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Abstract. Recently Victor Shoup noted that there is a gap in the widely-believed se-
curity result of OAEP against adaptive chosen-ciphertext attacks. Moreover, he showed
that, presumably, OAEP cannot be proven secure from the one-wayness of the un-
derlying trapdoor permutation. This paper establishes another result on the security of
OAEP. It proves that OAEP offers semantic security against adaptive chosen-ciphertext
attacks, in the random oracle model, under the partial-domain one-wayness of the un-
derlying permutation. Therefore, this uses a formally stronger assumption. Nevertheless,
since partial-domain one-wayness of the RSA function is equivalent to its (full-domain)
one-wayness, it follows that the security of RSA–OAEP can actually be proven under
the sole RSA assumption, although the reduction is not tight.

1. Introduction

The OAEP conversion method [3] was introduced by Bellare and Rogaway in
1994 and was believed to provide semantic security against adaptive chosen-
ciphertext attacks [8], [12], based on the one-wayness of a trapdoor permutation,
using the (corrected) definition of plaintext-awareness [1].

Shoup [15] recently showed that it is quite unlikely that such a security proof
exists—at least for non-malleability—under the one-wayness of the permutation.
He also proposed a slightly modified version of OAEP, called OAEP+, which
can be proven secure, under the one-wayness of the permutation.

Does Shoup’s result mean that OAEP is insecure or that it is impossible to
prove the security of OAEP? This would be a misunderstanding of [15]: Shoup’s
result only states that it is highly unlikely to find any proof, under just the
one-wayness assumption. In other words, it does not preclude the possibility of
proving the security of OAEP from stronger assumptions.

This paper uses such a stronger assumption. More precisely, in our reduc-
tion, a new computational assumption is introduced to prove the existence of
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a simulator of the decryption oracle. Based on this idea, we prove that OAEP
is semantically secure against adaptive chosen-ciphertext attack in the random
oracle model [3], under the partial-domain one-wayness of the underlying per-
mutation, which is stronger than the original assumption.

Since partial-domain one-wayness of the RSA function [13] is equivalent
to the (full-domain) one-wayness, the security of RSA-OAEP can actually be
proven under the one-wayness of the RSA function.

The rest of this paper is organized as follows. Section 2. recalls the basic
notions of asymmetric encryption and the various security notions. Section 3.
reviews the OAEP conversion [3], with a thorough discussion of its proven se-
curity. Section 4. presents our new security result together with a formal proof
for general OAEP applications, using Shoup’s formalism [15] which differs from
our original paper [7]. In Section 5., we focus on the RSA application of OAEP,
RSA-OAEP. Finally, Section 6. and the Appendix include a more precise, but
more intricate proof, which provides a tighter security result.

2. Public-Key Encryption

The aim of public-key encryption is to allow anybody who knows the public key
of Alice to send her a message that only she will be able to recover by means of
her private key.

2.1. Definitions

A public-key encryption scheme over a message spaceM is defined by the three
following algorithms:

– The key generation algorithm K(1k), where k is the security parameter,
produces a pair (pk, sk) of matching public and private keys. Algorithm K
is probabilistic.

– The encryption algorithm Epk(m; r) outputs a ciphertext c corresponding to
the plaintext m ∈ M, using random coins r.

– The decryption algorithm Dsk(c) outputs the plaintext m associated to the
ciphertext c.

We occasionally omit the random coins and write Epk(m) in place of Epk(m; r).
Note that the decryption algorithm is deterministic.

2.2. Security Notions

The first security notion that one would like for an encryption scheme is one-
wayness: starting with just public data, an attacker cannot recover the complete
plaintext of a given ciphertext. More formally, this means that, for any adver-
sary A, its success probability in inverting E without the private key should be
negligible over the probability spaceM×Ω, whereM is the message space and
Ω includes the random coins r used for the encryption scheme, and the internal
random coins of the adversary. For the sake of consistency, the message spaceM
is assumed to be quite large, whereas the random space Ω is of any size (it can
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even be empty, if one considers a deterministic encryption scheme). In symbols,
the success probability reads

Succow(A) = Pr[(pk, sk)← K(1k), m
R←M : A(pk, Epk(m)) = m].

However, many applications require more from an encryption scheme, namely
semantic security (a.k.a. polynomial security or indistinguishability of encryp-
tions [8], denoted IND): if the attacker has some information about the plaintext,
for example that it is either “yes” or “no” to a crucial query, no adversary should
learn more with the view of the ciphertext. This is an extension of the above
one-wayness, when the message space may be made quite small. This security no-
tion requires computational impossibility to distinguish between two messages,
chosen by the adversary, one of which has been encrypted, with a probability
significantly better than one half: the advantage Advind(A), where the adver-
sary A is seen as a 2-stage Turing machine (A1, A2), should be negligible, where
Advind(A) is formally defined as

2× Pr

[

(pk, sk)← K(1k), (m0, m1, s)← A1(pk),

b
R← {0, 1}, c = Epk(mb) : A2(m0, m1, s, c) = b

]

− 1.

Another notion was defined thereafter, the so-called non-malleability (NM) [6],
in which the adversary tries to produce a new ciphertext such that the plaintexts
are meaningfully related. This notion is stronger than the above one, but it is
equivalent to semantic security in the most interesting scenario [1].

On the other hand, an attacker can use many kinds of attacks: since we are
considering asymmetric encryption, the adversary can encrypt any plaintext of
its choice with the public key, hence chosen-plaintext attack. It may, furthermore,
have access to more information, modeled by restricted or unrestricted access
to various oracles. A plaintext-checking oracle receives as its input a pair (m, c)
and answers whether c encrypts message m. This gives rises to plaintext-checking
attack [11]. A validity-checking oracle answers whether its input c is a valid
ciphertext or not. This scenario has been termed reaction attack [9]. It has been
successfully applied to break the famous PKCS #1 v1.5 encryption scheme [4].
Finally, a decryption oracle returns the decryption of any ciphertext, with the
only restriction that it should be different from the challenge ciphertext. When
the oracle access is only granted to the adversary before the view of the challenge
ciphertext, the corresponding scenario is termed indifferent chosen-ciphertext
attack (a.k.a. non-adaptive chosen-ciphertext attack or lunchtime attack [10]),
denoted CCA1. When the adversary also has access to the decryption oracle in
the second stage, we talk about adaptive chosen-ciphertext attack [12], denoted
CCA2. This latter scenario is the strongest one. A general study of these security
notions and attacks was given in [1]. The results are summarized in Fig. 1.

Thus, in the latter scenario, semantic security and non-malleability are equiv-
alent. This is the strongest security notion that we now consider: semantic se-
curity against adaptive chosen-ciphertext attacks (IND-CCA2)—where the ad-
versary just wants to distinguish which plaintext, between two messages of its
choice, had been encrypted; it can ask any query to a decryption oracle (except
the challenge ciphertext).
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IND – Indistinguishability
NM – Non-Malleability

CPA – Chosen-Plaintext Attack
CCA1 – Chosen-Ciphertext Attack

(non-adaptive)
CCA2 – Chosen-Ciphertext Attack

(adaptive)

Fig. 1. Relations between security notions.

2.3. Plaintext-Awareness

A further notion that has been defined in the literature and has been the source
of potential misconceptions is plaintext-awareness. It was introduced by Bellare
and Rogaway [3] to state formally the impossibility of creating a valid ciphertext
without “knowing” the corresponding plaintext. This goes through the definition
of a plaintext-extractor PE . Such a definition only makes sense in the random
oracle model: in this model, one can store the query/answer list H that an
adversary A obtains while interacting with the oracle H. Basically, the plaintext-
extractor PE is able to simulate the decryption algorithm correctly, without the
private key, when it receives a candidate ciphertext y produced by any adversary
A, together with the list H produced during the execution of A. In other words,
given y and H, the plaintext-extractor PE outputs the plaintext (or the “Reject”
answer), with overwhelming success probability, where probabilities are taken
over the random coins of A and PE :

Succwpa(PE) = Pr
[

(pk, sk)← K(1k), (y,H)← ExecA(pk) : PE(y,H) = Dsk(y)
]

.

The wpa superscript in the above relates to the name weak plaintext-awareness
(WPA or PA94), that the notion has later received. Actually, it is not an appropri-
ate definition for practical applications, since, in many scenarios, the adversary
may have access to additional valid ciphertexts that it has not manufactured—
say by eavesdropping.

Accordingly, the definition was modified in [1], to give the adversary A access
to an encryption oracle outputting valid ciphertexts. We denote by C the list
of ciphertexts obtained by the adversary from the encryption oracle. Since the
adversary is given access to additional resources, the new notion is stronger: the
adversary outputs a fresh ciphertext y (not in C), this ciphertext is given to
the plaintext-extractor, together with the lists H and C. Based on these data,
PE outputs the plaintext (or the “Reject” answer) with overwhelming success
probability Succpa(PE), where

Pr
[

(pk, sk)← K(1k), (y, C,H)← ExecA
Epk

(pk) : PE(y, C,H) = Dsk(y)
]

.
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It is of course important to note that y 6∈ C. In other words, y has been duly
manufactured by the attacker and not obtained from the encryption oracle.

The new definition of plaintext-awareness (PA or PA98) allows us to reach the
strongest security level, IND-CCA2. Indeed, it is easily seen that the combination
of IND-CPA and PA yields IND-CCA2, whereas the combination of IND-CPA and
WPA only yields IND-CCA1. This does not even imply NM-CPA.

3. Review of OAEP

3.1. The OAEP Cryptosystem

We briefly describe the OAEP cryptosystem (K, E ,D) obtained from a permu-
tation f , whose inverse is denoted by g (see Fig. 2). We need two hash functions
G and H:

G : {0, 1}k0 −→ {0, 1}k−k0 and H : {0, 1}k−k0 −→ {0, 1}k0.

Then

– K(1k): specifies an instance of the function f , and of its inverse g. The public
key pk is therefore f and the private key sk is g.

– Epk(m; r): given a message m ∈ {0, 1}n, and a random value r
R← {0, 1}k0,

the encryption algorithm Epk computes

s = (m‖0k1)⊕G(r) and t = r ⊕H(s),

and outputs the ciphertext c = f(s, t).
– Dsk(c): thanks to the private key, the decryption algorithm Dsk extracts

(s, t) = g(c), and next r = t⊕H(s) and M = s⊕G(r).

If [M ]k1
= 0k1, the algorithm returns [M ]n, otherwise it returns “Reject.”

In the above description, [M ]k1
denotes the k1 least significant bits of M , while

[M ]n denotes the n most significant bits of M .

3.2. Previous Security Results

As already mentioned, paper [3] includes a proof that, provided f is a one-
way trapdoor permutation, the resulting OAEP encryption scheme is both se-
mantically secure and weakly plaintext-aware. This implies the semantic secu-
rity against indifferent chosen-ciphertext attacks, also called security against
lunchtime attacks (IND-CCA1). We briefly comment on the intuition behind
(weak) plaintext-awareness. When the plaintext-extractor receives a ciphertext
c, then:

– either s has been queried to H and r has been queried to G, in which case
the extractor finds the cleartext by inspecting the two query lists G and H,

– or else the decryption of (s, t) remains highly random and there is little
chance to meet the redundancy 0k1: the plaintext extractor can safely declare
the ciphertext invalid.

The argument collapses when the plaintext-extractor receives additional valid
ciphertexts, since this puts additional implicit constraints on G and H. These
constraints cannot be seen by inspecting the query lists.
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Fig. 2. Optimal Asymmetric Encryption Padding.

3.3. Shoup’s Counter-Example

In his paper [15], Shoup showed that it was quite unlikely to extend the results
of [3] to obtain adaptive chosen-ciphertext security, under the sole one-wayness
of the permutation. His counter-example made use of the ad hoc notion of an
XOR-malleable trapdoor one-way permutation: for such permutation f0, one can
compute f0(x⊕ a) from f0(x) and a, with non-negligible probability.

m 0k1 r

G

H

s t

⊕ ∆

⊕ ∆

m 0k1 r

G

H

s t

⊕ H(s) ⊕ H(s′)

Fig. 3. Shoup’s attack.

Let f0 be such an XOR-malleable permutation. Define f by f(s‖t) = s‖f0(t).
Clearly, f is also a trapdoor one-way permutation. However, it leads to a mal-
leable encryption scheme as we now show. Start with a challenge ciphertext
y = f(s‖t) = s‖u, where s‖t is the output of the OAEP transformation on the
redundant message m‖0k1 and the random string r (see Fig. 3),

s = G(r)⊕ (m‖0k1), t = H(s)⊕ r and u = f0(t).

Since f is the identity on its leftmost part, we know s, and can define ∆ =
δ‖0k1, for any random string δ, and s′ = s ⊕ ∆. We then set t′ = H(s′) ⊕ r =
t⊕ (H(s)⊕H(s′)). The XOR-malleability of f0 allows one to obtain u′ = f0(t

′)
from u = f0(t) and H(s)⊕H(s′), with significant probability. Finally, y′ = s′‖u′
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is a valid ciphertext of m′ = m⊕ δ, built from r′ = r, since:

t′ = f−1

0 (u′) = t⊕ (H(s)⊕H(s′)) = H(s′)⊕ r, r′ = H(s′)⊕ t′ = r

and
s′ ⊕G(r′) = ∆⊕ s⊕G(r) = ∆⊕ (m‖0k1) = (m⊕ δ)‖0k1.

Note that the above definitely contradicts adaptive chosen-ciphertext se-
curity: asking the decryption of y′ after having received the ciphertext y, an
adversary obtains m′ and easily recovers the actual cleartext m from m′ and δ.
Also note that Shoup’s counter-example exactly stems from where the intuition
developed at the end of the previous section failed: a valid ciphertext y ′ was
created without querying the oracle at the corresponding random seed r′, using
in place the implicit constraint on G coming from the received valid ciphertext
y.

Using methods from relativized complexity theory, Shoup [15] built a non-
standard model of computation, where there exists an XOR-malleable trapdoor
one-way permutation. As a consequence, it is very unlikely that one can prove
the IND-CCA2 security of the OAEP construction, under the sole one-wayness of
the underlying permutation. Indeed, all methods of proof currently known still
apply in relativized models of computation.

4. The Security of OAEP

4.1. Security Result

Shoup [15] furthermore provided a specific proof for RSA with public exponent
3. However, there is little hope of extending this proof for higher exponents.

In the following, we provide a general security analysis, but under a stronger
assumption about the underlying permutation. Indeed, we prove that the scheme
is IND-CCA2 in the random oracle model [2], relative to the partial-domain one-
wayness of permutation f .

4.2. Outline of the Proof

In the following we use starred letters (r?, s?, t? and y?) to refer to the challenge
ciphertext, whereas unstarred letters (r, s, t and y) refer to the ciphertext asked
to the decryption oracle.

The Intuition

Referring to our description of the intuition behind the original OAEP proof of
security, given in Section 3.2., we can carry a more subtle analysis by distin-
guishing the case where s has not been queried from oracle H from the case
where r has not been queried from G. If s is not queried, then H(s) is random
and uniformly distributed and r is necessarily defined as t ⊕ H(s). This holds
even if s matches with the string s? coming from the valid ciphertext y?. There is
a minute probability that t⊕H(s) is queried from G or equals r?. Thus, G(r) is
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random: there is little chance that the redundancy 0k1 is met and the extractor
can safely reject.

We claim that r cannot match with r?, unless s? is queried from H. This is
because r? = t? ⊕ H(s?) equals r = t ⊕ H(s) with minute probability. Thus, if
r is not queried, then G(r) is random and we similarly infer that the extractor
can safely reject. The argument fails only if s? is queried.

Thus rejecting when it cannot combine elements of the lists G and H so as
to build a pre-image of y, the plaintext extractor is only wrong with minute
probability, unless s? has been queried by the adversary. This seems to show
that OAEP leads to an IND-CCA2 encryption scheme if it is difficult to invert f
“partially”, which means: given y = f(s‖t), find s.

The Strategy

Based on the intuition just described, we can formally prove that applying OAEP
encoding to a trapdoor permutation which is difficult to partially invert, leads to
an IND-CCA2 encryption scheme, hence the partial-domain one-wayness, which
expresses the fact that the above partial inversion problem is difficult. Precise
definitions are given in the next paragraph.

As the original proof from [3], our proof has two steps: it is first shown that
the OAEP scheme is IND-CPA relative to another notion termed set partial-
domain one-wayness. Next, chosen-ciphertext security is addressed, by turning
the intuition explained above into a formal argument, involving a restricted
variant of plaintext-awareness (where the list C of ciphertexts is limited to only
one ciphertext, the challenge ciphertext y?).

Partial-Domain One-Wayness

Let f be a permutation f : {0, 1}k −→ {0, 1}k, which can also be written as

f : {0, 1}n+k1 × {0, 1}k0 −→ {0, 1}n+k1 × {0, 1}k0,

with k = n + k0 + k1. In the original description of OAEP from [3], it is only
required that f is a trapdoor one-way permutation. However, in the following,
we consider two additional related problems, namely partial-domain one-wayness
and set partial-domain one-wayness:

– Permutation f is (τ, ε)-one-way if any adversary A whose running time is
bounded by τ has success probability Succow(A) upper-bounded by ε, where

Succow(A) = Pr
s,t

[A(f(s, t)) = (s, t)].

– Permutation f is (τ, ε)-partial-domain one-way if any adversary A whose
running time is bounded by τ has success probability Succpd-ow(A) upper-
bounded by ε, where

Succpd-ow(A) = Pr
s,t

[A(f(s, t)) = s].
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– Permutation f is (`, τ, ε)-set partial-domain one-way if any adversary A,
outputting a set of ` elements within time bound τ , has success probability
Succs-pd-ow(A) upper-bounded by ε, where

Succs-pd-ow(A) = Pr
s,t

[s ∈ A(f(s, t))].

We denote by Succow(τ) (resp. Succpd-ow(τ) and Succs-pd-ow(`, τ)) the maximal
success probability Succow(A) (resp. Succpd-ow(A) and Succs-pd-ow(A)). The max-
imum ranges over all adversaries whose running time is bounded by τ . In the
third case, there is an obvious additional restriction on this range from the fact
that A outputs sets with ` elements. It is clear that for any τ and ` ≥ 1,

Succs-pd-ow(`, τ) ≥ Succpd-ow(τ) ≥ Succow(τ).

Note that, by randomly selecting an element in the set returned by an ad-
versary to the set partial-domain one-wayness, one breaks partial-domain one-
wayness with probability Succs-pd-ow(A)/`. This provides the following inequal-
ity Succpd-ow(τ) ≥ Succs-pd-ow(`, τ)/`. However, for specific choices of f , more
efficient reductions may exist. Also, in some cases, all three problems are poly-
nomially equivalent. This is the case for the RSA permutation [13], hence the
results in Section 5..

4.3. The Formal Proof

In the following we prove that OAEP is IND-CCA2, in the random oracle model [2],
relative to the set partial-domain one-wayness of f . More precisely, the rest of
the paper is devoted to proving the following theorem:

Theorem 1. Let A be a CCA2–adversary against the semantic security of the
OAEP encryption scheme (K, E ,D). Assume that A has advantage ε and run-
ning time τ and makes qD, qG and qH queries to the decryption oracle, and the
hash functions G and H, respectively. Then

Succs-pd-ow(qH , τ ′) ≥ ε

2
−

(

qDqG + qD + qG

2k0
+

qD

2k1

)

,

with τ ′ ≤ τ + qG · qH · (Tf +O(1)),

where Tf denotes the time complexity for evaluating f .

Our method of proof is inspired by Shoup [15]: we define a sequence Game1,
Game2, etc., of modified attack games starting from the actual game Game0. Each
of the games operates on the same underlying probability space: the public and
private keys of the cryptosystem, the coin tosses of the adversary A, the random
oracles G and H and the hidden bit b for the challenge. Only the rules defining
how the view is computed differ from game to game. To go from one game to
another, we repeatedly use the following lemma from [15]:

Lemma 1. Let E1, E2 and F1, F2 be events defined on a probability space

Pr[E1 ∧ ¬F1] = Pr[E2 ∧ ¬F2] and Pr[F1] = Pr[F2] = ε ⇒ |Pr[E1]− Pr[E2]| ≤ ε.
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Proof. The proof follows from easy computations:

|Pr[E1]− Pr[E2]| = |Pr[E1 ∧ ¬F1] + Pr[E1 ∧ F1]− Pr[E2 ∧ ¬F2]− Pr[E2 ∧ F2]|
= |Pr[E1 ∧ F1]− Pr[E2 ∧ F2]|
= |Pr[E1 | F1] · Pr[F1]− Pr[E2 | F2] · Pr[F2]|
= |Pr[E1 | F1]− Pr[E2 | F2]| · ε ≤ ε.

ut

Semantic Security

Lemma 2. Let A be a CPA–adversary against the semantic security of the
OAEP encryption scheme (K, E ,D). Assume that A has advantage ε and run-
ning time τ and makes qG and qH queries respectively to the hash functions G
and H. Then,

Succs-pd-ow(qH , τ) ≥ ε

2
− qG

2k0
.

Proof. As explained, we start with the game coming from the actual attack,
and modify it step by step in order finally to obtain a game directly related
to the ability of the adversary to partially invert permutation f . The IND-CPA

security level of OAEP has already been proven by Bellare and Rogaway [3],
relative to an even weaker assumption: the one-wayness of the permutation. In
the following we only consider partial-domain one-wayness, and, accordingly, we
provide a specific proof which is similar to Bellare and Rogaway’s original proof,
but is based on this new algorithmic assumption. We later extend our proof to
deal with chosen-ciphertext attacks.

Game0. A pair of keys (pk, sk) is generated usingK(1k). Adversary A1 is fed with
pk, the description of f , and outputs a pair of messages (m0, m1). Next a chal-
lenge ciphertext is produced by flipping a coin b and producing a ciphertext

y? of mb. This ciphertext comes from a random r? R← {0, 1}k0 and a string
x? such that y? = f(x?). We set x? = s?‖t?, where s? = (mb‖0k1)⊕G(r?)
and t? = r? ⊕H(s?). On input y?, A2 outputs bit b′. We denote by S0 the
event b′ = b and use a similar notation Si in any Gamei below. By definition,
we have Pr[S0] = 1

2
+ ε/2.

Game1. We modify the above game, by making the value of the random seed
r? explicit and moving its generation upfront. In other words, one randomly

chooses ahead of time, r+ R← {0, 1}k0 and g+ R← {0, 1}k−k0, and uses r+

instead of r?, as well as g+ instead of G(r?). The game obeys the following
two rules:
Rule 1. r? = r+ and s? = (mb‖0k1)⊕ g+, from which it follows that

t? = r? ⊕H(s?), x? = s?‖t? and y? = f(x?).

Rule 2. Whenever the random oracle G is queried at r+, the answer is g+.
Since we replace a pair of elements, (r?, G(r?)), by another, (r+, g+), with
exactly the same distribution (by definition of the random oracle G):

Pr[S1] = Pr[S0].
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Game2. In this game we drop the second rule above and restore (potentially
inconsistent) calls to G. Therefore, g+ is just used in x? but does not appear
in the computation. Thus, the input to A2 follows a distribution that does
not depend on b. Accordingly, Pr[S2] = 1

2
.

One may note that Game1 and Game2 may differ if r? is queried from G.
Let AskG2 denotes the event that, in Game2, r? is queried from G (except
by the encryption oracle, for producing the challenge). We use an identical
notation AskGi for any Gamei below. Then

|Pr[S2]− Pr[S1]| ≤ Pr[AskG2].

Game3. We now define s? independently of anything else, as well as H(s?).

In other words, one randomly chooses ahead of time, s+ R← {0, 1}k−k0 and

h+ R← {0, 1}k0, and uses s+ instead of s?, as well as h+ instead of H(s?).
The only change is that s? = s+ instead of (mb‖0k1) ⊕ g+. The game uses
the following two rules:
Rule 1’. g+ = (mb‖0k1)⊕ s+ and t? = r? ⊕ h+.
Rule 2’. Whenever the random oracle H is queried at s+, the answer is h+.
Since we replace the quadruple (s?, H(s?), g+, b) by another with exactly the
same distribution (by definition of the random oracle H):

Pr[AskG3] = Pr[AskG2].

Game4. In this game we drop the second rule above and restore (potentially
inconsistent) calls to H. Therefore, h+ is just used in x? but does not appear
in the computation. One may note that Game3 and Game4 may differ if s?

is queried from H. Let AskH4 denote the event that, in Game4, s? is queried
from H (except by the encryption oracle, for producing the challenge). We
use an identical notation AskHi for any Gamei below. Then

|Pr[AskG4]− Pr[AskG3]| ≤ Pr[AskH4].

Furthermore, r? = t? ⊕ h+ is uniformly distributed, and independent of the
adversary’s view, since h+ is never revealed: Pr[AskG4] ≤ qG/2k0, where qG

denotes the number of queries asked to G.
Game5. In order to evaluate AskH4, we again modify the previous game. When

manufacturing the challenge ciphertext, we randomly choose y+ R← {0, 1}k,
and simply set y? = y+, ignoring the encryption algorithm altogether. Once
again, the distribution of y? remains the same: due to the fact that f is a
permutation, the previous method defining y? = f(s?‖t?), with s? = s+ and
t? = h+ ⊕ r+ was already generating a uniform distribution over the k-bit
elements. Thus, we have

Pr[AskH5] = Pr[AskH4].

Simply outputting the list of queries to H during this game, one gets

Pr[AskH5] ≤ Succs-pd-ow(qH , τ).
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Finally,

ε

2
= |Pr[S0]− Pr[S2]| ≤ Pr[AskG2] ≤ Pr[AskG4] + Pr[AskH4]

≤ Pr[AskG4] + Pr[AskH5] ≤ Succs-pd-ow(qH , τ) +
qG

2k0
.

ut

Simulating the Decryption Oracle

In order to prove the security against adaptive chosen-ciphertext attacks, it is
necessary to simulate calls to a decryption oracle. As usual, this goes through
the design of a plaintext-extractor. The situation is more intricate than in the
original paper [3]: in particular, the success probability of the extractor cannot
be estimated unconditionally but only relatively to some computational assump-
tion.

Definition of the plaintext-extractor PE . The plaintext-extractor receives as part
of its input two lists of query-answer pairs corresponding to calls to the random
oracles G and H, which we respectively denote by G-List and H-List. It also
receives a valid ciphertext y?. Given these inputs, the extractor should decrypt
a candidate ciphertext y 6= y?.

On query y = f(s‖t), PE inspects each query/answer pair (γ, Gγ) ∈ G-List

and (δ, Hδ) ∈ H-List. For each combination of elements, one from each list, it
defines

σ = δ, θ = γ ⊕Hδ, µ = Gγ ⊕ δ,

and checks whether

y = f(σ‖θ) and [µ]k1
= 0k1.

If both equalities hold, PE outputs [µ]n and stops. If no such pair is found, the
extractor returns a “Reject” message.

Comments. One can easily check that the output of PE is uniquely defined,
regardless of the ordering of the lists. To see this, observe that since f is a
permutation, the value of σ = s is uniquely defined and so is δ. Keep in mind
that the G-List and H-List correspond to input-output pairs for the functions
G and H, and at most one output is related to a given input. This makes Hδ

uniquely defined as well. Similarly, θ = t is uniquely defined, and thus γ and Gγ:
at most one µ may be selected, which is output depending on whether [µ]k1

= 0k1

or not.
Furthermore, if both r and s have been queried by the adversary, the plain-

text-extractor perfectly simulates the decryption oracle.

Semantic Security against Adaptive Chosen-Ciphertext Attacks

In the following, y? is the challenge ciphertext, obtained from the encryption
oracle. Since we have in mind using the plaintext-extractor instead of the de-
cryption oracle, trying to contradict semantic security, we assume that y? is a
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ciphertext of mb and denote by r? its random seed. We have

r? = H(s?)⊕ t? and G(r?) = s? ⊕ (mb‖0k1).

In what follows, all unstarred variables refer to the decryption queries.
We now present a complete proof, which is an easy extension of the previous

one, but makes use of the decryption oracle. We sequentially discard all cases
for which the above plaintext-extractor may fail.

GAME0. This game is played as Game0 but the adversary is given additional
access to a decryption oracle Dsk during both steps of the attack. The only
requirement is that the challenge ciphertext cannot be queried from the
decryption oracle. By definition, we have Pr[S0] = 1

2
+ ε/2.

GAME1. In this game, one randomly chooses r+ R← {0, 1}k0 and g+ R← {0, 1}k−k0,
and uses r+ instead of r?, as well as g+ instead of G(r?). The game obeys
the same rules as Game1:

Pr[S1] = Pr[S0].

GAME2. In this game we drop the second rule of GAME1. Then, as was the case
for Game2, Pr[S2] = 1

2
, and

|Pr[S2]− Pr[S1]| ≤ Pr[AskG2],

where AskG2 denotes the event that, in GAME2, r? is queried from G (by the
adversary, or by the decryption oracle).

GAME3. We now define s? independently of anything else, as well as H(s?),

by randomly choosing s+ R← {0, 1}k−k0 and h+ R← {0, 1}k0, and using s+

instead of s?, as well as h+ instead of H(s?). The game obeys the same rules
as Game3:

Pr[AskG3] = Pr[AskG2].

GAME4. In this game we drop the second rule of GAME3. Then, as was the case
for Game4,

|Pr[AskG4]− Pr[AskG3]| ≤ Pr[AskH4],

where AskH4 denotes the event that, in GAME4, s? is queried from H (by
the adversary, or by the decryption oracle).
Furthermore, r? = t? ⊕ h+ is uniformly distributed, and independent of the
adversary’s view: Pr[AskG4] ≤ (qG + qD)/2k0, where qG and qD denote the
number of queries asked by the adversary to G, or to the decryption oracle,
respectively.

GAME5. We manufacture the challenge ciphertext as in Game5. We randomly

choose y+ R← {0, 1}k, and simply set y? = y+. As before, we have

Pr[AskH5] = Pr[AskH4].

We now deal with the decryption oracle, which has remained perfect up to
this game.
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GAME6. We make the decryption oracle reject all ciphertexts y such that the
corresponding r value has not been previously queried from G by the adver-
sary. This makes a difference only if y is a valid ciphertext, while G(r) has not
been asked. Since G(r) is uniformly distributed, equality [s⊕G(r)]k1

= 0k1

happens with probability 1/2k1. Summing up for all decryption queries, we
get

|Pr[AskH6]− Pr[AskH5]| ≤
qD

2k1
.

GAME7. We now make the decryption oracle reject all ciphertexts y such that
the corresponding s value has not been previously queried from H by the
adversary. This makes a difference only if y is a valid ciphertext, and r has
been queried from G, while H(s) has not been asked. Since r = H(s) ⊕ t
is uniformly distributed, it has been queried from G with probability less
than qG/2k0 (note that in the previous game, the decryption oracle makes
no additional query to G). Summing up for all decryption queries, we get

|Pr[AskH7]− Pr[AskH6]| ≤
qDqG

2k0
.

GAME8. We finally replace the decryption oracle by the plaintext-extractor
which perfectly simulates the decryption, since both r and s have been pre-
viously queried:

Pr[AskH8] = Pr[AskH7].

Simply outputting the list of queries to H during this game, one gets

Pr[AskH8] ≤ Succs-pd-ow(qH , τ ′).

Therefore,

ε

2
= |Pr[S0]− Pr[S2]| ≤ Pr[AskG2] ≤ Pr[AskG4] + Pr[AskH4]

≤ qG + qD

2k0
+ Pr[AskH5]

≤ qG + qD

2k0
+

qD

2k1
+ Pr[AskH6] ≤

qG + qD

2k0
+

qD

2k1
+

qDqG

2k0
+ Pr[AskH7]

≤ qG + qD + qDqG

2k0
+

qD

2k1
+ Succs-pd-ow(qH , τ ′).

To conclude the proof of Theorem 1, one just has to comment on the run-
ning time τ ′. Although the plaintext-extractor is called qD times, there is no qD

multiplicative factor in the bound for τ ′. This comes from a simple bookkeeping
argument. Instead of only storing the lists G-List and H-List, one stores an ad-
ditional structure consisting of tuples (γ, Gγ, δ, Hδ, y). A tuple is included only
for (γ, Gγ) ∈ G-List and (δ, Hδ) ∈ H-List. For such a pair, one defines σ = δ,
θ = γ⊕Hδ, µ = Gγ ⊕ δ, and computes y = f(σ, θ). If [µ]k1

= 0k1, one stores the
tuple (γ, Gγ, δ, Hδ, y). The cumulative cost of maintaining the additional struc-
ture is qG · qH · (Tf + O(1)) but, handling it to the plaintext-extractor allows
one to output the expected decryption of y, by table lookup, in constant time.
Of course, a time-space tradeoff is possible, giving up the additional table, but
raising the computing time to qD · qG · qH · (Tf +O(1)).
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5. Application to RSA–OAEP

The main application of OAEP is certainly the famous RSA–OAEP, which has
been used to update the PKCS #1 standard [14]. In his paper [15], Shoup was
able to repair the security result for a small exponent, e = 3, using Coppersmith’s
algorithm from [5]. However, our result can be applied to repair RSA–OAEP,
regardless of the exponent; thanks to the random self-reducibility of RSA, the
partial-domain one-wayness of RSA is equivalent to that of the whole RSA
problem, as soon as a constant fraction of the most significant bits (or the least
significant bits) of the pre-image can be recovered.

We note that, in the original RSA–OAEP [3], the most significant bits are
involved in the H function, but in PKCS #1 standards v2.0 and v2.1 [14] and
RFC2437, the least significant bits are used: the value maskedSeed‖maskedDB

is the input to f , the RSA function, where maskedSeed plays the role of t, and
maskedDB the role of s. However, it is clear that the following result holds in
both situations (and can be further extended).

One may also remark that the following argument can be applied to any
random (multiplicatively) self-reducible problem, such as the Rabin function.
Before presenting the final reduction, we consider the problem of finding small
solutions for a linear modular equation.

Lemma 3. Consider an equation t+αu = c mod N which has solutions t and u
smaller than 2k0. For all values of α ∈ {0, . . . , N−1}, except a fraction 22k0+6/N
of them, (t, u) is unique and can be computed within time bound O((log N)3).

Proof. Consider the lattice

L(α) = {(x, y) ∈ Z
2 | x− αy = 0 mod N}.

We say that L(α) is an `-good lattice (and that α is an `-good value) if there
is no non-zero vector of length at most ` (with respect to the Euclidean norm).
Otherwise, we use the wording `-bad lattices (and `-bad values respectively). It
is clear that there are approximately less than π`2 such `-bad lattices, which we
bound by 4`2. Indeed, each bad value for α corresponds to a point with integer
coordinates in the disk of radius `. Furthermore, the above lattices have pairwise
intersection limited to the single point (0, 0), if ` < p, where p is the smallest
factor of N . Thus, the proportion of bad values for α is less than 4`2/N .

Given an `-good lattice, one applies the Gaussian reduction algorithm. One
gets within time O((log N)3) a basis of L(α) consisting of two non-zero vectors
U and V such that

‖U‖ ≤ ‖V ‖ and |(U, V )| ≤ ‖U‖2/2.

Let T be the point (t, u), where (t, u) is a solution of the equation t + αu =
c mod N , with both t and u less than 2k0 : T = λU + µV , for some real λ, µ.

‖T‖2 = λ2‖U‖2 + µ2‖V ‖2 + 2λµ(U, V ) ≥ (λ2 + µ2 − λµ)× ‖U‖2

≥
(

(λ− µ/2)2 + 3µ2/4
)

× ‖U‖2 ≥ 3µ2/4× ‖U‖2 ≥ 3µ2`2/4.
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Since furthermore we have ‖T‖2 ≤ 2× 22k0 ,

|µ| ≤ 2
√

2 · 2k0

√
3 · `

and |λ| ≤ 2
√

2 · 2k0

√
3 · `

by symmetry.

Assuming that we have set from the beginning ` = 2k0+2 > 2k0+2

√

2

3
, then

−1

2
< λ, µ <

1

2
.

Choose any integer solution T0 = (t0, u0) of the equation simply by picking a
random integer u0 and setting t0 = c−αu0 mod N . Write it in the basis (U, V ):
T0 = ρU + σV using real numbers ρ and σ. These coordinates can be found, so
T − T0 is a solution to the homogeneous equation, and thus indicate a lattice
point: T − T0 = aU + bV , with unknown integers a and b. However,

T = T0 + aU + bV = (a + ρ)U + (b + σ)V = λU + µV,

with −1

2
≤ λ, µ ≤ 1

2
. As a conclusion, a and b are the closest integers to −ρ and

−σ respectively. With a, b, ρ and σ, one can easily recover λ and µ and thus t
and u, which are necessarily unique. ut

Lemma 4. Let A be an algorithm that outputs a q-set containing k− k0 of the
most significant bits of the e-th root of its input (partial-domain RSA, for any
2k−1 < N < 2k, with k > 2k0), within time bound t, with probability ε. There
exists an algorithm B that solves the RSA problem (N, e) with success probability
ε′, within time bound t′ where

ε′ ≥ ε× (ε− 22k0−k+6),

t′ ≤ 2t + q2 ×O(k3).

Proof. Thanks to the random self-reducibility of RSA, with part of the bits of
the e-th root of X = (x · 2k0 + r)e mod N , and the e-th root of Y = Xαe =
(y · 2k0 + s)e mod N , for a randomly chosen α, one gets both x and y. Thus,

(y · 2k0 + s) = α× (x · 2k0 + r) mod N

αr − s = (y − xα)× 2k0 mod N

which is a linear modular equation with two unknowns r and s which is known
to have small solutions (smaller than 2k0). It can be solved using Lemma 3.

Algorithm B just runs A twice, on inputs X and Xαe and next runs the
Gaussian reduction on all the q2 pairs of elements coming from both sets. If the
partial pre-images are in the sets, they will be found, unless the random α is
bad (see the Gaussian reduction in Lemma 3.) ut
Remark 1. The above lemma can be extended to the case where a constant frac-
tion Θ of the leading or trailing bits of the e-th root is found. The reduction
runs the adversary A 1/Θ times, and the success probability decreases to ap-
proximately ε1/Θ. Extensions to any constant fraction of consecutive bits are
also possible. Anyway, in PKCS #1 v2.0, k0 is much smaller than k/2.
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Theorem 2. Let A be a CCA2–adversary against the “semantic security” of
RSA–OAEP (where the modulus is k-bit long, k > 2k0), with running time
bounded by t and advantage ε, making qD, qG and qH queries to the decryption
oracle, and the hash functions G and H, respectively. Then the RSA problem
can be solved with probability ε′ greater than

ε2

4
− ε ·

(

qDqG + qD + qG

2k0
+

qD

2k1
+

32

2k−2k0

)

within time bound t′ ≤ 2t + qH · (qH + 2qG)×O(k3).

Proof. Theorem 1 states that

Succs-pd-ow(qH , τ) ≥ ε

2
− qDqG + qD + qG

2k0
− qD

2k1
,

with τ ≤ t + qG · qH · (Tf +O(1)), and Tf = O(k3). Using the previous results
relating qH -set partial-domain–RSA and RSA, we easily conclude. ut

Remark 2. There is a slight inconsistency in piecing together the results from
Sections 4. and 5., coming from the fact that RSA is not a permutation over
k-bit strings. Research papers usually ignore the problem. Of course, standards
have to cope with it. Observe that one may decide only to encode a message
of n − 8 bits, where n is k − k0 − k1 as before, as is done in the PKCS #1
standard. The additional redundancy leading bit can be treated the same way
as the 0k1 redundancy, especially with respect to decryption. However, this is
not enough since G(r) might still carry the string (s‖t) outside the domain of
the RSA encryption function. An easy way out is to start with another random
seed if this happens. On average, 256 trials will be enough.

6. Improved Security Result

We can improve the reduction cost in the above theorem a little. More precisely:

Theorem 3. Let A be a CCA2–adversary against the “semantic security” of
RSA–OAEP (where the modulus is k-bit long, k > 2k0), with running time
bounded by t and advantage ε, making qD, qG and qH queries to the decryption
oracle, and the hash functions G and H, respectively. Then the RSA problem
can be solved with probability ε′ greater than

ε2 − 2ε ·
(

2qDqG + qD + qG

2k0
+

2qD

2k1
+

32

2k−2k0

)

within time bound t′ ≤ 2t + qH · (qH + 2qG)×O(k3).

This theorem comes from the lemma stated below, which is proved in the
Appendix.

Lemma 5. Let A be a CCA2–adversary against the “semantic security” of the
OAEP conversion (K, E ,D), with advantage ε and running time t, making qD,
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qG and qH queries to the decryption oracle, and the hash functions G and H,
respectively. Then Succs-pd-ow(qH , t′) is greater than

ε− 2qDqG + qD + qG

2k0
− 2qD

2k1
,

where t′ ≤ t+qG ·qH ·(Tf +O(1)), and Tf denotes the time complexity of function
f .

7. Conclusion

Our conclusion is that one can still trust the security of RSA–OAEP, but the
reduction is more costly than the original one. However, for other OAEP ap-
plications, more care is needed, since the security does not actually rely on the
one-wayness of the permutation, only on its partial-domain one-wayness.
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Appendix. Proof of Lemma 5

The next section is devoted to proving this lemma. Hereafter, we repeatedly use
the following simple result:

Lemma 6. For any probability events E, F and G

Pr[E ∧ F |G] ≤
{

Pr[E | F ∧ G],
Pr[F |G].

We prove Lemma 5 in three stages. The first presents the reduction of an
IND-CCA2 adversary A to an algorithm B for breaking the partial-domain one-
wayness of f . The second shows that there exists a plaintext-extractor which
correctly simulates the decryption oracle, with overwhelming probability, under
the partial-domain one-wayness of f . Finally, we analyze the success probability
of our reduction in total, through the incorporation of the above-mentioned
analysis of the plaintext-extractor.

7.1. Description of the Reduction

In this first part we recall how reduction operates. Let A = (A1, A2) be an
adversary against the semantic security of (K, E ,D), under chosen-ciphertext
attacks. Within time bound τ , A asks qD, qG and qH queries to the decryption
oracle and the random oracles G and H respectively, and distinguishes the right
plaintext with an advantage greater than ε. We describe the reduction B.
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Top Level Description of the Reduction

1. B is given a function f (defined by the public key) and y? ← f(s?, t?),

for (s?, t?)
R← {0, 1}k−k0 × {0, 1}k0. The aim of B is to recover the partial

pre-image s? of y?.
2. B runs A1 on the public data, and gets a pair of messages {m0, m1} as well

as state information st. It chooses a random bit b, and then gives y? to A1,
as the ciphertext of mb. B simulates the answers to the queries of A1 to
the decryption oracle and random oracles G and H, respectively. See the
description of these simulations below.

3. B runs A2(y
?, st) and finally gets answer b′. B simulates the answers to

the queries of A2 to the decryption oracle and random oracles G and H
respectively. See the description of these simulations below. B then outputs
the partial pre-image s? of y?, if one has been found among the queries asked
to H (see below), or the list of queries asked to H.

Simulation of Random Oracles G and H

The random oracle simulation has to simulate the random oracle answers, man-
aging query/answer lists G-List and H-List for the oracles G and H respectively,
both are initially set to empty lists:

– For a fresh query γ to G, one looks at the H-List, and for any query δ asked to
H with answer Hδ, one builds z = γ ⊕Hδ, and checks whether y? = f(δ, z).
If for some δ, that relation holds, function f has been inverted, and we can
still correctly simulate G, by answering Gγ = δ ⊕ (mb‖0k1). Note that Gγ is
then a uniformly distributed value since δ = s?, and the latter is uniformly
distributed. Otherwise, one outputs a random value Gγ . In both cases, the
pair (γ, Gγ) is concatenated to the G-List.

– For a fresh query δ to H, one outputs a random value Hδ, and the pair (δ, Hδ)
is concatenated to the H-List. Note that, once again, for any (γ, Gγ) ∈ G-List,
one may build z = γ ⊕ Hδ, and check whether y? = f(δ, z). If for some γ
that relation holds, we have inverted the function f .

Simulation of the Decryption Oracle

We refer the reader to Section 4.3., since the simulation works exactly the same
way.

Remarks

When we have found the pre-image of y?, and thus inverted f , we could output
the expected result s? and stop the reduction. However, for this analysis, we
assume the reduction goes on and that B only outputs it, or the list of queries
asked to H, once A2 has answered b′ (or after a time limit).

Even if no answer is explicitly specified, except by a random value for new
queries, some are implicitly defined. Indeed, y? is defined to be a ciphertext of
mb with random tape r?, thus r? ← H(s?)⊕ t? and G(r?)← s? ⊕ (mb‖0k1).
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Since H(s?) is randomly defined, r? can be seen as a random variable. We
denote by AskG the event that query r? has been asked to G, and by AskH

the event that query s? has been asked to H. We furthermore denote by GBad

the event that r? has been asked to G, but the answer is something other than
s? ⊕ (mb‖0k1) (bit b is fixed in the reduction scenario). Note that the event
GBad implies AskG. One may remark that GBad is the only event that makes
the random oracle simulation imperfect, in the chosen-plaintext attack scenario.
In the chosen-ciphertext attack scenario, we described a decryption simulator
that may sometimes fail. Such an event of decryption failure will be denoted by
DBad. We thus denote Bad = GBad ∨ DBad.

7.2. Notations

In order to proceed with the analysis of the success probability of the above
reduction, one needs to set up notations. First, we still denote with a star (?) all
variables related to the challenge ciphertext y?, obtained from the encryption
oracle. Indeed, this ciphertext, of either m0 or m1, implicitly defines hash values,
but the corresponding pairs may not appear in the G or H lists. All other
(unstarred) variables refer to the decryption query y, asked by the adversary to
the decryption oracle, and thus to be decrypted by the simulator. We consider
several further events about a ciphertext queried to the decryption oracle:

– CBad denotes the union of the bad events, CBad = RBad ∨ SBad, where

• SBad denotes the event that s = s?;

• RBad denotes the event that r = r?, and thus H(s)⊕ t = H(s?)⊕ t?;

– AskRS denotes the intersection of both events about the oracle queries,
AskRS = AskR ∧ AskS, which means that both r and s have been asked
to G and H respectively, since

• AskR denotes the event that r (= H(s)⊕ t) has been asked to G;

• AskS denotes the event that s has been asked to H;

– Fail denotes the event that the above decryption oracle simulator outputs a
wrong decryption answer to query y. (More precisely, we let Faili denote the
instantiation of Fail on the i-th query yi (i = 1, . . . , qD). For our analysis,
however, we can evaluate probabilities regarding event Faili in a uniform
manner for any i. Hence, we just employ the notation Fail.) Therefore, in
the global reduction, the event DBad will be set to true as soon as one
decryption simulation fails.

Note that the Fail event is limited to the situation in which the plaintext-
extractor rejects a ciphertext whereas it would be accepted by the actual decryp-
tion oracle. Indeed, as soon as it accepts, we see that the ciphertext is actually
valid and corresponds to the output plaintext.

7.3. Analysis of the Decryption Oracle Simulation

We analyze the success probability of decryption oracle simulator PE .
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Security Claim

We claim the following, which repairs the previous proof [3], based on the new
computational assumption. More precisely, we show that additional cases to
consider, due to the corrected definition of plaintext-awareness [1], are very
unlikely under the partial-domain one-wayness of the permutation f :

Lemma 7. When at most one ciphertext y? = f(s?, t?) has been directly ob-
tained from the encryption oracle, but s? has not been asked to H, the plaintext-
extractor correctly produces the decryption oracle’s output on query (ciphertext)
y (6= y?) with probability greater than ε′, within time bound τ ′, where

ε′ ≥ 1−
(

2

2k1
+

2qG + 1

2k0

)

and τ ′ ≤ qG · qH · (Tf +O(1)) .

We refer the reader to Section 4.3. for a discussion about the plaintext-
extractor. We just insist on the fact that if the ciphertext has been correctly built
by the adversary (r has been asked to G and s to H), the simulation will output
the correct answer. However, it will output “Reject” in any other situation,
whereas the adversary may have built a valid ciphertext without asking both
queries to the random oracles G and H.

Success Probability

Since our goal is to prove the security relative to the partial-domain one-wayness
of f , we are only interested in the probability of the event Fail, while ¬AskH oc-
curred, which may be split according to other events. Granted ¬CBad ∧ AskRS,
the simulation is perfect, and cannot fail. Thus, we have to consider the com-
plementary events:

Pr[Fail | ¬AskH] = Pr[Fail∧ CBad | ¬AskH] + Pr[Fail ∧¬CBad∧ ¬AskRS | ¬AskH].

Concerning the second contribution to the right-hand side, we first note that
both

¬AskRS = ¬AskR ∨ ¬AskS = (¬AskR) ∨ (¬AskS ∧ AskR),

¬CBad = ¬RBad ∧ ¬SBad.

Forgetting ¬AskH for a while, using Lemma 6, one gets that the probability
Pr[Fail ∧ ¬CBad ∧ ¬AskRS] is less than

Pr[Fail ∧ ¬RBad ∧ ¬AskR] + Pr[Fail ∧ ¬SBad ∧ (AskR ∧ ¬AskS)]

≤ Pr[Fail | ¬AskR ∧ ¬RBad] + Pr[AskR | ¬AskS ∧ ¬SBad].

However, without having asked r to G, taking into account the further event
¬RBad, G(r) is unpredictable, and thus the probability that [s⊕ G(r)]k1

= 0k1

is less than 2−k1. On the other hand, the probability of having asked r to G,
without any information about H(s) and thus about r (H(s) not asked, and
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s 6= s?, which both come from the conditioning ¬AskS ∧ ¬SBad), is less than
qG · 2−k0. Furthermore, this event is independent of AskH, which yields

Pr[Fail ∧ ¬CBad ∧ ¬AskRS | ¬AskH] ≤ 2−k1 + qG · 2−k0.

We now focus on the first contribution to the right-hand side, Fail ∧ CBad,
while ¬AskH, which was missing in the original proof [3] based on a weaker
notion of plaintext-awareness. It can be split according to the disjoint sub-cases
of CBad, which are SBad and ¬SBad ∧ RBad. Then again using Lemma 6,

Pr[Fail ∧ CBad | ¬AskH] ≤ Pr[Fail | SBad ∧ ¬AskH] + Pr[RBad | ¬SBad ∧ ¬AskH].

The latter event means that RBad occurs provided s 6= s? and the adversary has
not queried s? from H. When s? has not been asked to H, and s 6= s?, H(s?) is
unpredictable and independent of H(s), as well as t and t?. Then event RBad,
H(s?) = H(s)⊕ t⊕ t?, occurs with probability at most 2−k0.

The former event can be further split according to AskR, and, using once
again Lemma 6, it is upper-bounded by

Pr[AskR | SBad ∧ ¬AskH] + Pr[Fail | ¬AskR ∧ SBad ∧ ¬AskH].

The former event means that r is asked to G whereas s = s? and H(s?) is
unpredictable, thus H(s) is unpredictable. Since r is unpredictable, the proba-
bility of this event is at most qG · 2−k0 (the probability of asking r to G). On
the other hand, the latter event means that the simulator rejects the valid ci-
phertext y whereas H(s) is unpredictable and r is not asked to G. From the
one-to-one property of the Feistel network, it follows from s = s? that r 6= r?,
and thus G(r) is unpredictable. Then the redundancy cannot hold with proba-
bility greater than 2−k1 . To sum up, Pr[Fail | SBad ∧ ¬AskH] ≤ 2−k1 + qG · 2−k0,
thus Pr[Fail ∧ CBad | ¬AskH] ≤ 2−k1 + (qG + 1) · 2−k0 .

As a consequence,

Pr[Fail | ¬AskH] ≤ 2

2k1
+

2qG + 1

2k0
.

The running time of this simulator includes just the computation of f(σ, θ) for
all possible pairs and is thus bounded by qG · qH · (Tf +O(1)).

7.4. Success Probability of the Reduction

This subsection analyzes the success probability of our reduction with respect
to the advantage of the IND-CCA2 adversary. The goal of the reduction is, given
y? = f(s?, t?), to obtain s?. Therefore, the success probability is obtained by
the probability that event AskH occurs during the reduction (i.e., Pr[AskH] ≤
Succs-pd-ow(qH , t′), where t′ is the running time of the reduction).

We thus evaluate Pr[AskH] by splitting event AskH according to event Bad:

Pr[AskH] = Pr[AskH ∧ Bad] + Pr[AskH ∧ ¬Bad].
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We evaluate the first term, using Lemma 6 and that GBad implies AskG.

Pr[AskH ∧ Bad] = Pr[Bad]− Pr[¬AskH ∧ Bad]

≥ Pr[Bad]− Pr[¬AskH ∧ GBad]− Pr[¬AskH ∧ DBad]

≥ Pr[Bad]− Pr[AskG | ¬AskH]− Pr[DBad | ¬AskH]

≥ Pr[Bad]− 2qDqG + qD + qG

2k0
− 2qD

2k1
.

Here, Pr[DBad | ¬AskH] ≤ qD

(

2 · 2−k1 + (2qG + 1) · 2−k0
)

is directly obtained
from Lemma 7. When ¬AskH occurs, H(s?) is unpredictable, and r? = t?⊕H(s?)
is also unpredictable. Hence Pr[AskG | ¬AskH] ≤ qG · 2−k0.

We then evaluate the second term.

Pr[AskH ∧ ¬Bad] ≥ Pr[A = b ∧ AskH ∧ ¬Bad]

= Pr[A = b ∧ ¬Bad]− Pr[A = b ∧ ¬AskH ∧ ¬Bad].

Here, when ¬AskH occurs, H(s?) is unpredictable, thus r? = t?⊕H(s?) is unpre-
dictable, and so is b as well. This fact is independent from event ¬AskH∧¬Bad.
In addition,

Pr[Bad] + (Pr[AskH ∧ ¬Bad] + Pr[¬AskH ∧ ¬Bad]) = 1.

Let PA = Pr[AskH ∧ ¬Bad], hence

Pr[A = b ∧ ¬AskH ∧ ¬Bad] = Pr[¬AskH ∧ ¬Bad] · Pr[A = b | ¬AskH ∧ ¬Bad]

= (1− PA − Pr[Bad]) · 1
2
.

Furthermore,

Pr[A = b ∧ ¬Bad] ≥ Pr[A = b]− Pr[Bad] =
ε

2
+

1

2
− Pr[Bad].

Therefore,

PA = Pr[AskH ∧ ¬Bad] ≥ ε

2
+

1

2
− Pr[Bad]− (1− PA − Pr[Bad]) · 1

2

=
ε + PA − Pr[Bad]

2
.

That is, PA = Pr[AskH ∧ ¬Bad] ≥ ε− Pr[Bad].
Combining the evaluation for the first and second terms, one finally gets

Pr[AskH] ≥ ε− 2qDqG + qD + qG

2k0
− 2qD

2k1
.
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