Access Control Encryption for Equality, Comparison, and More

Georg Fuchsbauer, ENS

Romain Gay, ENS

Lucas Kowalczyk, Columbia University Claudio Orlandi, Aarhus university

Previous works

For predicates P: $\{0,1\}^n \times \{0,1\}^n \rightarrow \{0,1\}$

Construction:	Predicate:	Ct size:	Assumption:	Practical:
[DHO 16]	any	$0(2^{n})$	DDH or DCR	\times
[DHO 16]	any	poly(n)	iO	×

Our work

For predicates P: $\{0,1\}^n \times \{0,1\}^n \rightarrow \{0,1\}$

Construction:	Predicate:	Ct size:	Assumption:	Practical:
[DHO 16]	any	$0(2^{n})$	DDH or DCR	\times
[DHO 16]	any	poly(n)	iO	×
Our work	P _{eq} , P _{comp}	0(n)	SXDH	\checkmark

$$P_{eq}(i,j) = 1 \text{ iff } i = j$$

 $P_{comp}(i, j) = 1 \text{ iff } i \ge j$

Outline

- 1. ACE for equality from [DHO 16]
- 2. New ACE for equality

 $(pk_i, dk_i) \leftarrow Sanitizable Anonymous Public Key Encryption$

 $(ek_i, dk_i) \leftarrow Sanitizable Anonymous Public Key Encryption$

 $(ek_i, dk_i) \leftarrow Sanitizable Anonymous Public Key Encryption$

 $(ek_i, dk_i) \leftarrow Sanitizable Anonymous Public Key Encryption$

 $(ek_i, dk_i) \leftarrow Anonymous PKE$

 $(ek_i, dk_i) \leftarrow Anonymous PKE, \sigma_i = Sign(ek_i), CRS \leftarrow NIZK$

Concrete ACE for equality

- $(ek_i, dk_i) \leftarrow (Rerandomizable)Anonymous PKE: El Gamal$
- NIZK: Groth Sahai [GS 12]
- $\sigma_i = \text{Sign}(ek_i)$: Structure preserving signature

SPS:	ek _i :	ct:	Assumption:
[KPW 12]	$7\mathbb{G}_1 + 1\mathbb{G}_2$	$34\mathbb{G}_1 + 16\mathbb{G}_2$	SXDH
[AGHO 11]	$3\mathbb{G}_1 + 1\mathbb{G}_2$	$20\mathbb{G}_1 + 14\mathbb{G}_2$	GGM

Concrete ACE for equality

- $(ek_i, dk_i) \leftarrow (Rerandomizable)$ Anonymous PKE: El Gamal
- NIZK: Groth Sahai [GS 12]
- $\sigma_i = \text{Sign}(ek_i)$: Structure preserving signature

SPS:	ek _i :	ct:	Assumption:
[KPW 12]	$7\mathbb{G}_1 + 1\mathbb{G}_2$	$34\mathbb{G}_1 + 16\mathbb{G}_2$	SXDH
[AGHO 11]	$3\mathbb{G}_1 + 1\mathbb{G}_2$	$20\mathbb{G}_1 + 14\mathbb{G}_2$	GGM
SPS-EQ:	ek _i :	ct:	Assumption:
[FHS 15]	$3\mathbb{G}_1 + 1\mathbb{G}_2$	$6\mathbb{G}_1 + 1\mathbb{G}_2$	GGM

Construction:	Predicate:	Ct size:	Assumption:	Practical:
[DHO 16]	any	$0(2^{n})$	DDH or DCR	\times
[DHO 16]	any	poly(n)	iO	×
Our work	P _{eq} , P _{comp}	0(n)	SXDH	\checkmark

Construction:	Predicate:	Ct size:	Assumption:	Practical:
[DHO 16]	any	$0(2^{n})$	DDH or DCR	\times
[DHO 16]	any	poly(n)	iO	×
Our work	P _{eq} , P _{comp}	0(n)	SXDH	\checkmark
Open	P _{eq} , P _{comp}	poly(n)	DDH	

Construction:	Predicate:	Ct size:	Assumption:	Practical:
[DHO 16]	any	$0(2^{n})$	DDH or DCR	\times
[DHO 16]	any	poly(n)	iO	\times
Our work	P _{eq} , P _{comp}	0(n)	SXDH	\checkmark
Open	P _{eq} , P _{comp}	poly(n)	DDH	
Open	any	poly(n)	standard	\checkmark

Construction:	Predicate:	Ct size:	Assumption:	Practical:
[DHO 16]	han	$O(2^n)$		
[DHO 16]	any	poly(n)	Uy.	
Our Ark	Peq, Peamp		sinc	?∕∕
Open	P _{eq} , P _{cemp}	pory(n)		
Open	any	poly(n)	standard	