Traces Properties Semantics and applications to verification

Xavier Rival

École Normale Supérieure

February 22, 2019

Program of this lecture

Goal of verification

Prove that $\llbracket P \rrbracket \subseteq S$ (i.e., all behaviors of P satisfy specification S) where $\llbracket P \rrbracket$ is the program semantics and S the desired specification

Last week, we studied a form of $[\![P]\!]\dots$

Today's lecture: we look back at program's properties

• families of properties:

what properties can be considered "similar" ? in what sense ?

o proof techniques:

how can those kinds of properties be established ?

• specification of properties:

are there languages to describe properties $\ensuremath{?}$

- In this lecture we look at trace properties
- A property is a set of traces, defining the admissible executions

Safety properties:

- something (e.g., bad) will never happen
- proof by invariance

Liveness properties:

- something (e.g., good) will eventually happen
- proof by variance

Beyond safety and liveness: hyperproperties (e.g., security...)

State properties

As usual, we consider $\mathcal{S} = (\mathbb{S},
ightarrow, \mathbb{S}_\mathcal{I})$

First approach: properties as sets of states

- A property \mathcal{P} is a set of states $\mathcal{P} \subseteq \mathbb{S}$
- \mathcal{P} is satisfied if and only if all reachable states belong to \mathcal{P} , i.e., $[\![\mathcal{S}]\!]_{\mathcal{R}} \subseteq \mathcal{P}$ where $[\![\mathcal{S}]\!]_{\mathcal{R}} = \{s_n \in \mathbb{S} \mid \exists \langle s_0, \dots, s_n \rangle \in [\![\mathcal{S}]\!]^*, s_0 \in \mathbb{S}_{\mathcal{I}}\}$

Examples:

• Absence of runtime errors:

 $\mathcal{P} = \mathbb{S} \setminus \{\Omega\} \quad \text{where } \Omega \text{ is the error state}$

• Non termination (e.g., for an operating system):

$$\mathcal{P} = \{ s \in \mathbb{S} \mid \exists s' \in \mathbb{S}, s \rightarrow s' \}$$

Second approach: properties as sets of traces

- A property \mathcal{T} is a set of traces $\mathcal{T} \subseteq \mathbb{S}^{\infty}$
- \mathcal{T} is satisfied if and only if all traces belong to \mathcal{T} , i.e., $[\![S]\!]^{\propto} \subseteq \mathcal{T}$

Examples:

- Obviously, state properties are trace properties
- Functional properties:

e.g., "program ${\it P}$ takes one integer input ${\it x}$ and returns its absolute value"

• Termination: $\mathcal{T}=\mathbb{S}^*$ (i.e., the system should have no infinite execution)

Monotonicity

Property 1

```
Let \mathcal{P}_0, \mathcal{P}_1 \subseteq \mathbb{S} be two state properties, such that \mathcal{P}_0 \subseteq \mathcal{P}_1.
Then \mathcal{P}_0 is stronger than \mathcal{P}_1, i.e. if program \mathcal{S} satisfies \mathcal{P}_0, then it also satisfies \mathcal{P}_1.
```

Property 2

Let $\mathcal{T}_0, \mathcal{T}_1 \subseteq \mathbb{S}$ be two trace properties, such that $\mathcal{T}_0 \subseteq \mathcal{T}_1$. Then \mathcal{T}_0 is stronger than \mathcal{T}_1 , i.e. if program \mathcal{S} satisfies \mathcal{T}_0 , then it also satisfies \mathcal{T}_1 .

Property 3

Let S_0, S_1 two transition systems, such that S_1 has more behaviors than S_0 (i.e., $[\![S_0]\!] \subseteq [\![S_1]\!]$), and \mathcal{P} be a (trace or state) property. Then, if S_1 satisfies \mathcal{P} , so does S_0 .

Proofs: straightforward application of the definitions Xavier Rival Traces Properties

Outline

Safety properties

Informal definition: safety properties

A safety property is a property which specifies that some (bad) behavior will never occur, at any time

- Absence of runtime errors is a safety property ("bad thing": error)
- State properties is a safety property ("bad thing": reaching $\mathbb{S} \setminus \mathcal{P}$)
- Non termination is a safety property ("bad thing": reaching a blocking state)
- "Not reaching state *b* after visiting state *a*" is a safety property (and **not** a state property)
- Termination is not a safety property

We now intend to provide a formal definition of safety.

Towards a formal definition

How to refute a safety property ?

- \bullet We assume ${\cal S}$ does not satisfy safety property ${\cal P}$
- Thus, there exists a counter-example trace
 σ = ⟨s₀,..., s_n,...⟩ ∈ [[S]] \ P;
 it may be finite or infinite...
- The intuitive definition says this trace eventually exhibits some bad behavior, at some given time, corresponding to some index *i*
- Therefore, trace $\sigma' = \langle s_0, \dots, s_i \rangle$ violates \mathcal{P} , i.e. $\sigma' \not\in \mathcal{P}$
- We remark σ' is finite

A safety property that does not hold can always be refuted with a finite counter-example

A Few Operators on Traces

Prefix: We write σ_{i} for the prefix of length *i* of trace σ :

Suffix (or tail):

$$\sigma_{i\rceil} = \epsilon \quad \text{if } |\sigma| < i$$

 $(\langle s_0, \dots, s_i \rangle \cdot \sigma)_{i+1\rceil} \quad ::= \sigma \quad \text{otherwise}$

Upper closure operators

Definition: upper closure operator (uco)

We consider a preorder (S, \sqsubset) . Function $\phi : S \to S$ is an **upper closure** operator iff:

• monotone

• extensive:
$$\forall x \in S, x \sqsubseteq \phi(x)$$

• idempotent:
$$\forall x \in S, \ \phi(\phi(x)) = \phi(x)$$

Dual: lower closure operator, monotone, reductive, idempotent

Examples:

 on real/decimal numbers, or on fraction: the ceiling operator, that returns the next integer is an upper-closure operator

Prefix closure

Definition: prefix closure

The prefix closure operator is defined by:

$$\begin{array}{rcl} \mathsf{PCI}: & \mathcal{P}(\mathbb{S}^{\infty}) & \longrightarrow & \mathcal{P}(\mathbb{S}^{*}) \\ & X & \longmapsto & \{\sigma_{\lceil i} \mid \sigma \in X, \, i \in \mathbb{N}\} \end{array}$$

Example: assuming

$$S = \{ \langle a, b, c \rangle, \langle a, c \rangle \}$$

then,

$$\mathsf{PCI}(\mathcal{S}) = \{\epsilon, \langle a \rangle, \langle a, b \rangle, \langle a, b, c \rangle, \langle a, c \rangle \}$$

Properties:

- PCI is monotone
- PCI is idempotent, i.e., $PCI \circ PCI(X) = PCI(X)$
- PCI is not extensive (infinite traces do not appear anymore)

Xavier Rival

Limit

Definition: limit

The limit operator is defined by:

$$\begin{array}{rcl} \mathsf{Lim}: & \mathcal{P}(\mathbb{S}^{\infty}) & \longrightarrow & \mathcal{P}(\mathbb{S}^{\infty}) \\ & X & \longmapsto & X \cup \{\sigma \in \mathbb{S}^{\infty} \mid \forall i \in \mathbb{N}, \ \sigma_{\lceil i} \in X\} \end{array}$$

Operator Lim is an upper-closure operator

Proof: exercise!

Example: assuming

$$\mathcal{S} = \{ egin{array}{ccc} \epsilon, & \langle a
angle \ & \langle a, b
angle & \langle a, b, a
angle \ & \langle a, b, a, b
angle & \langle a, b, a, b, a
angle & \ldots \end{array} \}$$

then,

 $\mathsf{Lim}(\mathcal{S}) = \mathcal{S} \uplus \{ \langle a, b, a, b, a, b, \ldots \rangle \}$

Xavier Rival

Traces Properties

Towards a formal definition for safety

Operator Safe

Operator Safe is defined by $Safe = Lim \circ PCI$.

Operator Safe saturates a set of traces S with

- prefixes
- infinite traces all finite prefixes of which can be observed in S

Thus, if Safe(S) = S and σ is a trace, to establish that σ is not in S, it is sufficient to discover a finite prefix of σ that cannot be observed in S.

- if σ is finite the result is clear (consider σ)
- otherwise, if all finite prefixes of σ are in S, then σ is in the limit, thus in S.

Safety: definition

A trace property \mathcal{T} is a safety property if and only if $Safe(\mathcal{T}) = \mathcal{T}$

Safety properties: formal definition

An upper closure operator

Operator Safe is an upper closure operator over $\mathcal{P}(\mathbb{S}^{\infty})$

Proof:

Safe is monotone since Lim and PCI are monotone

Safe is extensive:

indeed if $X \subseteq \mathbb{S}^{\infty}$ and $\sigma \in X$, we can show that $\sigma \in \mathbf{Safe}(X)$:

- if σ is a finite trace, it is one of its prefixes, so $\sigma \in PCI(X) \subseteq Lim(PCI(X))$
- if σ is an infinite trace, all its prefixes belong to PCI(X), so $\sigma \in Lim(PCI(X))$

Safety properties: formal definition

Proof (continued):

Safe is idempotent:

 as Safe is extensive and monotone Safe ⊆ Safe ∘ Safe, so we simply need to show that Safe ∘ Safe ⊆ Safe

• let
$$X \subseteq \mathbb{S}^{\propto}, \sigma \in \mathsf{Safe}(\mathsf{Safe}(X))$$
; then:

$$\begin{array}{ll} \sigma \in \mathsf{Safe}(\mathsf{Safe}(X)) \\ \Rightarrow & \forall i, \ \sigma_{\lceil i} \in \mathsf{PCI} \circ \mathsf{Safe}(X) & \text{by def. of Lim} \\ \Rightarrow & \forall i, \ \exists \sigma', j, \ \sigma_{\lceil i} = \sigma'_{\lceil j} \land \sigma' \in \mathsf{Safe}(X) & \text{by def. of PCI} \\ \Rightarrow & \forall i, \ \exists \sigma', j, \ \sigma_{\lceil i} = \sigma'_{\lceil j} \land \forall k, \ \sigma'_{\lceil k} \in \mathsf{PCI}(X) & \text{by def. of PCI} \\ & \text{by def. of Lim and case analysis over finiteness of } \sigma' \\ \Rightarrow & \forall i, \ \exists \sigma', j, \ \sigma_{\lceil i} = \sigma'_{\lceil j} \land \sigma'_{\lceil j} \in \mathsf{PCI}(X) & \text{if we take } k = j \\ \Rightarrow & \forall i, \ \sigma_{\lceil i} \in \mathsf{PCI}(X) & \text{by simplification} \\ \Rightarrow & \sigma \in \mathsf{Lim} \circ \mathsf{PCI}(X) & \text{by def. of Lim} \\ \Rightarrow & \sigma \in \mathsf{Safe}(X) \end{array}$$

Safety properties: formal definition

Safety: definition

A trace property ${\mathcal T}$ is a safety property if and only if ${\bf Safe}({\mathcal T})={\mathcal T}$

Theorem

If ${\mathcal T}$ is a trace property, then ${\sf Safe}({\mathcal T})$ is a safety property

Proof:

Straightforward, by idempotence of Safe

Intuition:

- if T is a trace property (not necessarily a safety property), Safe(T) is the strongest safety property, that is weaker than T
- at this point, this observation is not so useful... but it will be soon!

Xavier Rival

Example

We assume that:

- $\mathbb{S} = \{a, b\}$
- T states that a should not be visited after state b is visited; elements of T are of the general form

 $\langle a, a, a, \ldots, a, b, b, b, b, \ldots \rangle$ or $\langle a, a, a, \ldots, a, a, \ldots \rangle$

Then:

- **PCI**(*T*) elements are all finite traces which are of the above form (i.e., made of *n* occurrences of *a* followed by *m* occurrences of *b*, where *n*, *m* are positive integers)
- Lim(PCI(T)) adds to this set the trace made made of infinitely many occurrences of a and the infinite traces made of n occurrences of a followed by infinitely many occurrences of b
- thus, $\text{Safe}(\mathcal{T}) = \text{Lim}(\text{PCI}(\mathcal{T})) = \mathcal{T}$

Therefore \mathcal{T} is indeed formally a safety property.

State properties are safety properties

Theorem

Any state property is also a safety property.

Proof:

Let us consider state property \mathcal{P} . It is equivalent to trace property $\mathcal{T} = \mathcal{P}^{\alpha}$:

$$\begin{aligned} \mathsf{Safe}(\mathcal{T}) &= \mathsf{Lim}(\mathsf{PCl}(\mathcal{P}^{\infty})) \\ &= \mathsf{Lim}(\mathcal{P}^{*}) \\ &= \mathcal{P}^{*} \cup \mathcal{P}^{\omega} \\ &= \mathcal{P}^{\infty} \\ &= \mathcal{T} \end{aligned}$$

Therefore \mathcal{T} is indeed a safety property.

Intuition of the formal definition

Operator Safe saturates a set of traces S with

- prefixes
- infinite traces all finite prefixes of which can be observed in S

Thus, if **Safe**(S) = S and σ is a trace, to establish that σ is not in S, it is sufficient to discover a **finite prefix of** σ that cannot be observed in S.

Alternatively, if all finite prefixes of σ belong to S or can observed as a prefix of another trace in S, by definition of the limit operator, σ belongs to S (even if it is infinite).

Thus, our definition indeed captures properties that can be disproved with a finite counter-example.

Outline

Proof by invariance

- We consider transition system S = (S, →, S_I), and safety property T.
 Finite traces semantics is the least fixpoint of F_{*}.
- We seek a way of verifying that S satisfies T, i.e., that $[\![S]\!]^{\propto} \subseteq T$

Principle of invariance proofs

Let \mathbb{I} be a set of finite traces; it is said to be an **invariant** if and only if:

•
$$\forall s \in \mathbb{S}_{\mathcal{I}}, \langle s \rangle \in \mathbb{I}$$

•
$$F_*(\mathbb{I}) \subseteq \mathbb{I}$$

It is stronger than \mathcal{T} if and only if $\mathbb{I} \subseteq \mathcal{T}$.

The "by invariance" proof method is based on finding an invariant that is stronger than $\mathcal{T}.$

Soundness

Theorem: soundness

The invariance proof method is **sound**: if we can find an invariant for S, that is stronger than safety property T, then S satisfies T.

Proof:

We assume that $\mathbb I$ is an invariant of $\mathcal S$ and that it is stronger than $\mathcal T$, and we show that $\mathcal S$ satisfies $\mathcal T$:

- by induction over *n*, we can prove that $F_*^n(\{\langle s \rangle \mid s \in \mathbb{S}_{\mathcal{I}}\}) \subseteq F_*^n(\mathbb{I}) \subseteq \mathbb{I}$
- therefore $\llbracket \mathcal{S} \rrbracket^* \subseteq \mathbb{I}$
- thus, $\text{Safe}([\![\mathcal{S}]\!]^*)\subseteq\text{Safe}(\mathbb{I})\subseteq\text{Safe}(\mathcal{T})$ since Safe is monotone
- we remark that $[\![\mathcal{S}]\!]^{\propto} = \textbf{Safe}([\![\mathcal{S}]\!]^*)$
- \mathcal{T} is a safety property so $\text{Safe}(\mathcal{T}) = \mathcal{T}$
- \bullet we conclude $[\![\mathcal{S}]\!]^{\propto} \subseteq \mathcal{T}$, i.e., \mathcal{S} satisfies property \mathcal{T}

Completeness

Theorem: completeness

The invariance proof method is **complete**: if S satisfies safety property T, then we can find an invariant I for S, that is stronger than T.

Proof:

We assume that $[\![\mathcal{S}]\!]^*$ satisfies \mathcal{T} , and show that we can exhibit an invariant.

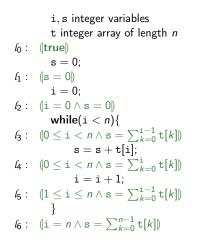
Then, $\mathbb{I} = [\![S]\!]^*$ is an invariant of S by definition of $[\![.]\!]^*$, and it is stronger than \mathcal{T} .

Caveat:

- $\bullet \ [\![\mathcal{S}]\!]^{\propto}$ is most likely not a very easy to express invariant
- it is just a convenient completeness argument
- so, completeness does not mean the proof is easy !

Example

We consider the proof that the program below computes the sum of the elements of an array, i.e., when the exit is reached, $s = \sum_{k=0}^{n-1} t[k]$:



Principle of the proof:

- for each program point l, we have a local invariant I_l (denoted by a logical formula instead of a set of states in the figure)
- the global **invariant** I is defined by:

 $\mathbb{I} = \{ \langle (\ell_0, m_0), \dots, (\ell_n, m_n) \rangle \mid \\ \forall n, \ m_n \in \mathbb{I}_{\ell_n} \}$

Outline

Liveness properties

Informal definition: liveness properties

A liveness property is a property which specifies that some (good) behavior **will eventually occur**.

- Termination is a liveness property "good behavior": reaching a blocking state (no more transition available)
- "State a will eventually be reached by all execution" is a liveness property "good behavior": reaching state a
- The absence of runtime errors is not a liveness property

As for safety properties, we intend to provide a **formal definition** of liveness.

Xavier Rival

Intuition towards a formal definition

How to refute a liveness property ?

- We consider liveness property \mathcal{T} (think \mathcal{T} is termination)
- ullet We assume ${\mathcal S}$ does **not** satisfy liveness property ${\mathcal T}$
- Thus, there exists a counter-example trace $\sigma \in \llbracket S \rrbracket \setminus T$;
- Let us assume σ is actually finite... the definition of liveness says some (good) behavior should eventually occur:
 - ▶ how do we know that σ cannot be extended into a trace $\sigma \cdot \sigma'$ that will satisfy this behavior ?
 - maybe that after a few more computation steps, σ will reach a blocking state...

Intuition towards a formal definition

To refute a liveness property, we need to look at infinite traces.

Example: if we run a program, and do not see it return...

- should we do Ctrl+C and conclude it does not terminate ?
- should we just wait a few more seconds minutes, hours, years ?

Towards a formal definition: we expect any finite trace be the prefix of a trace in $\ensuremath{\mathcal{T}}$

 \ldots since finite executions cannot be used to disprove ${\cal T}$

Formal definition (incomplete)

$$\mathsf{PCI}(\mathcal{T}) = \mathbb{S}^*$$

Definition

Formal definition

Operator Live is defined by $\text{Live}(\mathcal{T}) = \mathcal{T} \cup (\mathbb{S}^{\infty} \setminus \text{Safe}(\mathcal{T}))$. Given property \mathcal{T} , the following three statements are equivalent:

(i) $\text{Live}(\mathcal{T}) = \mathcal{T}$ (ii) $\text{PCI}(\mathcal{T}) = \mathbb{S}^*$ (iii) $\text{Lim} \circ \text{PCI}(\mathcal{T}) = \mathbb{S}^{\infty}$ When they are satisfied, \mathcal{T} is said to be a liveness property

Example: termination

- The property is \$\mathcal{T} = \mathcal{S}^*\$
 (i.e., there should be no infinite execution)
- Clearly, it satisfies (*ii*): PCl(*T*) = S^{*} thus termination indeed satisfies this definition

Proof of equivalence

Proof of equivalence:

(*i*) **implies** (*ii*):

We assume that $\text{Live}(\mathcal{T}) = \mathcal{T}$, i.e., $\mathcal{T} \cup (\mathbb{S}^{\propto} \setminus \text{Safe}(\mathcal{T})) = \mathcal{T}$ therefore, $\mathbb{S}^{\propto} \setminus \text{Safe}(\mathcal{T}) \subseteq \mathcal{T}$.

Let $\sigma \in \mathbb{S}^*$, and let us show that $\sigma \in \mathsf{PCI}(\mathcal{T})$; clearly, $\sigma \in \mathbb{S}^{\propto}$, thus:

- either $\sigma \in \text{Safe}(\mathcal{T}) = \text{Lim}(\text{PCI}(\mathcal{T}))$, so all its prefixes are in $\text{PCI}(\mathcal{T})$ and $\sigma \in \text{PCI}(\mathcal{T})$
- or $\sigma \in \mathcal{T}$, which implies that $\sigma \in \mathsf{PCI}(\mathcal{T})$

```
(ii) implies (iii):

If PCI(\mathcal{T}) = \mathbb{S}^*, then Lim \circ PCI(\mathcal{T}) = \mathbb{S}^{\infty}

(iii) implies (i):

If Lim \circ PCI(\mathcal{T}) = \mathbb{S}^{\infty}, then

Live(\mathcal{T}) = \mathcal{T} \cup (\mathbb{S}^{\infty} \setminus (Lim \circ PCI(\mathcal{T}))) = \mathcal{T} \cup (\mathbb{S}^{\infty} \setminus \mathbb{S}^{\infty}) = \mathcal{T}
```

Example

We assume that:

- $\mathbb{S} = \{a, b, c\}$
- T states that *b* should eventually be visited, after *a* has been visited; elements of T can be described by

 $\mathcal{T} = \mathbb{S}^* \cdot \mathbf{a} \cdot \mathbb{S}^* \cdot \mathbf{b} \cdot \mathbb{S}^{\infty}$

Then T is a liveness property:

- let $\sigma \in \mathbb{S}^*$; then $\sigma \cdot a \cdot b \in \mathcal{T}$, so $\sigma \in \mathsf{PCI}(\mathcal{T})$
- thus, $\mathsf{PCI}(\mathcal{T}) = \mathbb{S}^*$

A property of **Live**

Theorem

If \mathcal{T} is a trace property, then $Live(\mathcal{T})$ is a liveness property (i.e., operator Live is idempotent).

Proof: we show that $PCI \circ Live(\mathcal{T}) = \mathbb{S}^*$, by considering $\sigma \in \mathbb{S}^*$ and proving that $\sigma \in PCI \circ Live(\mathcal{T})$; we first note that:

$$\begin{array}{lll} \mathsf{PCI} \circ \mathsf{Live}(\mathcal{T}) &=& \mathsf{PCI}(\mathcal{T}) \cup \mathsf{PCI}(\mathbb{S}^{\propto} \setminus \mathsf{Safe}(\mathcal{T})) \\ &=& \mathsf{PCI}(\mathcal{T}) \cup \mathsf{PCI}(\mathbb{S}^{\propto} \setminus \mathsf{Lim} \circ \mathsf{PCI}(\mathcal{T})) \end{array}$$

- if $\sigma \in \mathsf{PCI}(\mathcal{T})$, this is obvious.
- if $\sigma \notin \mathbf{PCI}(\mathcal{T})$, then:
 - $\sigma \notin \operatorname{Lim} \circ \operatorname{PCI}(\mathcal{T})$ by definition of the limit
 - thus, $\sigma \in \mathbb{S}^{\infty} \setminus \text{Lim} \circ \text{PCl}(\mathcal{T})$
 - σ ∈ PCI(S[∞] \ Lim ∘ PCI(T)) as PCI is extensive when applied to sets
 of finite traces, which proves the above result

Outline

Termination proof with ranking function

- We consider only termination
- We consider transition system $\mathcal{S}=(\mathbb{S},
 ightarrow,\mathbb{S}_\mathcal{I})$, and liveness property \mathcal{T}
- We seek a way of verifying that ${\cal S}$ satisfies termination, i.e., that $[\![{\cal S}]\!]^{\propto}\subseteq \mathbb{S}^*$

Definition: ranking function

A ranking function is a function $\phi : \mathbb{S} \to E$ where:

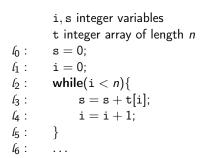
- (E, \sqsubseteq) is a well-founded ordering
- $\forall s_0, s_1 \in \mathbb{S}, \ s_0 \to s_1 \Longrightarrow \phi(s_1) \sqsubset \phi(s_0)$

Theorem

If ${\mathcal S}$ has a ranking function $\phi,$ it satisfies termination.

Example

We consider the termination of the array sum program:



Ranking function:

$$\begin{split} \phi: & \mathbb{S} & \longrightarrow & \mathbb{N} \\ & (f_0, m) & \longmapsto & 3 \cdot n + 6 \\ & (f_1, m) & \longmapsto & 3 \cdot n + 5 \\ & (f_2, m) & \longmapsto & 3 \cdot n + 4 \\ & (f_3, m) & \longmapsto & 3 \cdot (n - m(\texttt{i})) + 3 \\ & (f_4, m) & \longmapsto & 3 \cdot (n - m(\texttt{i})) + 2 \\ & (f_5, m) & \longmapsto & 3 \cdot (n - m(\texttt{i})) + 4 \\ & (f_6, m) & \longmapsto & 0 \end{split}$$

Proof by variance

- We consider transition system $S = (S, \rightarrow, S_I)$, and liveness property T; infinite traces semantics is the greatest fixpoint of F_{ω} .
- We seek a way of verifying that S satisfies \mathcal{T} , i.e., that $[\![S]\!]^{\propto} \subseteq \mathcal{T}$

Principle of variance proofs

Let $(\mathbb{I}_n)_{n\in\mathbb{N}}$, \mathbb{I}_{ω} be elements of \mathbb{S}^{∞} ; these are said to form a variance proof of \mathcal{T} if and only if:

- $\mathbb{S}^{\omega} \subseteq \mathbb{I}_0$
- for all $k \in \{1, 2, \dots, \omega\}$, $\forall s \in \mathbb{S}, \ \langle s
 angle \in \mathbb{I}_k$
- for all $k \in \{1, 2, \dots, \omega\}$, there exists l < k such that $F_{\omega}(\mathbb{I}_l) \subseteq \mathbb{I}_k$
- $\mathbb{I}_{\omega} \subseteq \mathcal{T}$

Proofs of soundness and completeness: exercise, similar to the previous proof but using the definition of $[\![\mathcal{S}]\!]^{\propto}$ instead

Xavier Rival

Traces Properties

Outline

The decomposition theorem

Theorem

Let $\mathcal{T} \subseteq \mathbb{S}^{\alpha}$; it can be decomposed into the conjunction of safety property Safe(\mathcal{T}) and liveness property Live(\mathcal{T}):

 $\mathcal{T} = \text{Safe}(\mathcal{T}) \cap \text{Live}(\mathcal{T})$

- Reading: Recognizing Safety and Liveness. Bowen Alpern and Fred B. Schneider. In Distributed Computing, Springer, 1987.
- Consequence of this result: the proof of any trace property can be decomposed into
 - a proof of safety
 - a proof of liveness

Proof

- Safety part: Safe is idempotent, so Safe(T) is a safety property.
- Liveness part:

Live is idempotent, so $Live(\mathcal{T})$ is a liveness property.

• Decomposition:

$$\begin{array}{lll} \mathsf{Safe}(\mathcal{T}) \cap \mathsf{Live}(\mathcal{T}) &=& \mathsf{Safe}(\mathcal{T}) \cap (\mathcal{T} \cup \mathbb{S}^{\infty} \setminus \mathsf{Safe}(\mathcal{T})) \\ &=& \mathsf{Safe}(\mathcal{T}) \cap \mathcal{T} \\ && \cup \mathsf{Safe}(\mathcal{T}) \cap (\mathbb{S}^{\infty} \setminus \mathsf{Safe}(\mathcal{T})) \\ &=& \mathcal{T} \cup \emptyset \\ &=& \mathcal{T} \end{array}$$

Decomposition of trace properties

Example: verification of total correctness

- i, s integer variables t integer array of length n*l*₀ : s = 0: *h* : i = 0: **while**(i < n){ l_2 : l3 : s = s + t[i];(a : i = i + 1: l5 : } 6: . . .
- Property to prove: total correctness
 - the program terminates
 - and it computes the sum of the elements in the array

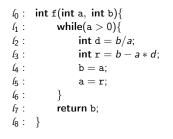
Application of the decomposition principle

Conjunction of two proofs:

- Proved with a ranking function
- Proved with local invariants

Safety and Liveness Decomposition Example

We consider a very simple greatest common divider code function:

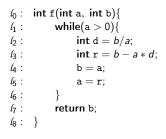


Specification

When applied to positive integers, function f should always return their GCD.

Safety and Liveness Decomposition Example

We consider a very simple greatest common divider code function:



Specification

When applied to positive integers, function f should always return their GCD.

Safety part

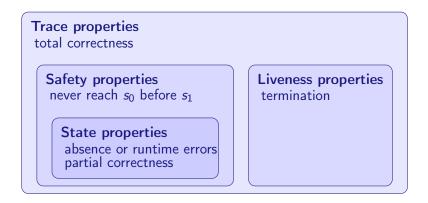
For all trace starting with positive inputs, a **conjunction of two properties**:

- no runtime errors
- the value of b is the GCD

Liveness part

Termination, on all traces starting with positive inputs

The Zoo of semantic properties: current status



- Safety: if wrong, can be refuted with a finite trace proof done by invariance
- Liveness: if wrong, has to be refuted with an infinite trace proof done by variance

Xavier Rival

Traces Properties

Outline

Notion of specification language

- Ultimately, we would like to verify or compute properties
- So far, we simply describe properties with sets of executions or worse, with English / French / ... statements
- Ideally, we would prefer to use a mathematical language for that
 - to gain in concision, avoid ambiguity
 - ► to define sets of properties to consider, fix the form of inputs for verification tools...

Definition: specification language

A specification language is a set of terms \mathbb{L} with an interpretation function (or semantics)

$$\llbracket . \rrbracket : \mathbb{L} \longrightarrow \mathcal{P}(\mathbb{S}^{\propto})$$
 (resp., $\mathcal{P}(\mathbb{S})$)

• We are now going to consider specification languages for states, for traces...

Xavier Rival

A State specification language

A first example of a (simple) specification language:

A state specification language

 \bullet Syntax: we let terms of $\mathbb{L}_{\mathbb{S}}$ be defined by:

$$p \in \mathbb{L}_{\mathbb{S}} ::= \mathbb{Q}l \mid \mathbf{x} < \mathbf{x}' \mid \mathbf{x} < n \mid \neg p' \mid p' \land p'' \mid \Omega$$

• Semantics: $\llbracket p \rrbracket_{s} \subseteq \mathbb{S}_{\Omega}$ is defined by

Exercise: add =,
$$\lor$$
, \Longrightarrow ...

Xavier Rival

State properties: examples

Unreachability of control state l_0 :

- specification: $\Omega \vee \neg @l_0$
- property: $\llbracket \Omega \lor \neg @l_0 \rrbracket_s = \mathbb{S}_\Omega \setminus \{(l_0, m) \mid m \in \mathbb{M}\}$

Absence of runtime errors:

- specification: ¬Ω
- property: $[\![\neg\Omega]\!]_{\mathtt{s}} = \mathbb{S}_{\Omega} \setminus \{\Omega\} = \mathbb{S}$

Intermittent invariant:

- principle: attach a local invariant to each control state
- example:

Propositional temporal logic: syntax

We now consider the specification of trace properties

- Temporal logic: specification of properties in terms of events that occur at distinct times in the execution (hence, the name "temporal")
- There are many instances of temporal logic
- We study a simple one: Pnueli's Propositional Temporal Logic

Definition: syntax of PTL (Propositional Temporal Logic)

Properties over traces are defined as terms of the form

Propositional temporal logic: semantics

The semantics of a temporal property is a set of traces, and it is defined by induction over the syntax:

Semantics of Propositional Temporal Logic formulae

$$\begin{split} \llbracket p \rrbracket_{\mathbf{t}} &= \{ s \cdot \sigma \mid s \in \llbracket p \rrbracket_{\mathbf{s}} \wedge \sigma \in \mathbb{S}^{\infty} \} \\ \llbracket t_0 \lor t_1 \rrbracket_{\mathbf{t}} &= \llbracket t_0 \rrbracket_{\mathbf{t}} \cup \llbracket t_1 \rrbracket_{\mathbf{t}} \\ \llbracket \neg t_0 \rrbracket_{\mathbf{t}} &= \mathbb{S}^{\infty} \setminus \llbracket t_0 \rrbracket_{\mathbf{t}} \\ \llbracket \bigcirc t_0 \rrbracket_{\mathbf{t}} &= \{ s \cdot \sigma \mid s \in \mathbb{S} \wedge \sigma \in \llbracket t_0 \rrbracket_{\mathbf{t}} \} \\ \llbracket t_0 \mathfrak{U} \mathfrak{t}_1 \rrbracket_{\mathbf{t}} &= \{ \sigma \in \mathbb{S}^{\infty} \mid \exists n \in \mathbb{N}, \forall i < n, \sigma_i \rrbracket \in \llbracket t_0 \rrbracket_{\mathbf{t}} \wedge \sigma_n \rrbracket \in \llbracket t_1 \rrbracket_{\mathbf{t}} \} \end{split}$$

Temporal logic operators as syntactic sugar

Many useful operators can be added:

• Boolean constants:

true ::=
$$(x < 0) \lor \neg (x < 0)$$

false ::= \neg true

• Sometime:

 $\Diamond t ::= \operatorname{true} \mathfrak{U} t$

intuition: there exists a rank n at which t holds

• Always:

$$\Box t ::= \neg(\Diamond(\neg t))$$

intuition: there is no rank at which the negation of t holds

Exercise: what do $\Diamond \Box t$ and $\Box \Diamond t$ mean ?

Propositional temporal logic: examples

We consider the program below:

Examples of properties:

• "when l_4 is reached, x is positive"

$$\Box$$
(@ $l_4 \Longrightarrow x \ge 0$)

• "if the value read at point $\it \ell_0$ is negative, and when $\it \ell_6$ is reached, x is equal to 0"

$$\Box\left(\left(@ \ell_1 \land x < 0 \right) \Longrightarrow \Box (@ \ell_6 \Longrightarrow x = 0) \right)$$

Beyond safety and liveness

Outline

Security properties

We now consider other interesting properties of programs, and show that they do not all reduce to trace properties

Security

- Collects many kinds of properties
- So we consider just one:

an unauthorized observer should not be able to guess anything about private information by looking at public information

- Example: another user should not be able to guess the content of an email sent to you
- We need to formalize this property

A few definitions

Assumptions:

- We let $\mathcal{S} = (\mathbb{S},
 ightarrow, \mathbb{S}_\mathcal{I})$ be a transition system
- States are of the form $(l, m) \in \mathbb{L} \times \mathbb{M}$
- $\bullet\,$ Memory states are of the form $\mathbb{X}\to\mathbb{V}$
- We let $\ell, \ell' \in \mathbb{L}$ (program entry and exit) and $x, x' \in \mathbb{X}$ (private and public variables)

Security property we are looking at

Observing the value of x' at ℓ' gives no information on the value of x at ℓ

A few examples

A secure program (no information flow, no way to guess x):

$$\begin{array}{ll} l : & \mathbf{x}' = 84; \\ l' : & \dots \end{array}$$

An insecure program (explicit information flow, x' gives a lot of information about x, so that we can simply recompute it):

$$\begin{array}{ll} l : & \mathbf{x}' = \mathbf{x} - 2; \\ l' : & \dots \end{array}$$

An insecure program (implicit information flow, through a test):

$$\ell$$
: if $(x < 0) \{x' = 0; \}$
 ℓ' : ...

How to characterize information flow in the semantic level ?

55/1

Non-interference

We consider the **transformer** Φ defined by:

$$\begin{array}{rcl} \Phi: & \mathbb{M} & \longrightarrow & \mathcal{P}(\mathbb{M}) \\ & m & \longmapsto & \{m' \in \mathbb{M} \mid \exists \sigma = \langle (\ell, m), \dots, (\ell', m') \rangle \in \llbracket \mathcal{S} \rrbracket \end{array}$$

Definition: non-interference

There is **no interference** between (l, x) and (l', x') and we write $(l', x') \not \rightarrow (l, x)$ if and only if the following property holds:

$$\forall m \in \mathbb{M}, \forall v_0, v_1 \in \mathbb{V}, \\ \{m'(\mathbf{x}') \mid m' \in \Phi(m[\mathbf{x} \leftarrow v_0])\} = \{m'(\mathbf{x}') \mid m' \in \Phi(m[\mathbf{x} \leftarrow v_1])\}$$

Intuition:

- if two observations at point ℓ differ only in the value of x, there is no difference in observation of x' at ℓ'
- in other words, observing x' at ℓ' (even on many executions) gives no information about the value of x at point ℓ ...

Xavier Rival

Traces Properties

Non-interference is not a trace property

- We assume $\mathbb{V} = \{0, 1\}$ and $\mathbb{X} = \{x, x'\}$ (store *m* is defined by the pair (m(x), m(x')), and denoted by it)
- We assume L = {l, l'} and consider two systems such that all transitions are of the form (l, m) → (l', m')
 - (i.e., system S is isomorphic to its transformer $\Phi[S]$)

$\Phi[\mathcal{S}_0]$:	(0,0)	\mapsto	\mathbb{M}	$\Phi[\mathcal{S}_1]$:	(0,0)	\mapsto	\mathbb{M}
	(0,1)	\mapsto	\mathbb{M}		(0, 1)	\mapsto	\mathbb{M}
	(1, 0)	\mapsto	\mathbb{M}		(1, 0)	\mapsto	$\{(1,1)\}$
	(1, 1)	\mapsto	\mathbb{M}		(1, 1)	\mapsto	$\{(1,1)\}$

- \mathcal{S}_1 has fewer behaviors than $\mathcal{S}_0 \text{: } [\![\mathcal{S}_1]\!]^* \subset [\![\mathcal{S}_0]\!]^*$
- \mathcal{S}_0 has the non-interference property, but \mathcal{S}_1 does not
- If non interference was a trace property, S_1 should have it (monotony)

Thus, the non interference property is not a trace property

Dependence properties

Dependence property

- Many notions of dependences
- So we consider just one:

what inputs may have an impact on the observation of a given output

• Applications:

- reverse engineering: understand how an input gets computed
- **slicing:** extract the fragment of a program that is relevant to a result
- This corresponds to the negation of non-interference

Interference

Definition: interference

There is **interference** between (l, \mathbf{x}) and (l', \mathbf{x}') and we write $(l', \mathbf{x}') \rightsquigarrow (l, \mathbf{x})$ if and only if the following property holds:

$$\exists m \in \mathbb{M}, \exists v_0, v_1 \in \mathbb{V}, \\ \{m'(\mathbf{x}') \mid m' \in \Phi(m[\mathbf{x} \leftarrow v_0])\} \neq \{m'(\mathbf{x}') \mid m' \in \Phi(m[\mathbf{x} \leftarrow v_1])\}$$

- This expresses that there is at least one case, where the value of x at ℓ has an impact on that of x' at ℓ'
- It may not hold even if the computation of x' reads x:

$$\begin{array}{ll} \ell : & \mathbf{x}' = \mathbf{0} \star \mathbf{x}; \\ \ell' : & \dots \end{array}$$

Interference is not a trace property

- We assume $\mathbb{V} = \{0, 1\}$ and $\mathbb{X} = \{x, x'\}$ (store *m* is defined by the pair (m(x), m(x')), and denoted by it)
- We assume L = {l, l'} and consider two systems such that all transitions are of the form (l, m) → (l', m') (i.e., system S is isomorphic to its transformer Φ[S])
- \mathcal{S}_1 has fewer behavior than $\mathcal{S}_0 \text{: } [\![\mathcal{S}_1]\!]^* \subset [\![\mathcal{S}_0]\!]^*$
- $\bullet \ \mathcal{S}_0$ has the interference property, but \mathcal{S}_1 does not
- If interference was a trace property, S_1 should have it (monotony)

Thus, the interference property is not a trace property

Hyperproperties

Conclusion:

• The absence of interference between (l, x) and (l', x') is not a trace property:

we cannot describe as the set of programs the semantics of which is included into a given set of traces

 It can however be described by a set of sets of traces: we simply collect the set of program semantics that satisfy the property

This is what we call a hyperproperty:

Hyperproperties

- Trace hyperproperties are described by sets of sets of executions
- Trace properties are described by sets of executions

2-safety: to disprove the absence of interference (i.e., to show there exists an interference), we simply need to exhibit **two finite traces**

Conclusion

Outline

The Zoo of semantic properties

Sets of sets of executions non-interference, dependency	
Trace properties total correctness	
Safety properties never reach s_0 before s_1	Liveness properties termination
State properties absence or runtime errors partial correctness	

Summary

To sum-up:

- Trace properties allow to express a large range of program properties
- Safety = absence of bad behaviors
- Liveness = existence of good behaviors
- Trace properties can be **decomposed** as conjunctions of safety and liveness properties, with **dedicated proof methods**
- Some interesting properties are **not trace properties** security properties are *sets of sets of executions*
- Notion of specification languages to describe program properties