Predicate Encryption for Multi-Dimensional Range Queries from Lattices

Romain Gay , Pierrick MÉaux , Hoeteck Wee

École Normale Supérieure, CNRS, INRIA, PSL, Paris, France

PKC 2015 - Maryland, USA Tuesday, March 31

Online Dating Configuration

Profile

Alice
Header
Hobbies
Pictures

Online Dating Configuration

Profile

Alice
Header
Hobbies
Pictures

Preferences

N pictures:

$$
x_{1}>0
$$

Children:

$$
x_{2}=0
$$

Age:

$$
24 \leq x_{3} \leq 36
$$

Salary:

$$
\$ \$ \$ \$ \leq x_{4} \leq \max
$$

Online Dating Configuration

Profile

Alice
Header
Hobbies
Pictures

Preferences

N pictures:

$$
x_{1}>0
$$

Children:

$$
x_{2}=0
$$

Age:

$$
24 \leq x_{3} \leq 36
$$

Salary:

$$
\$ \$ \$ \$ \leq x_{4} \leq \max
$$

Online dating using Attribute-Based Encryption [GVW13, BGG+14]

Online Dating Configuration

Profile

Preferences

Alice
Header
Hobbies
Pictures
N pictures:

Children:

$$
? \leq x_{1} \leq ?
$$

$$
? \leq x_{2} \leq ?
$$

Age:

Salary:

$$
? \leq x_{4} \leq ?
$$

ABE does not ensure attribute hiding

Online Dating Configuration

Profile

Alice
Header
Hobbies
Pictures

Preferences

N pictures:

$$
? \leq x_{1} \leq ?
$$

Children:

$$
? \leq x_{2} \leq ?
$$

Age:

$$
? \leq x_{3} \leq ?
$$

Salary:

$$
? \leq x_{4} \leq ?
$$

Online dating using Predicate Encryption [BW07, SBC+07,KSW08]

Online Dating Encryption Scheme

CT: Encrypted Profile

Plaintext

Preferences
(Attribute)

Online Dating Encryption Scheme

CT: Encrypted Profile

Plaintext
Preferences
(Attribute)

User Bob
N Picture : 3

Children : 0

Age : 32

Salary : \$\$\$\$

User Carol

N Picture : 3

Children: 1

Age : 29

Salary : \$\$\$\$\$\$

Online Dating Encryption Scheme

СT: Encrypted Profile
Plaintext

Preferences (Attribute)

User Bob
User Carol
$\mathrm{SK}_{\text {Carol }}$

Online Dating Encryption Scheme

Ст: Encrypted Profile
Plaintext

Preferences
(Attribute)

User Bob

Decryption

Online Dating Encryption Scheme

m : Decrypted Profile
Alice
Header
Hobbies
Pictures

User Bob

Successful decryption and learning the matches

Online Dating Encryption Scheme

CT: Encrypted Profile

Plaintext
Preferences (Attribute)

User Carol

$\mathrm{SK}_{\text {Carol }}$

Decryption

Online Dating Encryption Scheme

CT: Encrypted Profile
Plaintext

Preferences
(Attribute)

User Carol

$\mathrm{SK}_{\text {Carol }}$

Incorrect decryption, no more information

Result

Theorem
 Predicate Encryption for MDRQ
 from
 LWE

Prior works
from pairings
[BW07,SBC+07]

Result

Theorem

Predicate Encryption

 for MDRQfrom
LWE

LWE

And-Or-Eq Predicate

MDRQ

And Or Eq Predicate

Disjunction of conjunction of equality queries

$\mathrm{P}_{\text {AND-OR-EQ }}: \mathbb{Z}_{q}^{D \times \ell} \times \mathbb{Z}_{q}^{D \times \ell} \rightarrow\{0,1\}$
$\mathrm{P}_{\mathrm{AND-OR-EQ}}(X, Y)=\bigwedge_{i=1}^{D} \bigvee_{j=1}^{\ell}\left(X_{i, j}=Y_{i, j}\right)$

Matrix X

Matrix Y

And Or Eq Predicate

Disjunction of conjunction of equality queries

$\mathrm{P}_{\mathrm{AND}-\mathrm{OR}-\mathrm{EQ}}: \mathbb{Z}_{q}^{D \times \ell} \times \mathbb{Z}_{q}^{D \times \ell} \rightarrow\{0,1\}$
$\mathrm{P}_{\mathrm{AND}-\mathrm{OR}-\mathrm{EQ}}(X, Y)=\bigwedge_{i=1}^{D} \bigvee_{j=1}^{\ell}\left(X_{i, j}=Y_{i, j}\right)$

$$
\mathrm{P}_{\text {AND-OR-EQ }}(X, Y)=1
$$

And Or Eq Predicate

Disjunction of conjunction of equality queries

$\mathrm{P}_{\text {AND-OR-EQ }}: \mathbb{Z}_{q}^{D \times \ell} \times \mathbb{Z}_{q}^{D \times \ell} \rightarrow\{0,1\}$
$\mathrm{P}_{\mathrm{AND-OR-EQ}}(X, Y)=\bigwedge_{i=1}^{D} \bigvee_{j=1}^{\ell}\left(X_{i, j}=Y_{i, j}\right)$

Matrix X

Matrix Y^{\prime}

And Or Eq Predicate

Disjunction of conjunction of equality queries

$\mathrm{P}_{\mathrm{AND}-\mathrm{OR}-\mathrm{EQ}}: \mathbb{Z}_{q}^{D \times \ell} \times \mathbb{Z}_{q}^{D \times \ell} \rightarrow\{0,1\}$
$\mathrm{P}_{\mathrm{AND-OR-EQ}}(X, Y)=\bigwedge_{i=1}^{D} \bigvee_{j=1}^{\ell}\left(X_{i, j}=Y_{i, j}\right)$

$$
\mathrm{P}_{\mathrm{AND}-\mathrm{OR}-\mathrm{EQ}}\left(X, Y^{\prime}\right)=0
$$

From Range Query to And Or Eq

$$
\begin{array}{ll}
\text { Range } X & \text { Point } Y \\
X=[3,13] & Y=8
\end{array}
$$

$$
\mathrm{P}_{\text {AND OREQ }}(X, Y)=\text { ? }
$$

From Range Query to And Or Eq

$$
\begin{array}{ll}
\text { Range } X & \text { Point } Y \\
X=[3,13] & Y=8
\end{array}
$$

$\mathrm{P}_{\text {And or eq }}(X, Y)=$?

From Range Query to And Or Eq

> Range X
> $X=[3,13]$

Point Y

$$
Y=8
$$

$$
\mathrm{P}_{\text {AND OREQ }}(X, Y)=\text { ? }
$$

From Range to Vector

Query over $\left[0,2^{\ell}-1\right]$

From Range to Vector

Query over $\left[0,2^{\ell}-1\right]$; example: $\ell=4$, range $=[3,13]$

From Range to Vector

Query over $\left[0,2^{\ell}-1\right]$; example: $\ell=4$, range $=[3,13]$

From Range to Vector

Query over $\left[0,2^{\ell}-1\right]$; example: $\ell=4$, range $=[3,13]$

From Range to Vector

Query over $\left[0,2^{\ell}-1\right]$; example: $\ell=4$, range $=[3,13]$

From Range to Vector

Query over $\left[0,2^{\ell}-1\right]$; example: $\ell=4$, range $=[3,13]$

From Range to Vector

Query over $\left[0,2^{\ell}-1\right]$; example: $\ell=4$, range $=[3,13]$

From Range to Vector

Query over $\left[0,2^{\ell}-1\right]$; example: $\ell=4$, range $=[3,13]$

From Range Query to And Or Eq (2)

$$
\begin{gathered}
\text { Range } X \\
X=[3,13]
\end{gathered}
$$

Point Y

$$
Y=8
$$

$$
\mathrm{P}_{\text {AND OR EQ }}(X, Y)=\text { ? }
$$

From Point to Vector

Point in $\left[0,2^{\ell}-1\right]$

From Point to Vector

Point in $\left[0,2^{\ell}-1\right]$; example: $\ell=4$, point $=8$

8
binary: 1000

From Point to Vector

Point in $\left[0,2^{\ell}-1\right]$; example: $\ell=4$, point $=8$

8
binary: 1000

1	1	10	10	100	100	1000	1000

From Range Query to And Or Eq (3)

$$
\begin{array}{ll}
\text { Range } X & \text { Point } Y \\
X=[3,13] & Y=8
\end{array}
$$

From Range Query to And Or Eq (3)

$$
\begin{array}{ll}
\text { Range } X & \text { Point } Y \\
X=[3,13] & Y=8
\end{array}
$$

One-dimensional Scheme

MDRQ based on standard LWE

Predicate Encryption scheme using anonymous IBE [ABB10,CHKP10]

MPK:

$$
\mathbf{A}, \mathbf{A}_{1}, \mathbf{A}_{2}, \cdots, \mathbf{A}_{\ell}, \mathbf{P}, \mathbf{G}
$$

One-dimensional Scheme

MDRQ based on standard LWE

Predicate Encryption scheme using anonymous IBE [ABB10,CHKP10]
Attribute: $\mathbf{x} \in \mathbb{Z}_{q}^{\ell}$

$$
\mathbf{A}\left|\mathbf{A}_{1}+\mathbf{x}_{1} \mathbf{G}\right| \mathbf{A}_{2}+\mathbf{x}_{2} \mathbf{G}|\cdots| \mathbf{A}_{\ell}+\mathbf{x}_{\ell} \mathbf{G} \mid \mathbf{P}
$$

One-dimensional Scheme

MDRQ based on standard LWE

Predicate Encryption scheme using anonymous IBE [ABB10,CHKP10]

> Attribute: $\mathbf{x} \in \mathbb{Z}_{q}^{\ell}$ CT:
> LWE sample
> $\mathbf{A}\left|\mathbf{A}_{1}+\mathbf{x}_{1} \mathbf{G}\right| \mathbf{A}_{2}+\mathbf{x}_{2} \mathbf{G}|\cdots| \mathbf{A}_{\ell}+\mathbf{x}_{\ell} \mathbf{G} \mid \mathbf{P}$

One-dimensional Scheme

MDRQ based on standard LWE

Predicate Encryption scheme using anonymous IBE [ABB10,CHKP10]

$$
\left.\begin{array}{cc}
\text { Attribute: } \mathbf{x} \in \mathbb{Z}_{q}^{\ell} & \text { Predicate: } \mathbf{y} \in \mathbb{Z}_{q}^{\ell} \\
\text { CT: } & \text { SK: }
\end{array}\right] \begin{gathered}
\text { LWE sample } \\
\mathbf{A}\left|\mathbf{A}_{1}+\mathbf{x}_{1} \mathbf{G}\right| \mathbf{A}_{2}+\mathbf{x}_{2} \mathbf{G}|\cdots| \mathbf{A}_{\ell}+\mathbf{x}_{\ell} \mathbf{G} \mid \mathbf{P} \\
\\
\\
\mathrm{U}_{1} \quad, \quad \mathbf{U}_{2} \quad, \quad \cdots, \quad \mathbf{U}_{\ell} \\
\text { s.t. }\left[\mathbf{A} \mid \mathbf{A}_{i}+\mathbf{y}_{i} \mathbf{G}\right] \mathrm{U}_{i}=\mathbf{P}
\end{gathered}
$$

One-dimensional Scheme

MDRQ based on standard LWE

Predicate Encryption scheme using anonymous IBE [ABB10,CHKP10]

$$
\begin{array}{cc}
\text { Attribute: } \mathbf{x} \in \mathbb{Z}_{q}^{\ell} & \text { Predicate: } \mathbf{y} \in \mathbb{Z}_{q}^{\ell} \\
\text { CT: } & \text { SK: } \\
\text { LWE sample } & \\
\hline \mathbf{A}\left|\mathbf{A}_{1}+\mathbf{x}_{1} \mathbf{G}\right| \mathbf{A}_{2}+\mathbf{x}_{2} \mathbf{G}|\cdots| \mathbf{A}_{\ell}+\mathbf{x}_{\ell} \mathbf{G} \mid \mathbf{P} & \mathbf{U}_{1}, \quad \mathbf{U}_{2}, \quad \cdots,
\end{array}
$$

Decryption:

$$
\text { if } \mathbf{x}_{1}=\mathbf{y}_{1}
$$

One-dimensional Scheme

MDRQ based on standard LWE

Predicate Encryption scheme using anonymous IBE [ABB10,CHKP10]

> Attribute: $\mathbf{x} \in \mathbb{Z}_{q}^{\ell}$ CT:
> LWE sample
> $\mathbf{A}\left|\mathbf{A}_{1}+\mathbf{x}_{1} \mathbf{G}\right| \mathbf{A}_{2}+\mathbf{x}_{2} \mathbf{G}|\cdots| \mathbf{A}_{\ell}+\mathbf{x}_{\ell} \mathbf{G} \mid \mathbf{P} \quad \mathbf{U}_{1} \quad, \quad \mathbf{U}_{2}, \cdots, \mathbf{U}_{\ell}$
> \mathbf{U}_{i} s.t. $\left[\mathbf{A} \mid \mathbf{A}_{i}+\mathbf{y}_{i} \mathbf{G}\right] \mathbf{U}_{i}=\mathbf{P}$
> Decryption:

Attribute hiding property

Run over $1, \cdots, \ell$

One-dimensional Scheme

MDRQ based on standard LWE

Predicate Encryption scheme using anonymous IBE [ABB10,CHKP10]

$$
\begin{array}{cc}
\text { Attribute: } \mathbf{x} \in \mathbb{Z}_{q}^{\ell} & \text { Predicate: } \mathbf{y} \in \mathbb{Z}_{q}^{\ell} \\
\text { CT: } & \text { SK: } \\
\text { LWE sample } & \\
\mathbf{A}\left|\mathbf{A}_{1}+\mathbf{x}_{1} \mathbf{G}\right| \mathbf{A}_{2}+\mathbf{x}_{2} \mathbf{G}|\cdots| \mathbf{A}_{\ell}+\mathbf{x}_{\ell} \mathbf{G} \mid \mathbf{P} & \mathbf{U}_{1}, \quad \mathbf{U}_{2}, \quad \cdots, \quad \mathbf{U}_{\ell} \\
& \mathbf{U}_{i} \text { s.t. }\left[\mathbf{A} \mid \mathbf{A}_{i}+\mathbf{y}_{i} \mathbf{G}\right] \mathbf{U}_{i}=\mathbf{P}
\end{array}
$$

Decryption:

Attribute hiding property

Run over $1, \cdots, \ell$

One-dimensional Scheme

MDRQ based on standard LWE

Predicate Encryption scheme using anonymous IBE [ABB10,CHKP10]

$$
\begin{array}{cc}
\text { Attribute: } \mathbf{x} \in \mathbb{Z}_{q}^{\ell} & \text { Predicate: } \mathbf{y} \in \mathbb{Z}_{q}^{\ell} \\
\text { CT: } & \text { SK: } \\
\text { LWE sample } & \\
\mathbf{A}\left|\mathbf{A}_{1}+\mathbf{x}_{1} \mathbf{G}\right| \mathbf{A}_{2}+\mathbf{x}_{2} \mathbf{G}|\cdots| \mathbf{A}_{\ell}+\mathbf{x}_{\ell} \mathbf{G} \mid \mathbf{P} & \mathbf{U}_{1}, \quad \mathbf{U}_{2}, \quad \cdots, \mathbf{U}_{\ell} \\
& \mathbf{U}_{i} \text { s.t. }\left[\mathbf{A} \mid \mathbf{A}_{i}+\mathbf{y}_{i} \mathbf{G}\right] \mathrm{U}_{i}=\mathbf{P}
\end{array}
$$

Decryption:

Attribute hiding property

Run over $1, \cdots, \ell$

One-dimensional Scheme

MDRQ based on standard LWE

Predicate Encryption scheme using anonymous IBE [ABB10,CHKP10]

> Attribute: $\mathbf{x} \in \mathbb{Z}_{q}^{\ell}$
> CT:
> Predicate: $\mathbf{y} \in \mathbb{Z}_{q}^{\ell}$
> SK:
> LWE sample
> $\mathbf{A}\left|\mathbf{A}_{1}+\mathbf{x}_{1} \mathbf{G}\right| \mathbf{A}_{2}+\mathbf{x}_{2} \mathbf{G}|\cdots| \mathbf{A}_{\ell}+\mathbf{x}_{\ell} \mathbf{G} \mid \mathbf{P} \quad \mathbf{U}_{1} \quad, \quad \mathbf{U}_{2}, \cdots, \mathbf{U}_{\ell}$
> \mathbf{U}_{i} s.t. $\left[\mathbf{A} \mid \mathbf{A}_{i}+\mathbf{y}_{i} \mathbf{G}\right] \mathbf{U}_{i}=\mathbf{P}$
> Decryption:

Correctness: which part ?

$$
\mathbf{x}_{1}=\mathbf{y}_{1}
$$

redondants zeros: $\operatorname{DEC} \rightarrow(0, \cdots, 0, \mathrm{~m})$

One-dimensional Scheme

MDRQ based on standard LWE

Predicate Encryption scheme using anonymous IBE [ABB10,CHKP10]

$$
\begin{array}{cc}
\text { Attribute: } \mathbf{x} \in \mathbb{Z}_{q}^{\ell} & \text { Predicate: } \mathbf{y} \in \mathbb{Z}_{q}^{\ell} \\
\text { CT: } & \text { SK: } \\
\text { LWE sample } & \\
\mathbf{A}\left|\mathbf{A}_{1}+\mathbf{x}_{1} \mathbf{G}\right| \mathbf{A}_{2}+\mathbf{x}_{2} \mathbf{G}|\cdots| \mathbf{A}_{\ell}+\mathbf{x}_{\ell} \mathbf{G} \mid \mathbf{P} & \mathbf{U}_{1}, \quad \mathbf{U}_{2}, \quad \cdots, \\
& \mathbf{U}_{i} \text { s.t. }\left[\mathbf{A} \mid \mathbf{A}_{i}+\mathbf{y}_{i} \mathbf{G}\right] \mathbf{U}_{i}=\mathbf{P}
\end{array}
$$

Decryption:

Correctness: which part ?

$$
\mathbf{x}_{\ell} \neq \mathbf{y}_{\ell}
$$

random value : $\operatorname{DEC} \rightarrow(0,1,1, \cdots, 1,0)$

One-dimensional Scheme

MDRQ based on standard LWE

Predicate Encryption scheme using anonymous IBE [ABB10,CHKP10]

$$
\begin{array}{cc}
\text { Attribute: } \mathbf{x} \in \mathbb{Z}_{q}^{\ell} & \text { Predicate: } \mathbf{y} \in \mathbb{Z}_{q}^{\ell} \\
\text { CT: } & \text { SK: } \\
\text { LWE sample } & \\
\mathbf{A}\left|\mathbf{A}_{1}+\mathbf{x}_{1} \mathbf{G}\right| \mathbf{A}_{2}+\mathbf{x}_{2} \mathbf{G}|\cdots| \mathbf{A}_{\ell}+\mathbf{x}_{\ell} \mathbf{G} \mid \mathbf{P} & \mathbf{U}_{1} \quad, \quad \mathbf{U}_{2} \quad, \quad \cdots \quad, \quad \mathbf{U}_{\ell} \\
\text { U.Dimensional set: }
\end{array}
$$

Use additive secret sharing [ABV12+]

Share \mathbf{P} in $\mathbf{P}_{1}+\mathbf{P}_{2}+\cdots+\mathbf{P}_{D} ; \mathbf{U}_{i}^{j}$ gives \mathbf{P}_{i}

Attribute-Hiding

$$
\begin{aligned}
\mathrm{CT}:= & \mathbf{s}^{\top}\left[\mathbf{A}, \mathbf{A}_{1}+x_{1} \mathbf{G}, \cdots, \mathbf{A}_{\ell}+x_{\ell} \mathbf{G}, \mathbf{P}\right]+\left[\mathbf{0}^{\top}, \cdots, \mathbf{0}^{\top}, \mathbf{b}^{\top}\lfloor q / 2\rfloor\right]+\text { noise } \\
& \text { MPK } \mathrm{CT}
\end{aligned}
$$

A, $\mathbf{A}_{1}, \mathbf{G}$
$s^{\top} \mathbf{A}+$ noise
$\mathbf{s}^{\top}(\underbrace{\mathbf{A}_{1}+x_{1} \mathbf{G}}_{\mathbf{A}_{1}^{\prime}})+$ noise

Attribute-Hiding

$$
\begin{aligned}
\mathrm{CT}:= & \mathbf{s}^{\top}\left[\mathbf{A}, \mathbf{A}_{1}+x_{1} \mathbf{G}, \cdots, \mathbf{A}_{\ell}+x_{\ell} \mathbf{G}, \mathbf{P}\right]+\left[\mathbf{0}^{\top}, \cdots, \mathbf{0}^{\top}, \mathbf{b}^{\top}\lfloor q / 2\rfloor\right]+\text { noise } \\
& \text { MPK } \mathrm{CT}
\end{aligned}
$$

A, $\mathbf{A}_{1}, \mathbf{G}$
$s^{\top} \mathbf{A}+$ noise
$\mathbf{s}^{\top}(\underbrace{\mathbf{A}_{1}+x_{1} \mathbf{G}}_{\mathbf{A}_{1}^{\prime}})+$ noise \equiv

$$
\mathbf{A}, \mathbf{A}_{1}^{\prime}-x_{1} \mathbf{G}, \mathbf{G}
$$

$s^{\top} \mathbf{A}+$ noise
$s^{\top} \mathbf{A}_{1}^{\prime}+$ noise

Attribute-Hiding

$$
\begin{aligned}
\mathrm{CT}:= & \mathbf{s}^{\top}\left[\mathbf{A}, \mathbf{A}_{1}+x_{1} \mathbf{G}, \cdots, \mathbf{A}_{\ell}+x_{\ell} \mathbf{G}, \mathbf{P}\right]+\left[\mathbf{0}^{\top}, \cdots, \mathbf{0}^{\top}, \mathbf{b}^{\top}\lfloor q / 2\rfloor\right]+\text { noise } \\
& \text { MPK } \mathrm{CT}
\end{aligned}
$$

A, $\mathbf{A}_{1}, \mathbf{G}$
A, $\mathbf{A}_{1}^{\prime}-x_{1} \mathbf{G}, \mathbf{G}$
$\mathbf{A}, \mathbf{A}_{1}^{\prime}-x_{1} \mathbf{G}, \mathbf{G}$

$\mathbf{s}^{\top} \mathbf{A}+$ noise	$\mathbf{s}^{\top} \mathbf{A}+$ noise		random
$\mathbf{s}^{\top}(\underbrace{\mathbf{A}_{1}+x_{1} \mathbf{G}}_{\mathbf{A}_{1}^{\prime}})+$ noise	\approx		
$\mathbf{s}^{\top} \mathbf{A}_{1}^{\prime}+$ noise	LWE	random	

Summary

Lattice-based predicate encryption scheme for multi-dimensional range query

Selectively secure, weakly attribute hiding

Reference	Size		Time		Attribute	based
	PK and CT	SK	ENC	DEC	hiding	on
[BW07] (KP)	$O(D \cdot T)$	$O(D)$	$O(D \cdot T)$	$O(D)$	fully	pairings
[SBCSP07](KP,CP)	$O(D \log T)$	$O(D \log T)$	$O(D \log T)$	$O\left((\log T)^{D}\right)$	weakly	pairings
this paper (KP,CP)	$O(D \log T)$	$O(D \log T)$	$O(D \log T)$	$O\left((\log T)^{D}\right)$	weakly	lattices

Summary

Lattice-based predicate encryption scheme for multi-dimensional range query

Selectively secure, weakly attribute hiding

Reference	Size		Time		Attribute	based
	PK and CT	SK	ENC	DEC	hiding	on
[BW07] (KP)	$O(D \cdot T)$	$O(D)$	$O(D \cdot T)$	$O(D)$	fully	pairings
[SBCSP07](KP,CP)	$O(D \log T)$	$O(D \log T)$	$O(D \log T)$	$O\left((\log T)^{D}\right)$	weakly	pairings
this paper (KP,CP)	$O(D \log T)$	$O(D \log T)$	$O(D \log T)$	$O\left((\log T)^{D}\right)$	weakly	lattices

Thanks for your attention!

