. To appear, available at [22].
14. J. Hoffstein and J. H. Silverman. Protecting NTRU against Chosen Ciphertext and Reaction

Attacks. Technical report, NTRU Cryptosystems, June 2000. Report #16, version 1, available
at [22].

15. J. Hong, J. W. Han, D. Kwon and D. Han. Chosen-Ciphertext Attacks on Optimized NTRU.
Cryptology ePrint Archive: Report 2002/188.

16. N. Howgrave-Graham, J. H. Silverman, A. Singer and W. Whyte. NAEP: Provable Security in
the Presence of Decryption Failures. Cryptology ePrint archive, http://eprint.iacr.org.

17. E. Jaulmes and A. Joux. A Chosen Ciphertext Attack on NTRU. In Crypto ’00, LNCS 1880,
pages 20–35. Springer-Verlag, Berlin, 2000.

18. A. May and J.H. Silverman. Dimension Reduction Methods for Convolution Modular Lattices.
In Proc. of CaCL 2001, LNCS 2146, pages 110–125. Springer-Verlag, 2001.

19. T. Meskanen and A. Renvall. Wrap Error Attack Against NTRUEncrypt. To appear in Proc. of

WCC ’03.
20. M. Naor and M. Yung. Public-Key Cryptosystems Provably Secure against Chosen Ciphertext

Attacks. In Proc. of the 22nd STOC, pages 427–437. ACM Press, New York, 1990.
21. P. Q. Nguyen and D. Pointcheval. Analysis and Improvements of NTRU Encryption Paddings.

In Crypto ’02, LNCS 2442, pages 210–225. Springer-Verlag, Berlin, 2002.
22. NTRU Cryptosystems. Technical reports. Available at http://www.ntru.com, 2002.

23. T. Okamoto and D. Pointcheval. REACT: Rapid Enhanced-security Asymmetric Cryptosystem
Transform. In CT – RSA ’01, LNCS 2020, pages 159–175. Springer-Verlag, Berlin, 2001.

24. J. Proos. Imperfect Decryption and an Attack on the NTRU Encryption Scheme. Cryptology
ePrint Archive: Report 2003/002.

25. C. Rackoff and D. R. Simon. Non-Interactive Zero-Knowledge Proof of Knowledge and Chosen
Ciphertext Attack. In Crypto ’91, LNCS 576, pages 433–444. Springer-Verlag, Berlin, 1992.

26. J. H. Silverman. Estimated breaking times for NTRU lattices. Technical report, NTRU Cryp-
tosystems, March 1999. Report #012, version 1, available at [22].

27. J. H. Silverman and W. Whyte, Estimating Decryption Failure Probabilities for NTRUEncrypt
. Technical report, NTRU Cryptosystems, May 2003. Report #018, version 1, available at [22].

A Standardized and Deployed Versions of NTRUEncrypt

A.1 Format of Objects

NTRUEncrypt as standardized in [3] uses special forms for f, g and r, and specifies
a padding method which is claimed to give provable security. We review these details
here.

Private key: f. The private key f has two special features. First, f has the form
1+p ∗ F, where F is a binary polynomial. This means that f = 1 mod p, and therefore
that fp = 1, eliminating the need for the second convolution on decryption [13]. Second,
the binary polynomial F is of the form f1 ∗ f2 + f3, where f1, f2 and f3 are chosen so
that:

– f1, f2, f3 are binary and have df1 , df2 , df3 1s respectively;

– f1 ∗ f2 is binary;

– The 1s in f3 are chosen such that they are not adjacent to any of the 1s in f1 ∗ f2.

16

It should be pointed out that only the first of these restrictions is documented in [3]:
the description above is of the form of private keys used in NTRU Cryptosystems’
software and has the effect of decreasing the occurrence of decryption failures (but not
to the point of making decryption failures sufficiently unlikely to avoid any security
problems). For more details on the use of products of low Hamming weight polynomials
in NTRU and other cryptosystems, see [13, 11].

Private key: g. The private key g is chosen to be binary, to have dg 1s, and to have
no consecutive 1s. Note that the last of these restrictions is not documented in [3],
but is used in NTRU Cryptosystems’ software.

Message: m. The message representative m is a binary polynomial of degree N . An
algorithm for converting from octet strings to binary polynomials can be found in [3].

Blinding value: r. The blinding value r is chosen to be of the form r1 ∗ r2 + r3. Here,
r1, r2, r3 are generated by setting them to 0, then selecting dr1 , dr2 , dr3 indices between
0 and N − 1 and adding one to the coefficient at each index. The difference between
this and taking r1, r2, r3 to be binary is that the indices used to generate them can
repeat: for example, r1 could consist of dr1 − 2 1s and one 2. A recent paper [19] uses
this specific fact to recover g. The results presented here are more general and work
for r of any form in the presence of decryption failures.

A.2 Encryption Schemes

There have been several encryption schemes associated with NTRU, but only two have
been standardized in EESS #1. The first, SVES-1, proceeds as follows. It takes the
number of random bits, db, as a parameter, and hash functions F,G,H.

Encryption – To encrypt a message m of length |m| = N − db bits:

1. Generate the string b consisting of db random bits.
2. Set s equal to the first |m|/2 bits of m concatenated with the first db/2 bits of b.

Set t equal to the last |m|/2 bits of m concatenated with the last db/2 bits of b.
3. Set t′ = t⊕ F (s). Set s′ = s⊕G(t′). Set m′ = s′||t′. Set r = H(m, b).
4. Output the ciphertext e = r ∗ h + m′ mod q.

Decryption – To decrypt the ciphertext e:

1. Recover m′ from e using standard NTRUEncrypt decryption.
2. Recover m, b from m′ by reversing the masking defined above.
3. Set r = H(m, b) and calculate e′ = r ∗ h + m′ mod q. If the result is the same as

the received e, output m. Otherwise, output “invalid ciphertext”.

SVES-1 was shown in [21] to have inadequate provable IND-CPA properties, due
to the decision to split b into two parts. EESS #1 therefore also specifies SVES-2,
which is similar to SVES-1 with the exception that all of b is included in the first hash
function call. There are other minor differences between the two schemes – SVES-2 is
designed to allow variable-length messages more gracefully, for example – but these
are more engineering than cryptographic decisions.

One interesting fact to note is that in both SVES-1 and SVES-2 the message is
randomized by the mask generation functions, but an adversary is free to choose the
value of m′ directly and then reverse the masking operation to find the m and b that
would have given that m′.

17

B Another chosen-ciphertext attack

Here we present a brief overview of a second chosen-ciphertext attack against NTRU-
Encrypt. The attack is based on decryption failures; however, unlike the other attack
presented in this paper, does not rely on the secret polynomial f being of the form
1 + (2 + X)F . In fact, the new attack is not specific to the case of p = 2 + X and
can also be applied against the originally proposed version of NTRU [10] which had
p ∈ Z.

The attack assumes that the attacker can detect wrap errors and that the r values
used during encryption must be selected at random. For the basic version of the attack
we also assume that a message polynomial m can be encrypted with many random
r (as is the case for the proposed NTRU-REACT padding schemes). We will discuss
below the effect on the attack if each m yields a unique rm. The basic version of the
attack consists of repeating the following three steps until the secret key is revealed.

Step 1: finding a decryption failure. The goal of step 1 is to determine a valid
pair m, r which lead to a decryption failure. The most straight forward approach is to
simply select random m and r until the ciphertext they generate causes a decryption
failure.

Instead of a random search, it is also possible to perform a systematic search for
the required decryption failure. Given an m and r an attacker can determine exactly
the set, Im,r, of (f, g) pairs for which m, r will cause a decryption failure. Determining
if m, r causes a decryption failure reveals whether or not (f, g) is in Im,r. So instead of
simply selecting m and r at random an attacker could perform some precomputation
and obtain a list of m, r pairs for which

⋃

Im,r is larger than it would have been in a
random search.

Step 2: search for more r’s. For the majority of m, r pairs which lead to decryption
failures, m ∗ f will have one coefficient, i, which is both abnormally far from its expected
value and further from the expected value than any other coefficient. We shall refer
to the difference in the distances of the two coefficients of m ∗ f furthest from their
expected value as the gap of m ∗ f. The true goal of step 1 is actually to find an m

such that m ∗ f has both a coefficient which is far from its expected value and a large
gap.

Attack: Step 2. By repeatedly picking random r′ and determining if m, r′ leads to
a decryption failure, the attacker can determine a list r0, r1, . . . , rk of r values which
cause decryption failures when used with m.

Suppose that step 1 found an m with the desired properties. The range [A,A +
q − 1] used during decryption is centered at the expected value of the coefficients of
p ∗ r′ ∗ g + f ∗ m. Thus, since the ith coefficient of m ∗ f is abnormally far from
its expected value, the rate at which the m, r′ cause decryption failures will be much
higher than for random m, r. Furthermore, the expected value of every coefficient of
p ∗ r ∗ g is p(1)g(1)r(1)/N . Thus when an m, r′ pair causes a decryption failure its
most likely cause is the ith coefficient of p ∗ r′ ∗ g + f ∗ m. The strength of this bias
towards the i coefficient the will depend on the gap of m ∗ f. This bias will cause a
correlation between the r0, r1, . . . , rk found in step 2 and ḡ.

18

Step 3: recovering the secret key. If k is sufficiently large then the value of ḡ

(and thus g) can be determined directly from the polynomials r0, r1, . . . , rk. However,
it is possible to find the secret key with fewer rj than would allow the direct recovery
of ḡ. This is accomplished by using the rj to determine some of coefficients of g and
then using this partial knowledge of g in combination with the known lattice attacks
on NTRU as in [18].

If the gap of m ∗ f is small then the bias towards the coefficient i may not be large
enough to allow the recovery of the secret key. If this is the situation then the attack
simply returns to step 1. Note that even if an iteration does not reveal the entire secret
key some information may still have been determined.

Attack summary and variations. Two important questions arise regarding this
attack. First, how much work is involved in one iteration of the steps? Second, how
many iterations through the steps will be required? The number of iterations required
depends on the maximum work allowed to be done in step 2 of an iteration. The more
effort put into finding rj’s in step 2 the more likely step 3 is to succeed. Details on
the running time of the attack against the p = 3 parameters suggested in [26] can be
found in [24]. Below we include some details on the running time against the N = 251
parameter set of NTRUEncrypt as standardized in [4].

If, as with the SVES-1 padding scheme, each polynomial m only has one valid r

then the basic attack described above can not be used. The problem arises in step 2,
where if m is held constant then the r′ used will also be constant. To overcome this
problem the attacker can, instead of keeping m fixed, use the cyclic shifts of both
m and m with minor changes applied to it. Care must be taken to record the shift
amounts with the rj found so that the shifts can be undone in step 3.

B.1 Implementation results

The attack was implemented against 100 instances of the N = 251 parameter set
of NTRUEncrypt as standardized in [4] taking f = 1 + pF , where F was a binary
polynomial. Our implementation of the attack put a bound of 3 million on the number
of r checked in step 2, checked to see if the secret key could be recover after every
25 decryption failures in step 2, and aborted iterations in step 2 if the rate at which
the rj were found was below a given threshold. The implementation assumed that the
secret key could be recovered when the dimension of the lattice which would need
to be reduced was less than one hundred. Of the 100 instances of the attacks the
number of instances which found the secret key after 1, 2, 3, 4, 5, 6, 7 and 8 iterations
were 48, 23, 17, 4, 4, 2, 1 and 1 respectively. Table 4 shows the average number of m, r
pairs tested and decryption failures required over the 100 instances of the attack and
during the step 2’s of the successful iterations.

m, r Pairs Checked Decryption Failures

Avg Number Std Dev Avg Number Std Dev

Total Attack 1991909.11 1706591.03 170.65 130.56

Successful Step 2 842589.58 767601.34 118.74 43.77

Table 4. N = 251 attack details

