Access Control Encryption for Equality, Comparison, and More

Georg Fuchsbauer, ENS
Romain Gay, ENS

PSL太
CINVENTORS FORTHEDIIITALWORLD

Lucas Kowalczyk, Columbia University
Claudio Orlandi, Aarhus university

European
Research Council

ACE [Damgård, Haagh, Orlandi 16]

Senders:

Receivers:

ACE [Damgård, Haagh, Orlandi 16]

Senders:

Receivers:

secret

ACE [Damgård, Haagh, Orlandi 16]

Senders: $\mathrm{ek}_{1}, \mathrm{ek}_{2}, \mathrm{ek}_{3}$ Trusted setup $\mathrm{dk}_{1}, \mathrm{dk}_{2}, \mathrm{dk}_{3}$

ACE [Damgård, Haagh, Orlandi 16]

top-secret

ek_{1}

ACE [Damgård, Haagh, Orlandi 16]

top-secret

ek_{3}
public
ek_{1}

ACE [Damgård, Haagh, Orlandi 16]

Previous works

$$
\text { For predicates } P:\{0,1\}^{\mathrm{n}} \times\{0,1\}^{\mathrm{n}} \rightarrow\{0,1\}
$$

Construction:	Predicate:	Ct size:	Assumption:	Practical:
[DHO 16]	any	$O\left(2^{n}\right)$	DDH or DCR	(DO
[DHO 16]	any	$\operatorname{poly}(n)$	iO	$\$$

Our work

For predicates P: $\{0,1\}^{\mathrm{n}} \times\{0,1\}^{\mathrm{n}} \rightarrow\{0,1\}$

Construction:	Predicate:	Ct size:	Assumption:	Practical:
[DHO 16]	any	$O\left(2^{n}\right)$	DDH or DCR	
[DHO 16]	any	poly (n)	iO	-
Our work	$\mathrm{P}_{\text {eq }}, \mathrm{P}_{\text {comp }}$	$O(n)$	SXDH	

$$
\begin{aligned}
& P_{e q}(i, j)=1 \text { iff } i=j \\
& P_{\text {comp }}(i, j)=1 \text { iff } i \geq j
\end{aligned}
$$

Outline

1. ACE for equality from [DHO 16]
2. New ACE for equality

ACE for equality: DHO 16

ACE for equality: DHO 16

$\left(\mathrm{ek}_{\mathrm{i}}, \mathrm{dk}_{\mathrm{i}}\right) \leftarrow$ Private Key Encryption

Senders:

$$
\mathrm{ek}_{1}, \mathrm{ek}_{2}, \mathrm{ek}_{3} \text { Trusted setup } \mathrm{dk}_{1}, \mathrm{dk}_{2}, \mathrm{dk}_{3}
$$

ek_{1}

No-Read rule

ACE for equality: DHO 16

$\left(\mathrm{ek}_{\mathrm{i}}, \mathrm{dk}_{\mathrm{i}}\right) \leftarrow$ Private Key Encryption

Senders:

ek_{2}

$$
\mathrm{ek}_{1}, \mathrm{ek}_{2}, \mathrm{ek}_{3} \text { Trusted setup } \mathrm{dk}_{1}, \mathrm{dk}_{2}, \mathrm{dk}_{3}
$$

Receivers:
ek_{1}

ek_{3}
S_{3}

ACE for equality: DHO 16

$\left(\mathrm{ek}_{\mathrm{i}}, \mathrm{dk}_{\mathrm{i}}\right) \leftarrow$ Public Key Encryption

Senders:

$\mathrm{ek}_{1}, \mathrm{ek}_{2}, \mathrm{ek}_{3}$ Trusted setup $\mathrm{dk}_{1}, \mathrm{dk}_{2}, \mathrm{dk}_{3}$

Receivers:

No-Read rule

dk_{3}

ACE for equality: DHO 16

$$
\left(\mathrm{ek}_{\mathrm{i}}, \mathrm{dk}_{\mathrm{i}}\right) \leftarrow \text { Anonymous Public Key Encryption }
$$

Senders:

 $\mathrm{dk}_{1}, \mathrm{dk}_{2}, \mathrm{dk}_{3}$

Receivers:

ACE for equality: DHO 16

$\left(\mathrm{ek}_{\mathrm{i}}, \mathrm{dk}_{\mathrm{i}}\right) \leftarrow$ Sanitizable Anonymous Public Key Encryption

Senders:

\square ek_{3} S_{3}

Receivers:

dk_{2}
dk_{3}
dk_{1}

ACE for equality: DHO 16

$\left(\mathrm{pk}_{\mathrm{i}}, \mathrm{dk}_{\mathrm{i}}\right) \leftarrow$ Sanitizable Anonymous Public Key Encryption

ACE for equality: DHO 16

$\left(\mathrm{ek}_{\mathrm{i}}, \mathrm{dk}_{\mathrm{i}}\right) \leftarrow$ Sanitizable Anonymous Public Key Encryption

ACE for equality: DHO 16

$\left(\mathrm{ek}_{\mathrm{i}}, \mathrm{dk}_{\mathrm{i}}\right) \leftarrow$ Sanitizable Anonymous Public Key Encryption

ACE for equality: DHO 16

$\left(\mathrm{ek}_{\mathrm{i}}, \mathrm{dk}_{\mathrm{i}}\right) \leftarrow$ Sanitizable Anonymous Public Key Encryption

New ACE for equality

$\left(\mathrm{ek}_{\mathrm{i}}, \mathrm{dk}_{\mathrm{i}}\right) \leftarrow$ Anonymous PKE

New ACE for equality

$$
\left(\mathrm{ek}_{\mathrm{i}}, \mathrm{dk}_{\mathrm{i}}\right) \leftarrow \text { Anonymous PKE }
$$

New ACE for equality

$\left(\mathrm{ek}_{\mathrm{i}}, \mathrm{dk}_{\mathrm{i}}\right) \leftarrow$ Anonymous PKE, $\quad \sigma_{\mathrm{i}}=\operatorname{Sign}\left(\mathrm{ek}_{\mathrm{i}}\right)$

New ACE for equality

$$
\left(\mathrm{ek}_{\mathrm{i}}, \mathrm{dk}_{\mathrm{i}}\right) \leftarrow \text { Anonymous PKE, } \quad \sigma_{\mathrm{i}}=\operatorname{Sign}\left(e \mathrm{k}_{\mathrm{i}}\right)
$$

New ACE for equality

$$
\left(\mathrm{ek}_{\mathrm{i}}, \mathrm{dk}_{\mathrm{i}}\right) \leftarrow \text { Anonymous PKE, } \quad \sigma_{\mathrm{i}}=\operatorname{Sign}\left(e \mathrm{k}_{\mathrm{i}}\right)
$$

New ACE for equality

$$
\left(\mathrm{ek}_{\mathrm{i}}, \mathrm{dk}_{\mathrm{i}}\right) \leftarrow \text { Anonymous PKE, } \quad \sigma_{\mathrm{i}}=\operatorname{Sign}\left(e \mathrm{k}_{\mathrm{i}}\right)
$$

New ACE for equality

$\left(\mathrm{ek}_{\mathrm{i}}, \mathrm{dk}_{\mathrm{i}}\right) \leftarrow$ Anonymous PKE, $\sigma_{\mathrm{i}}=\operatorname{Sign}\left(\mathrm{ek}_{\mathrm{i}}\right), \mathrm{CRS} \leftarrow \mathrm{NIZK}$

Concrete ACE for equality

- $\left(\mathrm{ek}_{\mathrm{i}}, \mathrm{dk}_{\mathrm{i}}\right) \leftarrow($ Rerandomizable)Anonymous PKE: El Gamal
- NIZK: Groth Sahai [GS 12]
- $\sigma_{\mathrm{i}}=\operatorname{Sign}\left(\mathrm{ek}_{\mathrm{i}}\right):$ Structure preserving signature

SPS:	ek $_{\mathrm{i}}:$	ct:	Assumption:
[KPW 12]	$7 \mathbb{G}_{1}+1 \mathbb{G}_{2}$	$34 \mathbb{G}_{1}+16 \mathbb{G}_{2}$	SXDH
[AGHO 11]	$3 \mathbb{G}_{1}+1 \mathbb{G}_{2}$	$20 \mathbb{G}_{1}+14 \mathbb{G}_{2}$	GGM

Concrete ACE for equality

- $\left(\mathrm{ek}_{\mathrm{i}}, \mathrm{dk}_{\mathrm{i}}\right) \leftarrow($ Rerandomizable)Anonymous PKE: El Gamal
- NIZK: Groth Sahai [GS 12]
- $\sigma_{\mathrm{i}}=\operatorname{Sign}\left(\mathrm{ek}_{\mathrm{i}}\right):$ Structure preserving signature

SPS:	ek $_{\mathrm{i}}:$	ct:	Assumption:
[KPW 12]	$7 \mathbb{G}_{1}+1 \mathbb{G}_{2}$	$34 \mathbb{G}_{1}+16 \mathbb{G}_{2}$	SXDH
[AGHO 11]	$3 \mathbb{G}_{1}+1 \mathbb{G}_{2}$	$20 \mathbb{G}_{1}+14 \mathbb{G}_{2}$	GGM
SPS-EQ:	$\mathrm{ek}_{\mathrm{i}}:$	ct:	Assumption:
[FHS 15]	$3 \mathbb{G}_{1}+1 \mathbb{G}_{2}$	$6 \mathbb{G}_{1}+1 \mathbb{G}_{2}$	GGM

Conclusion

Construction:	Predicate:	Ct size:	Assumption:	Practical:
[DHO 16]	any	$O\left(2^{n}\right)$	DDH or DCR	-
[DHO 16]	any	$\operatorname{poly}(n)$	iO	-
Our work	$\mathrm{P}_{\text {eq }}, \mathrm{P}_{\text {comp }}$	$O(n)$	SXDH	

Conclusion

Construction:	Predicate:	Ct size:	Assumption:	Practical:
[DHO 16]	any	$O\left(2^{n}\right)$	DDH or DCR	
[DHO 16]	any	poly (n)	iO	
Our work	$\mathrm{P}_{\text {eq }}, \mathrm{P}_{\text {comp }}$	$O(n)$	SXDH	
Open	$\mathrm{P}_{\text {eq }}, \mathrm{P}_{\text {comp }}$	$\operatorname{poly}(n)$	DDH	

Conclusion

Construction:	Predicate:	Ct size:	Assumption:	Practical:
[DHO 16]	any	$O\left(2^{n}\right)$	DDH or DCR	
[DHO 16]	any	poly (n)	iO	
Our work	$\mathrm{P}_{\text {eq }}, \mathrm{P}_{\text {comp }}$	$O(n)$	SXDH	
Open	$\mathrm{P}_{\text {eq }}, \mathrm{P}_{\text {comp }}$	poly (n)	DDH	
Open	any	poly (n)	standard	

Thank you!

