
Checking safety properties using induction and a

SAT-solver

Mary Sheeran1;2, Satnam Singh3, and Gunnar St�almarck1;2

1 Prover Technology AB, Alstr�omergatan 22, 2tr, SE-112 47 Stockholm, Sweden
gunnar@prover.com

2 Chalmers University of Technology, SE-412 96, G�oteborg, Sweden
ms@prover.com

3 Xilinx Inc., 2100 Logic Drive, San Jose, California CA95124, USA
Satnam.Singh@xilinx.com

Abstract. We take a fresh look at the problem of how to check safety
properties of �nite state machines. We are particularly interested in
checking safety properties with the help of a SAT-solver. We describe
some novel induction-based methods, and show how they are related
to more standard �xpoint algorithms for invariance checking. We also
present preliminary experimental results in the veri�cation of FPGA
cores. This demonstrates the practicality of combining a SAT-solver with
induction for safety property checking of hardware in a real design
ow.

1 Introduction

We are interested in the problem of checking safety properties of large �nite state
machines using a SAT-solver. This has become an important research topic in
recent years, and a number of apparently di�erent approaches have been pro-
posed [1, 2, 5, 7, 12]. Several of these methods seem promising, and experimental
work to evaluate them is being carried out. We also need to develop a greater
understanding of the problem and its various solutions in a more abstract sense.
This paper contributes to this ongoing work in two ways. First, we explain some
induction-based methods of safety property checking. Although applications of
some of these methods have been reported [9], the methods themselves have not
been properly documented in the literature. This paper attempts to remedy this.
Second, we demonstrate the practicality of the approach by giving experimental
results for the veri�cation of real FPGA cores at Xilinx, Inc.

2 The problem that we would like to solve

Given a �nite state machineM with initial states satisfying I and state transition
relation T , we would like to check whether or not a property P holds for all
reachable states. The transition relation T is a binary relation on the set of
states S. We call a state that satis�es P a P -state, and a system in which all
reachable states are also P -states is called P -safe. The reachable states are those
that can be reached by T -transitions starting from an initial state.

C

FDP
C

D Q a

FDR
C

D Q

FDR
C

D Qb c

Fig. 1. A 3-bit ring counter

Example 1. Figure 1 shows a circuit for a 3-bit ring counter which has the
property that only one bit is high at any given moment. When this circuit is
reset into its initial state the Q output of the FDP
ip-
op is set to 1 and the
Q outputs of the two FDR
ip-
ops are set to 0. (We equate 0 with False and
1 with True.) This circuit has no inputs except for the clock C. Figure 2 shows
a state transition diagram for this circuit which has one initial state (1; 0; 0).
In general, the state will be a �nite vector of boolean variables. Transitions are

(1,0,0) (0,1,0) (0,0,1)

initial state

(1,1,1)(1,1,0) (0,1,1) (1,0,1)(0,0,0)

Fig. 2. State transition diagram for a 3-bit ring counter

shown as arrows between states. So, the circuit cycles between three reachable
states. Let us call the three boolean state variables (a; b; c) as shown in Figure 1.
Then, the property that only one bit should be high is represented by the formula
(a � b � c) ^ :(a ^ b ^ c), informally \an odd-number of bits should be high,
but not all three", which we call oneHigh . (� stands for exclusive or.) This
property holds for all of the reachable states (on the top row of the diagram)
and so the system shown is oneHigh-safe. An example of a property that does
not hold for all reachable states is the formula :c. It holds for the initial state
and for its successor, but not for the following state, so a suitable countermodel

2

to the assertion that :c holds for all reachable states is the sequence of states
(1; 0; 0); (0; 1; 0); (0; 0; 1).

Generally such an error trace is a possible sequence of states starting at the
initial state, in which all but the last state satisfy the required condition. When
we check systems for P -safety, we would like to generate such a trace when the
system turns out not to be P -safe. The question of how to get from a system
description to a transition relation is not considered here. For an introduction
to model checking in general, see reference [6].

2.1 Transition relations and paths

In order to be able to formulate the problem more precisely, we introduce no-
tation for various types of paths through the graph of a transition relation. We
write T (x; y) to indicate that x is related to y by the transition relation T . Let us
assume for notational convenience that the transition relation being examined is
always T . For example the 3-bit ring counter presented in the previous section
has a transition relation which relates the current state (a; b; c) to the next state
(a0; b0; c0) such at a0 = c, b0 = a and c0 = b. Now we de�ne what it means for a
sequence of states to be a path through T .

path(s[0::n]) =̂
^

0�i<n

T (si; si+1)

Read =̂ as \is de�ned to be". s[0::n] is shorthand for the sequence of state
(s0; s1; : : : ; sn). We say that a path has length n if it makes n T -transitions.
A path of length zero contains a single point and makes no transitions. To assert
that a property Q holds of every point in a path, we write all :Q(s[0::n]).

Later, we will have reason to restrict the paths in such a repeated composition
to be loop free, so that every element of the path is distinct. We de�ne

loopFree(s[0::n]) =̂ path(s[0::n]) ^
^

0�i<j�n

si 6= sj

The concatenation of two loop-free paths is not necessarily loop-free, but the
sub-paths of a loop-free path are themselves loop-free. Thus

loopFree(s[0::(i+j)]) ! loopFree(s[0::i]) ^ loopFree(s[i::(i+j)]) (1)

Sometimes we only want to talk about the ends of paths. So we are happy
to view path , for instance, not only as a predicate on paths but also as a binary
relation on points. We write path i(s0; si) to indicate that there is a path from s0
to si through i copies of T . This corresponds to quantifying away the internal
points. So, for example

pathn(s0; sn) $ 9s1 : : : sn�1: path(s[0::n]) (2)

3

Finally, we de�ne what it means for a path to be a shortest path. In this
case, we are only interested in the ends of paths. A path from a to b is shortest
if it joins a and b and if a and b are not joined by any shorter path. De�ne

shortest(s[0::n]) =̂ path(s[0::n]) ^ :(
_

0�i<n

path i(s0; sn)) (3)

Shortest paths are also loop-free. Note that the de�nition of shortest in fact con-
tains many existential quanti�ers, because we have repeatedly used path i(s0; sn).
For a �nite transition relation T , there exists a largest k for which shortest(s[0::k])
holds for some sequence of states. In other words, there is a longest shortest path
in a �nite state transition graph. The length of that path is usually called the di-

ameter of the graph. The diameter of the state transition graph shown in �gure 2
is 2.

2.2 Formulating the problem

Let T be a transition relation on the set of states S. We assume that the domain
of T is the entire set of states S, so that every state has a successor through T .
Let I characterise the initial states, and P the property of states that we want
to check.

We want to show that starting in an initial state and repeatedly applying
the transition relation always leads to a state satisfying P . That is, we want to
prove

8i:8s0 : : : si: (I(s0) ^ path(s[0::i]) ! P (si))

where i � 0 and the si range over states. Or we can work backwards from the
bad states. We want to show that starting in a state violating P and working
backwards through T always leads to a non-initial state, that is

8i:8s0 : : : si: (:I(s0) path(s[0::i]) ^ :P (si))

Both of these turn out to be the same thing as proving

8i:8s0 : : : si: :(I(s0) ^ path(s[0::i]) ^ :P (si))

This gives a more symmetrical view of the problem. In words, we want to show
that there are no paths that start in an initial state and end in a non-P -state.

3 A �rst solution

How can we divide our problem up into smaller sub-problems?
A possible �rst solution is to check that

8s0 : : : si: :(I(s0) ^ path(s[0::i]) ^ :P (si)) (4)

4

holds for i = 0, i = 1, i = 2, and so on. This corresponds to checking that
I(s0) ^ path(s[0::i]) ^ :P (si) is contradictory (or that :(I(s0) ^ path(s[0::i]) ^
:P (si)) is a tautology) for each i, for arbitrary s0 to si. If the property is
violated somewhere in the reachable states, we will eventually �nd an i for which
I(s0) ^ path(s[0::i]) ^ :P (si) is satis�able. Then, we know that there is a path
of length i from an initial state to one violating P , and indeed the assignment
of values to s[0::i] that makes the formula satis�able is such a path, and can be
used for debugging purposes. Also, we know that there is no shorter such error-
trace. For the special case of simple safety properties, Bounded Model Checking,
a particular form of model checking based on SAT-solving proposed by Clarke
and his collaborators [2], reduces to a similar kind of iteration and satis�ability
check.

If the system is P -safe, formula (4) will always hold. The question is how do
we know when it is safe to stop incrementing i and conclude that the system
is P -safe? It is no good waiting for I(s0) ^ path(s[0::i]) to be contradictory, say.
Given that there is an initial state, this will never happen, as we assume that
every state has a successor through T , so there are always loops in both the
reachable and the unreachable state space.

A better strategy is to stop when I(s0)^ loopFree(s[0::i]) becomes contradic-
tory. Then, we stop when we have checked every loop-free path (and thus every
state) in the reachable states. We can then safely conclude that the system is
P -safe. Similarly, we can keep checking until loopFree(s[0::i]) ^ :P (si) becomes
contradictory, and stop, again with a positive answer, when we have checked
all states reachable backwards from those violating P . This solution is given
in pseudo-code below (Algorithm 1). The function Sat corresponds to a call to
a SAT-solver. The function Sat takes an expression and returns True if there
exists an assignment to the variables (in this case s[0::i]) which make the whole
expression true. Here, the trace c[0::i] is an assignment to the variables s[0::i] that

Algorithm 1 First algorithm to check if system is P -safe
i=0
while True do
if not Sat(I(s0) ^ loopFree(s[0::i])) or not Sat((loopFree(s[0::i]) ^ :P (si)) then
return True

end if

if Sat(I(s0) ^ path(s[0::i]) ^ :P (si)) then
return Trace c[0::i]

end if

i = i+ 1
end while

makes I(s0) ^ path(s[0::i]) ^ :P (si) true, and so is a suitable error trace.
Let us consider the case when the answer is True. We prove that for all i

I(s0) ^ loopFree(s[0::i]) ^ :P (si)

5

is contradictory. That is, we show that there is no loop-free path, starting from
the initial state, in which the �nal state violates P . If there is no such path, then
the system must be P -safe, and thus the method is sound. When the answer
is True, we know from the condition in the �rst if statement that for some
smallest k one of I(s0)^ loopFree(s[0::k])) and loopFree(s[0::k])^:P (sk) must be
contradictory (or not satis�able). We also know, from the second if statement,
that for i < k it is the case that

I(s0) ^ path(s[0::i]) ^ :P (si)

is contradictory. A consequence is that for i < k

I(s0) ^ loopFree(s[0::i]) ^ :P (si) (5)

is also contradictory. If there are no paths linking an initial state to a non-P -
state, then there are no loop-free paths doing so either.

It remains to be shown that equation (5) holds for i � k. For i � k, we know
(by equations 1 and 2 and some quanti�er manipulation) that

I(s0) ^ loopFree(s[0::i]) ^ :P (si)
! I(s0) ^ loopFree(s[0::k]) ^ loopFree(s[k::i]) ^ :P (si)

and that

I(s0) ^ loopFree(s[0::i]) ^ :P (si)
! I(s0) ^ loopFree(s[0::m]) ^ loopFree(s[m::i]) ^ :P (si)

for some m. But at least one of those right hand sides is unsatis�able since one
of I(s0)^ loopFree(s[0::k]) and loopFree(s[0::k])^:P (sk) is. We conclude that for
all i

I(s0) ^ loopFree(s[0::i]) ^ :P (si)

is contradictory. Thus a True answer does indeed indicate that the system is P -
safe. The method is also complete. It returns True if the system is P -safe, and an
error trace if not. The restriction to loop-free paths is necessary for completeness.

This algorithm is in a sense bidirectional; it can be thought of as working
both forwards from the initial state and backwards from the bad states at the
same time. Indeed, it is pleasingly symmetrical. We could swap the initial and
the bad states, and replace the transition relation by its converse, and still get
the same algorithm.

In the ring counter shown in �gure 2, using this algorithm to check that
oneHigh holds of all reachable states returns True when i becomes 3 since
2 is the length of the longest loop-free path starting from the initial state,
and of the longest loop-free path ending in a non-oneHigh state. Checking
for the formula :c that we considered earlier returns the sequence of states
(1; 0; 0); (0; 1; 0); (0; 0; 1) as the assignment s0 = (1; 0; 0); s1 = (0; 1; 0); s2 =
(0; 0; 1) is a satisfying assignment for the formula I(s0)^ path(s[0::i])^:P (si) in
this case.

6

4 Improving on this solution

How can we improve this algorithm, bearing in mind that we will use a SAT-
solver to check the formulas? Well, we can make the two termination conditions
a bit tighter.

Let us think operationally for a moment, and imagine traversing the state
transition graph. In the forward direction, we don't want to go back into an
initial state as we would then be considering a longer path than necessary. We
could in that case consider only the end part of the path starting from the
second point that is an initial state. The original termination condition was
I(s0) ^ loopFree(s[0::i]) and now we want to replace it by

I(s0) ^ all ::I(s[1::i]) ^ loopFree(s[0::i])

(In the special case where there is only one initial state, then this change is
unnecessary, as the restriction to proper paths prevents us from returning to the
initial state.) Similarly, in the backwards direction, we are uninterested in paths
that have a non-P -state somewhere in the middle. We only want to consider
paths in which all but the last state satisfy P . The new termination condition
is then

loopFree(s[0::i]) ^ all :P (s[0::(i�1)]) ^ :P (si)

The resulting algorithm is given as Algorithm 2.

Algorithm 2 An improved algorithm to check if system is P -safe
i=0
while True do
if not Sat(I(s0) ^ all ::I(s[1::i]) ^ loopFree(s[0::i]))
or not Sat((loopFree(s[0::i]) ^ all :P (s[0::(i�1)]) ^ :P (si)) then
return True

end if

if Sat(I(s0) ^ path(s[0::i]) ^ :P (si)) then
return Trace c[0::i]

end if

i = i + 1
end while

One of us was sorely tempted to make use of facts proved in earlier iterations
to make further restrictions in both termination conditions, restoring a pleasing
symmetry. But this turns out to be a bad idea in practice because of the need
to rely on previous iterations. When a circuit requires a very high induction
depth to prove a property, it is simply too expensive to iterate all the way up
to that depth, from zero. The proofs that �nd that we cannot yet terminate are
much slower than the successful proofs of termination conditions. So, we should
instead concentrate on removing the need to iterate upwards from zero depth!

7

We need to change the check for bad paths so that it can �nd bad paths of
length 0 up to i, and not just of length exactly i. It turns out to be convenient
to switch the order of the check for bad paths and the check for termination.

Algorithm 3 An algorithm that need not iterate from 0

i= some constant which can be greater than zero
while True do
if Sat(I(s0) ^ path(s[0::i]) ^ :all :P (s[0::i])) then
return Trace c[0::i]

end if

if not Sat(I(s0) ^ all ::I(s[1::(i+1)]) ^ loopFree(s[0::(i+1)]))
or not Sat((loopFree(s[0::(i+1)]) ^ all :P (s[0::i]) ^ :P (si+1)) then
return True

end if

i = i + 1
end while

Now, we are no longer obliged to iterate all the way up from zero, as we have
removed the dependence between iterations. The length of the longest serial
connection of latches (or other delay elements) is usually a lower bound on the
number of iterations needed, so that is a good starting point. The algorithm is
still sound, even if we start at \too high" a value of i. In that case, though,
the error trace returned is no longer guaranteed to be of minimal length. Each
iteration also begins to look more like an inductive proof. Rewriting some of the
subproblems to equivalent ones gives Algorithm 4. Here the call to Taut invokes
a SAT-solver to establish whether its argument expression is always true.

Algorithm 4 A forwards version of the algorithm

i= some constant which can be greater than zero
while True do
if Sat(:(I(s0) ^ path(s[0::i])! all :P (s[0::i]))) then
return Trace c[0::i]

end if

if Taut(:I(s0) all ::I(s[1::(i+1)]) ^ loopFree(s[0::(i+1)]))
or Taut((loopFree(s[0::(i+1)]) ^ all :P (s[0::i])! P (si+1)) then
return True

end if

i = i + 1
end while

Now we can begin to see the inductive shape of the proof. The �rst if state-
ment is the base case. It checks that P holds in the �rst i+1 states. The second
disjunct in the condition in the next if statement checks that after i+1 P -states
in a row one is guaranteed to reach another P -state. By induction, we conclude

8

that every loop-free path starting at the initial state contains only P -states. We
call this strengthened induction with depth i, and it proves that the system is P -
safe. The word strengthened refers to the restriction to loop-free paths, which is
an additional constraint on the unrollings of the transition relation. Without this
constraint, induction with depth gives an incomplete method. Later, we shall see
a stronger variant of induction. However, even this the weakest form of induction
works well for some kinds of hardware veri�cation, and our experimental results
from core veri�cation use only this form of induction so far. We don't yet know
whether or not the stronger forms of induction are useful in practice. Returning
to the remaining disjunct in the second if statement, it checks whether or not we
can stop because all of the loop-free paths in the reachable states have already
been checked (by the base cases). This view of the algorithm has more of a left-
to-right character than the original one, but the two algorithms are in fact the
same! Indeed, there is also a right-to-left version, which you can get by replacing
the condition in the �rst if statement by all ::I(s[0::i]) path(s[0::i]) ^ :P (si).
Now, view this as the base case of the induction, and the �rst disjunct of the
second if statement as the step. In fact, though, both versions behave identically
as the condition that we have just introduced traps exactly the same bad paths
as the previous one. It is in the left-to-right form that we have presented the
algorithm earlier[12]. We feel that the more symmetrical presentation given here
is enlightening. In particular, it has helped us to understand the importance of
the double termination check which gives us an algorithm that can be seen as
working both forwards and backwards.

Returning to the ring counter example and again checking the oneHigh prop-
erty, we �nd that the tighter termination condition now allows us to terminate
when i is 0. This is because there are no paths of length 1 connecting a oneHigh

state to a non-oneHigh state. If the property being checked happens to coincide
exactly with the reachable states, as in this example, then there are no paths
from a P -state to a non-P state, so induction with depth 0, which is just or-
dinary induction, will succeed. Restricting the backwards termination condition
to consider only paths in which all but the last state satisfy P is an important
re�nement of the algorithm.

The limiting factor for this algorithm is the cost of adding the extra con-
straints in the termination conditions that constrain the paths to be loop-free.
This needs in the order of n2 inequalities between states for path length n. Since
St�almarck's method copes well with very large formulas, the limit is not as con-
straining as it might appear [11]. Somewhat surprisingly, most of the examples
that we have tried so far have needed relatively low induction depths. However,
there will clearly be deep systems that we simply cannot cope with.

The algorithms that we have presented so far are suited for use with a SAT-
solver. The formulas that need to be checked are given by the de�nitions of path ,
loopFree and all :P .

At Prover Technology AB, the algorithm is implemented in the prototype
Lucifer tool for checking safety properties of Lustre programs [10]. Lucifer has
been used in a number of industrial veri�cation projects at Prover Technology

9

AB. It is currently being evaluated at a large aerospace company, for use in the
veri�cation of control programs and a product incorporating these algorithms
and others is being developed. Lucifer is also in use in a project to develop a
design
ow incorporating formal veri�cation for FPGA cores at Xilinx, Inc. [9].
Later, in section 7, we present experimental results from this project.

5 A second stronger solution

The algorithm that we have just presented has the advantage that it can be
implemented using a plain SAT-solver. However, it is unsatisfactory when one
considers the necessary number of iterations before it terminates, for a P -safe
system. The number of iterations required is either the length of the longest
loop-free path starting from an initial state (and proceeding through non-initial
states), or the length of the longest loop-free path consisting of all P states
followed by a non-P -state, whichever is the shorter. But this could easily be far
too many iterations! The longest loop-free path between a pair of states may
be much longer than the shortest path between them, so the algorithm may
needlessly consider long paths. We would like to consider only shortest paths
between pairs of states. This insight leads to a new solution. The adaption of
the algorithm to consider only shortest paths is straightforward. Everywhere we
had loopFree , we substitute shortest . The reasoning is just as before, except that

Algorithm 5 A version of the algorithm that considers shortest paths

i= some constant which can be greater than zero
while True do
if Sat(I(s0) ^ path(s[0::i]) ^ :all :P (s[0::i])) then
return Trace c[0::i]

end if

if not Sat(I(s0) ^ all ::I(s[1::(i+1)]) ^ shortest (s[0::(i+1)]))
or not Sat((shortest (s[0::(i+1)]) ^ all :P (s[0::i]) ^ :P (si+1)) then
return True

end if

i = i+ 1
end while

this time we prove that for all i

I(s0) ^ shortest(s[0::i]) ^ :P (si)

is contradictory. Considering only shortest paths does not reduce the set of states
considered, so this condition still captures P -safety. The big di�erence is that
for a P -safe system, this algorithm may terminate much earlier.

Note, however, that using shortest in the algorithm means that we have
introduced many existential quanti�ers. The algorithm is no longer suitable for

10

use with a plain SAT-solver, but needs quanti�er elimination. Work on the FixIt
tool shows that one can get quite far in SAT-based reachability analysis using
relatively simple quanti�er elimination [1]. Another alternative is to use the
QBF-speci�c part of St�almarck's translation of �nite domain many sorted �rst
order logic into propositional logic [13]. We will not consider either option further
in this paper, but note that much experimental work remains to be done.

We call the forward diameter of a graph the length of the longest shortest
path starting in an initial state and proceeding through non-initial states, and
the backward diameter the length of the longest shortest path consisting of all
P -states followed by a non-P -state. The number of iterations needed for a P -safe
system is the minimum of the forward and backward diameters.

Algorithm 5 still considers entire paths. We can think of modifying it so
that it instead only considers the two end points of a path. This makes sense
as we are now considering shortest paths. Having made that step, we can make
one last quanti�er elimination in each of the termination conditions. We would
rather not be forced to iterate very far by a system that has a very long shortest
path from an initial state to x, if x is reachable much earlier from a di�erent

initial state. We would somehow like to bundle all the initial states together. Our
de�nition of shortest gives us shortest paths from a single state. Now we would
like to consider shortest paths from a set of states. We modify the de�nition of
shortest . S characterises the set of states.

shortest 0n(S; b) =̂ 9a: (S(a) ^ pathn(a; b)) ^ :9a: (S(a) ^
_

0�i<n

path i(a; b))

Now, shortest 0n(S; b) also characterises a set of states. The important point to
note is that we have added two further existential quanti�ers. Similarly, we will
write shortest 0n(a; S) for the assertion that there is a shortest path from state a

into the set characterised by S. For simplicity, we also omit the constraints on
internal points on paths. The result is shown as Algorithm 6.

Algorithm 6 A set-based version of the algorithm that considers shortest paths

i= some constant which can be greater than zero
while True do
if Sat(I(s0) ^ path(s[0::i]) ^ :all :P (s[0::i])) then
return Trace c[0::i]

end if

if not Sat(shortest 0

i+1(I; si+1))
or not Sat((shortest 0

i+1(s0;:P)) then
return True

end if

i = i+ 1
end while

This algorithm is similar to the standard method of checking safety proper-
ties using �xpointing and a simultaneous forward and backward analysis. The

11

existential quanti�ers that we have just added in the termination conditions have
moved us from a path-based algorithm to one that operates on sets of states.

So, we have seen two kinds of solution, one that works directly with quanti�er
free formulas but that may need to iterate too far in practice in some cases, and a
much stronger solution that seems to demand quanti�er elimination. In between
these two extremes, there is a range of solutions that can be explored. We want
to look at various versions of constrained iteration of relations between loopFree

and shortest .
One way to think about this range is to consider that the constraints that

we apply are of the form \paths of length j or greater do not have any paths
that are shorter than j between their end points". Now, choosing j to be 1 gives
us the constraint that we used in our purely SAT-based solutions. We constrain
all paths of length 1 or greater to have unequal end points (so that they obey
:pathj(x; x)). If on the other hand, we choose j to be the length n of the path
that we are considering, then we get the strongest form of induction. We demand
that the entire path be a shortest path, so that its end points are not joined by
any paths of length less than n. In between these two extremes, we can choose
di�erent values of j, to give a range of constraints. We have seen that setting j to
be one gives loop-free paths. Choosing j = 2 gives what we call locally shortest
paths; the consequence is that all paths of length 2 or greater obey the negation
of the transition relation T and the entire path has unequal end points. This
again is a constraint that can be expressed in pure propositional logic, and it is
strictly stronger than the loopFree constraint. All of these constrained forms of
iteration can be plugged into our basic algorithm. As yet, our experiments have
been restricted to induction strengthened by the restriction to loop-free paths.

6 Related work

Deharbe and Moreira have suggested using induction (with depth one) to check
invariant properties of transition systems [8]. They modify a standard model
checking algorithm to use induction for properties of the form AG p (informally,
\p is globally true along all paths"). Thus, this work is done in a context in
which sets of states and image computations are expressed using BDDs. The
authors point out that their method is incomplete and do not, to our knowledge,
consider additional path constraints as we do.

In Bounded Model Checking (BMC), the user speci�es a number of time
steps, k, for searching from initial states for countermodels to properties [2, 3].
This work has alerted many to the possibilities of SAT-solvers in model checking.
Reference [4] concentrates particularly on safety properties. It applies the method
to the checking of safety properties of a PowerPC microprocessor at Motorola.
The method used is either to search for a �nite-length counter-example, exactly
as we do, or to prove that the property is an inductive invariant, using induction
with depth zero, that is ordinary induction. Induction with depth seems not to
be considered. The authors point out that the technique is not complete. We
know, however, that the authors considered restrictions to loop-free paths.

12

When it comes to termination conditions, the original BMC paper proposes
to use the graph diameter as the length of the longest necessary unrolling. This
would correspond, in our formulation, to terminating when shortest(s[0::i]) be-
comes unsatis�able. Our termination conditions are rather more re�ned in that
they take account of the initial states and of the property to restrict attention
only to more relevant sub-graphs. The restrictions to paths of the form \I then
all not I" or \all P then not P" turn out to be important in practice, though
we must admit that we have tried them mostly in the context of the weaker
restrictions to loop-free paths.

For an interesting future research direction on the theme of variations on
induction and SAT-solving, the reader is referred to recent work by Bjesse and
Claessen (in this volume) on improving induction using a method �rst proposed
by van Eijk [5].

Many of the methods that we propose here are already in use in automatic
test pattern generation (ATPG) and one of our next steps will be to study
SAT-based ATPG.

7 Results from FPGA core veri�cation

At Xilinx the Lucifer tool has been used to help verify the correctness of
FPGA circuit cores { intellectual property that Xilinx distributes or sells. It is
particularly important to ensure the correctness of these cores since users expect
intellectual property to have undergone rigorous testing.

In a recent project many of the basic building block circuits, called Base-
BLOXs, were veri�ed with Lucifer. Typical components include bus multiplex-
ors, adders, subtractors, accumulators, comparators, complementors and coun-
ters. Full details of the BaseBLOX components are available from Xilinx [14].

Although in principle these circuits may not seem terribly challenging for
formal veri�cation, industrial versions include many extra inputs and con�gura-
tion information which makes these circuits harder to verify. For example, the
counter could have its count direction changed dynamically, it could also have
a new value loaded dynamically on any clock tick, the amount to increment the
count by can also be dynamically altered and two outputs indicate when certain
count thresholds have been reached. Furthermore, the counter can have a clock
enable as well as synchronous or asynchronous clears and sets to dynamically de-
termined values. These factors in
ate the number of primary inputs and outputs
and increase the number of state elements.

The Lucifer system accepts input in the Lustre language and generates a
proof log which contains a countermodel if one exists plus other statistics about
the veri�cation. A system called Argus [9] was developed (see Figure 3) which
translates Xilinx circuit designs in the EDIF netlist format into behaviourally
equivalent Lustre. The Argus system then poses a question to the Lucifer sys-
tem to perform equivalence checking for the two input designs. When a counter
model is found it is read from the generated proof log and translated into a
simulation script for the ModelSim VHDL/Verilog simulator.

13

EDIF2

EDIF1

EDIF to
Lustre

Equivalence
Check in

Lustre
LUCIFER

Prooflog
Generate

Simulation
Modelsim

Script

Fig. 3. Architecture of the Argus EDIF netlist equivalence checker

The core veri�cation
ow at Xilinx is shown in Figure 4. The Core Gen-
erator system is called upon to generate a speci�c instance of some core e.g.
by specifying the size of a multiplier or the degree of pipelining required. The
outputs of the Core Generator are (i) a highly optimised EDIF circuit netlist
suitable for implementation on an FPGA and (ii) a VHDL behavioural descrip-
tion which should faithfully model the behaviour of the circuit contained in the
EDIF netlist. This may easily not be the case since the behavioural descriptions
are developed entirely independently of the optimised implementation circuits.
The veri�cation system that we have put in place performs equivalence check-
ing to ensure that for speci�c instances of cores the implementation netlists are
correctly modeled by the behavioural descriptions.

The
ow involves taking a behavioural VHDL speci�cation of a core's be-
haviour and synthesising a particular instance of it to produce an EDIF netlist.
This acts as the speci�cation of the required behaviour. Then the actual highly
optimised structural VHDL (or other language) code for the corresponding core
implementation is also elaborated into an EDIF �le. The Argus equivalence
checker then processes these two EDIF �les. If the system �nds a counter-model,
then a simulation script identifying the sequence of events that led to the dis-
crepancy is produced. This script can be used by the core designer or veri�er
from the ModelSim VHDL simulator to help identify the source of the problem.

A key aspect of our
ow is that the veri�cation engineer or core developer does
not need to learn about any formal logic since the safety property that we wish
to check (that the two circuits under examination always have the same output)
is automatically generated by our system. Furthermore, when a countermodel
is found the results are presented by running a familiar VHDL simulator. This
makes the system more accessible to engineers. A weakness of the system is
that manual intervention is sometimes required when the generated behavioural
VHDL is not synthesisable, although this has rarely been the case in practice.

To illustrate the performance of Lucifer we present the results of using it
as a part of the Argus system to perform equivalence checking of various cores
against their behavioural descriptions. Some of the results are shown in Table 1.
These experiments were run on a dual processor Ultra-60 SparcStation with 2

14

Core
Generator

Behavioural
VHDL

Implementation
EDIF

Synthesis EDIF
(spec)

Argus

VHDL
Simulator

Simulation
Script

Fig. 4. Core Veri�cation Flow at Xilinx

GB of RAM. Note that we verify �xed size instances of circuits, as you must
expect of a system based on propositional logic.

Experiment Veri�cation Time Induction
(seconds) depth

64-bit up counter 1.03 0

64-bit up-down counter 75.39 0

11-bit loadable counter 2938 0

11-bit increment by 14 counter 0.16 0

11-bit increment by 14 loadable counter 2965 0

11-bit pipelined counter (1 stage) 46.21 2

11-bit pipelined counter (2 stages) 283 6

11-bit pipelined counter (3 stages) 526 10

1000-bit Johnson counter 44.45 2

Table 1. Experimental Results

The veri�cation times for various n-bit up counters (not loadable, count by
1 only, no threshold outputs) are quite favorable. The netlist produced by the
core generator system and behavioural synthesis system were examined. Both
systems produced designs that contained D-type
ip-
op state elements, but the
core generator system used a D-type
ip-
op with an enable signal whereas the
synthesised version produced a D-type
ip-
op active on a negative edge. These
components are encoded with di�erent logical representations so the system has
to perform some non-trivial checking to ensure that the two counters are the
same.

A counter which can be made to count up or down depending on a control
signal has a more complicated state space, as suggested by the timing results.
However, even for a 64-bit up-down counter, the veri�cation takes little time
(around one minute).

15

Keeping the count direction �xed but allowing the counter to be loaded with
a new value on any clock tick proves to be more challenging for Lucifer. It took
about 50 minutes to verify an 11-bit loadable counter. Both the core generator
and behavioural versions produce the same number of state elements but the core
generator uses FDE
ip-
ops and the synthesiser used FD (D-type)
ip-
ops.

Verifying counters with speci�c increment values posed no problem for the
veri�cation with a 11-bit increment by 14 count taking just 0.16 seconds. The
next experiment combines the up-down feature of the counter with the ability to
dynamically load the counter. Once again the dynamic load requirement pushes
the veri�cation time to 2,965 seconds.

Next, we introduce a pipeline stage at the end of the counter. The veri�cation
is posed in such a way that the �rst output of the two circuits is ignored but
then every subsequent output is required to be the same. Adding a pipeline stage
causes a marked increase in veri�cation e�ort. The time needed to verify a non-
pipelined 11-bit adder is 0.17 seconds but adding one pipeline stage causes the
veri�cation time to shoot to 46.21 seconds. Lucifer uses an induction depth of
2 to verify these counters. Adding another stage takes the veri�cation time up
to 283 seconds. We believe that this is due to the particular way the pipelining
property has been expressed to Lucifer and this is something we expect to be
able to improve upon dramatically in the next iteration of veri�cations.

To study a larger example with unreachable states we veri�ed Johnson coun-
ters at a variety of sizes (also known as twisted-ring counters). A Johnson counter
counts in a sequence in which only one bit changes per clock tick. An n-bit
Johnson counter cycles through 2n states, giving 2(n=2) � n unreachable states.
A 1,000 bit Johnson counter took 44.45 seconds to verify with induction depth
2. Veri�cation of the ring counter presented earlier yields similarly encouraging
results.

8 Discussion and Conclusion

We �rst presented a method of safety property checking based on induction with
depth, strengthened with a constraint that all states in a path be unique. This
method is complete. It is the method implemented in the prototype Lucifer

tool for analysis of Lustre programs [10]. The work on FPGA core veri�ca-
tion described above is based on Lucifer. Thus, these �rst results make use of
strengthened induction with depth, and show that it can cope with non-trivial
equivalence checking. The results also demonstrate that the method can be in-
corporated into a real design
ow. The fact that erroneous behaviour found
during attempted veri�cation can be analysed in a standard VHDL simulator is
particularly important. Our e�ort has so far been concentrated on the consider-
able task of building the infrastructure to automatically verify real cores in an
existing design environment. The results reported have been produced only just
in time for inclusion here, and we have not yet had time to analyse them. It is in-
tended to continue this work by verifying a sequence of increasingly complicated
cores. Those that are next on the list are large shifters and state machine based

16

controllers. Thus, the development of both the methods and the infrastructure
will be driven by real case studies. We expect to have to trim the safety prop-
erty checking methods to match exactly this application to core veri�cation. By
doing so, we expect to reduce the veri�cation times reported here considerably.
We have a great deal of experimental work ahead, both in applying our methods
and in comparing with more standard BDD-based veri�cation methods.

We have also shown that the strongest form of induction is very close to a
standard backwards and forwards analysis using �xpoints. The FixIt system,
developed by Bjesse and E�en, implements many safety property checking al-
gorithms, including BMC, strengthened induction with depth, and SAT-based
versions of standard �xpointing algorithms. It makes use of a relatively simple
quanti�er eliminator, but still gives very promising results [1]. FixIt is now being
used as a basis for experiments in SAT-based veri�cation. We plan to use FixIt
to investigate a variety of induction-based methods, including those presented
in the previous section.

When using these induction-based methods, one can vary not only the in-
duction strength, but also the transition relation, T . We can try to make the
relation smaller (in ways that do not a�ect the �nal result of the analysis) so
as to prune away paths, and so possibly reduce the necessary induction depth.
The application of van Eijk's method by Bjesse and Claessen can be seen as an
example of this [5]. Also, making the transition relation (viewed as a set of pairs
of states) larger, while leaving the transitive closure unchanged, may cause the
depth of induction needed to prove a property to be reduced. So, the challenge is
to increase the size of the relation while leaving its transitive closure unchanged.
It seems likely that we can use insights from relational algebra here. One can also
think of eliminating some of the quanti�ers in the unwindings of the transition
relation (as distinct from in the constraints). This would give a sort of hybrid
between the usual �xpoint methods and the inductive methods presented here.
And there are many tricks from the world of BDD-based model checking that
we haven't even considered yet! We have begun to think that a possible way
to proceed might be to go back to basics and think of all these methods, and
possible new ones, in terms of propositional temporal logic theorem proving. In-
sights from proof theory might then give us a new way to compare the di�erent
methods.

Acknowledgments

This research has been funded by Prover Technology AB, Xilinx, Inc., Chalmers
University of Technology, the Swedish funding agency TFR, and the EU LTR
project SYRF (Synchronous Reactive Formalisms). Carl Johan Lillieroth built
major parts of the infrastructure for core veri�cation. Many thanks to Per Bjesse,
Koen Claessen and Gordon Pace for their constructive criticism of an earlier
draft. Thanks also to Nicolas Halbwachs, Pascal Raymond and Bernie New for
enlightening discussions.

17

References

1. P. A. Abdulla, P. Bjesse and N. E�en: Symbolic Reachability Analysis based on
SAT solvers, In Proc. Int. Conf. on Tools and Algorithms for the Construction and
Analysis of Systems, TACAS'00, LNCS, Springer-Verlag, 2000.

2. A. Biere, A. Cimatti, E.M. Clarke and Y. Zhu: Symbolic Model Checking without
BDDs. In Proc. Int. Conf. on Tools and Algorithms for the Construction and
Analysis of Systems, TACAS'99, number 1579, LNCS, Springer-Verlag, 1999.

3. A. Biere, A. Cimatti, E.M. Clarke, M. Fujita and Y. Zhu: Symbolic model checking
using sat procedures instead of BDDs. Design Automation Conference, DAC'99,
IEEE Press, 1999.

4. A. Biere, E.M. Clarke, R. Raimi and Y.Zhu: Verifying Safety Properties of a Pow-
erPC Microprocessor Using Symbolic Model Checking without BDDs. In Proc. Int.
Conf. on Computer-Aided Veri�cation, CAV'99, LNCS, Springer-Verlag, 1999.

5. P. Bjesse, K. Claessen: SAT-based Veri�cation without State Space Traversal. In
Proc. Int. Conf. on Formal Methods in Computer Aided Design of Electronic Cir-
cuits, FMCAD'00, LNCS, Springer-Verlag, 2000.

6. E. Clarke, O. Grumberg and D. Peled: Model Checking, MIT Press, 1999.
7. W.J. Fokkink and P.R. Hollingshead: Veri�cation of Interlockings: From Con-

trol Tables to Ladder Logic Diagrams, in (J.F. Groote, S.P. Luttik and J.J. van
Wamel, eds) Proc. 3rd Workshop on Formal Methods for Industrial Critical Sys-
tems, FMICS'98, Amsterdam, 1998.

8. D. Deharbe and A. Martins Moreira: Using Induction and BDDs to Model Check
Invariants, In H. Li and D. Probst, editors, Advances in Hardware Design and
Veri�cation, IFIP { Advanced Research Working Conference on Correct Hardware
Design and Veri�cation Methods: CHARME'97, Chapman and Hall, 1997.

9. C.J. Lillieroth and S. Singh: Formal Veri�cation of FPGA Cores. Nordic Journal
of Computing 6, 27-47, 1999.

10. M. Ljung: Formal Modelling and Automatic Veri�cation of Lustre Programs Using
NP-Tools, Master's thesis, Prover Technology AB and Department of Teleinformat-
ics, KTH, Stockholm, 1999.

11. M. Sheeran and G. St�almarck: A tutorial on St�almarck's proof procedure for propo-
sitional logic. Formal Methods in System Design, 16:1, January 2000.

12. M. Sheeran and G. St�almarck: Checking safety properties using induction and
boolean satis�ability. Appendix to deliverable d20.2, EU project CRISYS, 1999.

13. G. St�almarck: St�almarck's Method and QBF Solving. In Proc. Int. Conf. on
Computer-Aided Veri�cation, CAV'99, LNCS, Springer-Verlag, 1999.

14. Xilinx: Xilinx IP Center, www.xilinx.com/ipcenter.

18

