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Early on, computer vision researchers have realized that 
multiscale transforms are important to analyze the infomation 
content of images. The wavelet theory gives a stable mathematical 
foundation to understand the properties of such multiscale 
algorithms. This tutorial describes major applications to 
multiresolution search, multiscale edge detection, and texture 
discrimination. c 

I. INTRODUCTION 
Multiscale processing is hardly avoidable to develop ef- 

ficient image recognition algorithms. Before wavelets were 
called “wavelets,” researchers such as Burt and Adelson [7], 
Koenderink [18], M m  [24], Witkin [36], and Rosenfeld 
1301 had established the necessity to extract multiscale 
image information. Some of these ideas have later been 
formalized and refined by the wavelet theory. In parallel, 
psychophysics, and physiological experiments [ 1 11 have 
shown that multiscale transforms seem to appear in the 
visual cortex of mammals. This was an important motiva- 
tion to further study the application of such transforms to 
image analysis. To explain the impact of wavelets for low- 
level vision, we concentrate on three major applications: 
multiresolution processing, multiscale edge detection, and 
texture discrimination. 

Multiresolution algorithms modify the image resolution 
to process as little data as possible, for any particular visual 
task. Coarse to fine searches process first a low resolution 
image and zoom selectively into finer scale information, if 
necessary. Applications to stereo vision and optical flow 
measurements are described. 

Local image contrasts are often more informative than 
light intensity values. A wavelet transform measures gray 
level image variations at different scales. Contours of image 
structures correspond to sharp contrasts and can be detected 
from the local maxima of a wavelet transform. Their 
importance is illustrated by our ability to recognize complex 
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scenes from a drawing that outlines edges. The wavelet 
theory relates the behavior of multiscale edges to local 
image properties. It also opens the door to reconstruction 
algorithms which recover images from multiscale edges. 

Among low-level vision problems, texture discrimination 
is certainly one of the most difficult. Despite the fact 
that textures are quickly preattentively discriminated by a 
human observer 1211, there is still no appropriate model for 
textures. The perception of textures as opposed to edges 
depends upon local but not pointwise properties. How- 
ever, there is no predefined neighborhood size over which 
textures can be analyzed. This has motivated the use of 
wavelet transforms that measure the image properties over 
domains of varying sizes. Local frequency measurements 
derived from a directional wavelet transform appear to be 
important for texture discrimination [5], [15], [29]. Yet no 
comprehensive theory guides texture segmentations from 
wavelet coefficients. 

When studying the application of wavelets to computer 
vision, the major difficulties arise at the interface be- 
tween low-level algorithms and higher level visual models. 
Multiresolution search strategies must depend upon prior 
knowledge on the world. Similarly, edges detection can not 
be restricted to a pointwise processing as it shown by our 
perception of illusory contours [19]. Texture discrimina- 
tion also requires the elaboration of prior models which 
guide the grouping procedures for image segmentations. 
We discuss these issues in more details. 

U. MULTIRESOLUTION PROCESSING 

B. Fovea and Multiresolution Pyramids 
An image of 512 x 512 pixels often includes too much 

information for real time vision processing. Multiresolution 
algorithms process less image data by selecting the relevant 
details that are necessary to perform a particular recognition 
task. The human visual system uses a similar strategy. 
The distribution of photoreceptors on the retina is not 
uniform. The visual acuity is the greatest at the center 
of the retina where the density of receptors is maximum. 
When moving away from the center, the resolution de- 
creases proportionally to the distance from the retina center 
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[ 3 3 ] .  The high resolution visual center is called fovea. It 
is responsible for high acuity tasks such as reading or 
recognition. A retina with a uniform resolution equal to 
the highest fovea resolution would require about 10 000 
times more photoreceptors. Such a uniform resolution retina 
would increase considerably the size of the optic nerve that 
transmits the retina information to the visual cortex and the 
size of the visual cortex that processes this data. 

Active vision [ 11 strategies compensate the nonunifor- 
mity of visual resolution by moving the fovea with eye 
saccades. Regions of a scene with a high information 
content are scanned successively. These saccades are partly 
guided by the lower resolution information gathered at the 
periphery of the retina. This multiresolution sensor has the 
advantage to provide high resolution information at selected 
locations and a large field of view with relatively little data. 

Multiresolution algorithms implement in software the 
search for important high resolution data. A uniform high 
resolution image is measured by a camera but a small 
part of this information is processed. The high resolution 
information is selectively considered depending upon lower 
resolution processing [6]. Such algorithms are efficiently 
implemented with multiresolution pyramids introduced by 
Burt and Adelson [7]. 

Let us normalize the image resolution to one. A mul- 
tiresolution pyramid computes the image approximation 
at lower resolutions 2 3  for j < 0. As explained in the 
background article [lo], an approximation of f ( s ,  3) at 
a resolution 2 3  is defined as an orthogonal projection on 
a space V , .  It has been proved that such multiresolution 
spaces admit orthogonal basis of V ,  of dilated separable 
scaling functions 

{ f i f # ( 2 3 2  - n ) f i f # ( 2 3 g  - m) 

The approximation at a resolution 2 j  is thus characterized 
by the inner products 

We suppose that fo[n,m] is the discrete image at the 
resolution one measured by the camera. One can prove 
that image approximations f 3  [n, m] at smaller resolutions 
are computed with a succession of low-pass filterings and 
subsamplings [22]. Let h[n] be the Conjugate Mirror Filter 
associated to the scaling function $( t )  and h2[n, m] = 
h[-n]h[-m]. An image f J[n ,m]  at a resolution 2 3  is 
obtained from a higher resolution image fJ+l  [n, m] with a 
low-pass filtering with h2 [n, m] and a subsampling by two 
along the rows and columns 

f '[n,m] = fJf1 * h2[2n,2m]. 

If fo [n ,  m] has N 2  nonzero samples, with appropriate 
border treatments, f J  [n, m] has 2 2 3  N 2  nonzero pixels. 
Fig. 1 shows an example of multiresolution image pyramid 
over five octaves. 

Fig. 1. Multiresolution image pyramid. From top to bottom the 
resolution decreases by two from one image to the next. These 
images are obtained with a cascade of low-pass filtering and 
subsampling. 

B. Coarse to Fine Multiresolution Processing 
Coarse to fine multiresolution search reduces the com- 

putational complexity by beginning at low-resolution and 
adaptively increasing the resolution to gather the necessary 
details. We describe applications to the estimation of optical 
flow from time image sequences and depth from stereo 
images. 

The optical flow is computed from a sequence of images 
at time intervals A. Let I k  [n, m] be the gray level image 
intensity at time kA. A pixel (no, mo) gives the light 
intensity reflected by a point P in the 3-D scene. If the 
image gray level is not constant in the neighborhood of 
(no, mo), a change between the relative position of P and 
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the camera creates an intensity displacement. The velocity 
of this gray level displacement in the image plane is called 
the optical flow. If there is no change of lightning, it can 
be related to the 3-D velocity of P [9]. There are several 
approaches to compute the optical flow, including the use 
of local differential operators [9]. A simple technique is to 
estimate the gray level displacement from frame to frame by 
finding a correspondence between the pixels of successive 
images Ik[n, m] and Ik+l[n, m]. 

A similar point matching problem appears in stereo vision 
[12]. A point P in a 3-D scene is projected at different 
locations in the image planes of two stereo cameras. From 
the difference between the position of this projection in the 
left and right images of a stereo pair, one can recover ‘the 
3-D coordinates of P in a referential related to the stereo 
cameras. The main difficulty of stereo vision is to match 
each pixel of the left image 1, [n, m] to the pixel of the right 
image I, [n, m] which is the projection of thhe same point 
P in the scene. 

To find the Correspondence between pixels of two images 
I ~ [ n , m ]  and 12[n,m], one can maximize a correlation 
measure. We search for a point (n2, m2) in 1 2  [n, 7-73] whose 
neighborhood of size K has a maximum correlation with 
the neighborhood of a pixel (n1,ml) in Il[n,m]. The 
normalized correlation is defined by (see (1) at the bottom 
of the page). 

This correlation is always smaller than one and is equal to 
one if and only if the neighborhood of ( n ~ ,  m2) in 1 2  [n, m] 
is proportional to the neighborhood of (nl,ml) in I I [ ~ ,  m]. 

If 11 [n, m] and 12[n, m] have N2 pixels, this exhaustive 
correlation search requires K2 N 4  multiplications, which is 
huge. Another difficulty is to find an appropriate template 
size K. If K is too small, the neighborhood 

{I1[n1 - n,m1 - mlL(K/2)5n,m5(K/z) 

of (n1, ml) might not contain enough information to disam- 
biguate several potential matches in the image 1 2  [n, m]. If 
I( is too large there might not be any appropriate match in 
I2 [n, m]. This is the case for optical flow measurements if 

includes smaller components having different displace- 
ments [3]. The overall region is not globally translated 
and thus does not match well any other domain of the 
next image. In stereo vision, the same problem appears 
if the neighborhood of size K includes objects whose 
distance to the camera are very different [12]. The perspec- 
tive projection then induces important distortions between 
the projections on the left and right camera planes. The 

the neighborhood {Il[nl - 71, ml - 4 ) - ( K / 2 ) 5 n , m g K / 2 )  

difficulty to choose an appropriate neighborhood size and 
the large computational complexity motivates the use of 
multiresolution correlations. 

A multiresolution matching algorithm correlates first low 
resolution approximations of 1 1  [n, m] and 4 [n, m] and 
refines the match at high resolution guided by the lower 
resolution estimates 13 11. Let us compute the multireso- 
Jution pyramids {1![n,m]}~5~5-1 and { I ; [ ~ , ~ ] } J L ~ ~ - I  
of Il[n,m] and 12[n,m], with a maximum depth - J  5 
log, N.  We first correlate the points of the lower resolution 
images I[[n,  m] and I,”[n, m] over neighborhoods of size 
K ,  which is typically equal to three or five. For any point 
(n:, mf) of I [[n ,  m] we find (ni, m i )  in I,”[., m] whose 
neighborhood maximizes the normalized correlation (1). 
Since 1; and I i  have only 22JN2 pixels ( J  < 0), this 
correlation is performed with much fewer operations than 
on the original image. This low resolution matching is 
used to constrain to a limited area the correlation search 
at the next resolution. The region around (n{,m:)  in I[ 
corresponds in the image I;”[n, m] to a region around 
one of the points 

(n:+l,m;+l) E {(2n{,2m{), ( 2 4  + 1,2m{), 

( 2 4 ,  am: + 1 ) )  (271: + I, am: + 1 ) )  

(see Fig. 2). Similarly, (ni, mi)  in 1; [n, m] corresponds 
to a location close to (2ni,2mi) in I,””[n,m]. At the 
resolution 2”‘, we correlate a square neighborhood of 
(TI:”, m{+’) of size K in I:+1 [n, m] with neighborhoods 
in I,””[n,m] centered at locations close to (2ni,2m;). 
The center location (n$+l, mi+’) which maximizes the 
normalized correlation (1) is a higher resolution match of 
(n:+l, mi+’). The resolution of the matching is progres- 
sively refined with the same procedure from one resolution 
to the next, until the finest resolution 23 = 1. 

A single pixel at a resolution 2l ( j  < 0) covers a block 
of 2-3 pixels in the original image at the resolution 1 (see 
Fig. 2). A correlation with a template of size K on 1; [n, m] 
is thus equivalent to a correlation over a neighborhood 
of size 2-3K in the original image I2[n, m]. By letting 
constant the size K of the correlation templates at all 
resolutions, the algorithm performs correlations over neigh- 
borhoods whose size vary proportionally to 2-3 relatively 
to the original image. The coarse information is correlated 
over large neighborhoods whereas the fine information 
is correlated over small neighborhoods. Varying this size 
avoids choosing between small templates that might not 
disambiguate a match and large templates that may produce 
wrong match if the images Il[n,m] and I2[n,m] are 
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Fig. 2. A square neighborhood of width K at low resolution 23 
corresponds to square neighborhoods of size 21i  and 411' at higher 
resolutions 2 3 + l  and 2 3 t z .  

locally warped. When estimating an optical flow at a coarse 
resolution 2 j ,  we mentioned that there might be regions 
of size 2 3  K in 11 [n, m] which include components with 
different velocities. These structures are translated at differ- 
ent positions of Iz [n ,  m], which modifies the properties of 
gray level neighborhoods. In this case, a, correlation of the 
coarse resolution images 1; [n, m] and 1; [n, m] produces a 
wrong estimate of the flow. This error can be detected at 
a higher resolution 2l where the smaller correlation length 
2-'K can resolve the regions having different motions. It 
is thus necessary to use verification strategies that detect 
misleading coarse resolution information from the finer 
resolution data [3]. 

The main difficulty when implementing a multiresolution 
algorithm is to find efficient strategies to select the high 
resolution information. The potential errors induced by 
low resolution processing requires the use of verification 
procedures which incorporate high resolution verifications 
to guide the search. Such algorithms have already been 
developed for optical flow [3] and stereo vision [12]. For 
pattern recognition, the problem is more difficult because 
the search must also be guided with prior information about 
potential patterns in the scene. For example, to recognize a 
person from a photograph, the visual saccades of a human 
observer concentrate mostly the attention of the fovea on 
the eyes of the face in the photograph [l]. The eyes provide 
important cues for recognition and clearly the saccades 
must have incorporated high level information about faces 
to derive this strategy. The integration of such high level 
information to guide automatically the multiresolution data 
search is still an open problem. 

C. Why Wavelet Bases are Not Used 
The background article [IO] shows that wavelet bases 

extract the necessary information to increase the resolution 
of an image approximation. One would thus expect that 
these bases can play an important role in multiresolution 
visual processing. The sad reality is that wavelet bases have 
not yet found any application for visual pattern recognition, 
because of their lack of translation invariance. To simplify 

the explanations, we describe the problem for I-D signals. 
In a basis, wavelet coefficients at a scale 2j are inner 
products with wavelets dilated by 23 and translated by 2jn 

with a continuous wavelet transform defined by 

The wavelet basis coefficients are thus obtained by sam- 
pling uniformly the continuous wavelet transform at dyadic 
scales { 2 3 } 3 E ~ ,  and at time locations 23n proportional to 
the scale. If f( t)  is translated by T the continuous wavelet 
transform of fT( t )  = f ( t  - T )  is translated by the same 
amount 

Tf,(23,b) = T f ( 2 j , b - ~ ) .  

However, the sampled coefficients {Tf,(23,23n) = 
Tf(23,23n - T)},€z are not equal to a translation of 
the values {Tf(23,23n)},,~, when T is not proportional 
to 2 3 .  As a result, the wavelet coefficients of a translated 
function fT ( t )  may be very different from the wavelet 
coefficients of f ( t ) .  It is difficult to characterize a pattern 
from the wavelet coefficients in a basis since these wavelet 
descriptors depend upon the pattern location. 

111. MULTISCALE EDGE DETECTION 
The evocative power of drawings clearly shows that 

edges are among the most important features for pattem 
recognition. But what is an edge? When looking at a brick 
wall, we may decide that the edges are the contours of 
the wall whereas the bricks define a texture. We may also 
include the contours of each brick among the set of edges 
and consider the irregular surface of each brick as a tex- 
ture. The discrimination of edges variations versus textures 
depends upon the scale of analysis. This has motivated 
computer vision researchers to detect sharp image variations 
at different scales [24], 1301, [361. 

The next section describes a multiscale Canny [SI edge 
detector that is most often used in vision algorithms. This 
edge detector is equivalent to the detection of wavelet 
transform local maxima. The wavelet theory allows one 
to understand how to combine multiscale edge information 
to characterize different types of edges. It also provides 
the mathematical grounds to implement an algorithm that 
reconstructs images from edges. 

A. Wavelet Maxima 
Canny's algorithm [SI detects sharp variation points of 

an image f(z,  y) from the modulus of the gradient vector 
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The partial derivative of f (x ,y)  in a direction n' of the 
(x,y) plane is equal to the inner product 

The absolute value+ of this partial derivative is maximum 
if n' is parallel to V f .  This proves that the gradient vector 
points locally in the direction-of maximum change of the 
surface. A point (20, yo) is defined to be an edge point if 
the modulus of $f(x, y) is locally maximum at (20, yo), 
when (2, y) varies in a I-D neighborhood of (xo, yo) that is 
collinear to the direction of Gf(x0 ,  yo). These edge points 
are locations where the surface has locally a maximum rate 
of change. They are inflection points of f ( l t , y ) .  

A multiscale version of this edge detector is implemented 
by smoothing the surface with a convolution kernel 8(x, y) 
that is dilated at dyadic scales { 2 3 } 3 E ~ .  Such an edge 
detector can be computed with two wavelets that are the 
partial derivatives of 0 (x , y ) 

Let us denote 

The wavelet transform of f(x,y) at a scale 23 has two 
components which can be written as convolutions with 
& (., Y) = Gi3 (-Z, -Y) 

+a= +a 
T"(23, U ,  v) = LW f (x, Y M 3  (x - U ,  - v) 

. dx dy 

= f * & ( u , v ) .  (3) 

If we suppose that there exists A > 0 and B 2 A such 
that the Fourier transforms q k  (w,, w,) of these wavelets 
satisfy 

V(w,,wy) E R2, A 5 ( 4 k ( 2 3 w z , 2 3 w y ) / 2  5 B 

(4) 

2 +oo 

k=l 3=--00 

one can then prove that the 2-D dyadic wavelet transform 
(3) defines a complete and stable signal representation. 

Let us denote 

d,,(x,y) = -8 (;;,;:) - - . 
23  

The two wavelets can be rewritten 

(5 )  

Inserting (5) in (3) and putting the partial derivative outside 
the convolution products proves that 

= -23d(f * & ) ( U )  v). (6) 
The two components of the wavelet transform are propor- 
tional to the coordinates of the gradient vector of f ( x ,  y) 
smoothed by &, (x, y). The modulus of the gradient vec- 
tor a(f * i2,)(u, v) is thus proportional to the wavelet 
transform modulus 

Mf(2"u,w) = J ( T l f ( 2 3 , U , U ) ( 2  + I T 2 f ( 2 J , U , V ) / 2  (7) 

and its angle is 

Following Canny's approach [8], the edges at the scale 
23  are defined as points (u0,vo) where M f ( 2 3 , u ,  w) is 
locally maximum in the I-D neighborhood that is along 
the direction given by A f ( 2 3 ,  U ,  w). These points are also 
called wavelet transform modulus maxima. As opposed to 
wavelet basis coefficients, when the image is translated, 
the wavelet maxima are translated without being modified. 
This property is particularly important for the application 
of multiscale edges to pattern characterization. 

The first column of Fig. 3 displays the wavelet transform 
modulus Mf(23,  U ,  v) over four octaves of the image in 
Fig. 1. Dark pixels correspond to high amplitude modulus 
points. The second column gives the angle Af(23, U ,  w )  
which varies from zero (white) to 27r (black). When the 
modulus is close to zero, the angle measurement is unstable 
and is set to zero. This wavelet transform is computed with 
a compactly supported window 8(x, y) that is a separable 
product of cubic spline functions. If the origin51 image has 
N 2  pixels, the wavelet transform is computed over log, N 
scales with O ( N 2  log, N )  operations, by using a filter bank 
algorithm [23]. The wavelet maxima are displayed in the 
third column. At fine scales, there are many edge points 
created by the image noise. Most of these maxima are 
removed by the smoothing at larger scales. However, this 
smoothing also changes the location of edges. 

Edge points are distributed along curves in the image 
plane that often correspond to the boundary of impor- 
tant structures. To recover these edges curves, individual 
wavelet modulus maxima are chained. Since the gradient 
vector points in the direction of maximum change of the 
intensity surface, the angle Af(2-1, U ,  v) is orthogonal to the 
tangent of the edge curve of f * e 2 3  (x, y) that goes through 
(u ,v) .  In discrete computations, we chain two wavelet 
modulus maxima that are neighbors if the vector that joins 
these two points is perpendicular to the angle direction 
Af(23,u,w) at these points. The fourth column of Fig. 3 
displays the edges chains that include more than 10 pixels, 
and along which the average modulus value Mf(23 ,  U ,  U )  

is larger than a specified threshold. Small edges created by 
noises are removed by this chain thresholding. 
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Fig. 3. The original image is at the top left of Fig. 4. The first and, second columns display the 
wavelet modulus M f ( 2 3 ,  U, v) and angles Af(23,u,.w) at scales 2 3  for 1 5 j 5 4. The pixels 
darkness are proportional to the amplitude of M f ( 2 3 ,  U, v) and Af(23 ,  U ,  U )  (which goes from 
zero to 2 ~ ) .  The black pixels of the images on the third column are the modulus maxima of 
M f ( 2 3 ,  U ,  U) along the direction specified by A f ( 2 3 ,  U ,  0). These maxima are chained together. 
The fourth columns displays the longer edge chains with higher average modulus values. 

B. Multiscale Edge Processing of (X0,Yo)  

Once edges are detected at several scales, we must 
understand how to integrate this multiscale information for 
pattern recognition. One might be tempted to look for a 
"best" scale where the edges are well discriminated from 
noises and textures. The wavelet theory shows that much 
finer properties are derived by analyzing edge behaviors 
across scales. The multiscale edge information is in fact 
rich enough to recover close image approximations. 

The background article [lo] explains that the decay of a 
wavelet transform depends upon the local regularity of the 
signal. This regularity is quantified by Lipschitz exponents. 
A function f ( z ,  y) is said to be Lipschitz a at (20, yo), with 
0 5 Q 5 1, if for all points (z, y) in a 2-D neighborhood 

The larger a,  the more regular the function. At a discon- 
tinuity, the function is Lipschitz n = 0. If 1 > Q > 0 the 
image is continuous but not differentiable and CI: character- 
izes the type of singularity at that location. The Lipschitz 
regularity of a function f ( z ,  y) is related to the asymptotic 
decay of the two wavelet components /T1 f (2J ,  U ,  v)I and 
1T2f(2J,u, v)I when the scale 23 decreases. This decay is 
controlled by the modulus M f ( 2 j ,  U ,  v) and one can prove 
[25] that a necessary condition for f ( z ,  y) to be Lipschitz 
a at ( 5 0 ,  yo) is the existence of C > 0 such that 
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Fig. 4. The image at the top left IS the onginal image The image at the top nght is reconstructed 
from the multiscale wavelet maxima shown in the third column of Fig 3, plus the lower scale 
information The image at the lower nght is reconstructed from the thresholded edges shown in 
the fourth column of Fig 3 

Suppose that the image has an isolated edge curve along 
which f ( z ,  y) has singularities which are Lipschitz a. By 
measuring the decay of the modulus maxima across scales, 
we derive from (9) an estimate of the Lipschitz regularity 
along the edge. At some edge locations, the image is not 
singular but has a smooth transition that is locally sharper. 
For example, the diffraction effect creates smooth edges 
at the borders of shadows. An analysis of the decay of 
wavelet maxima can also provide an estimate of the local 
smoothness of edges [23]. 

Multiscale edges give a rich description of the image 
information and one may wonder whether it is possible to 
reconstruct the whole image from these edges. This issue 
was raised by Marr [24] and studied by several researchers 
in computer vision [14], [37]. The wavelet theory allows 

one to express the nonlinear constraints derived from the 
knowledge of the modulus maxima locations (U,, v,) as 
well as the values of M f  (2” U,, v,) and Af ( 2 3 ,  U,, v,) at 
these locations. An alternate projection algorithm recovers 
an image which belongs to the set of functions whose 
wavelet transform satisfies these maxima constraints [23]. 
The upper right image of Fig. 4 shows the reconstructed 
image from the multiscale edges displayed in Fig. 3. Since 
edges are computed up to the scale 24, the image low- 
frequencies at scales larger than 24 are used to complement 
the edge information in the reconsmction. When edges are 
computed up to the coarser scale log, N ,  this complement 
of information is reduced to the average value of the 
image intensity. Extensive numerical experiments show 
that the reconstructed images are visually identical to 
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the original ones, although Meyer [26] and Berman [41 
proved that an image is not uniquely characterized by its 
multiscale edges. There are no visual distortions because 
reconstruction errors remain below the visual sensitivity 
threshold. The mathematical problem is still open and 
despite further studies [35] ,  we do not understand why 
these reconstruction algorithms work so well and under 
what condition multiscale edges do provide a complete 
and stable signal representation. Since we can reconstruct 
visually perfect images from multiscale edges, one can 
develop image processing algorithms that manipulate the 
image information over the edge representation. Some 
edges and singularities can be suppressed from the image 
by suppressing wavelet maxima and reconstructing the cor- 
responding image. The lower left image in Fig. 4 shows the 
image reconstructed from the thresholded multiscale edges 
displayed in the right column of Fig. 3. This reconstructed 
image is nearly identical to the original one because the I 
small edges that have been suppressed mostly correspond to 
noise variations. Applications to noise removal and compact 
signal coding have been developed [23]. 

A multiscale wavelet edge detector defines edges as 
points where the image intensity has sharp variations. This 
definition is however too restrictive when edges are used to 
find the contours of objects. For image segmentations, edges 
must define closed curves that outline the boundaries of 
each region. Because of noise or light variations, generally 
there are holes in the contours obtained by a local edge 
detector. Filling these holes requires some prior knowledge 
on the expected behavior of edges in the image. The 
illusions of the Kanizsa triangles [17] clearly show such 
an edge “filling” is performed by the human visual system. 
The illusion gives us the impression that there exists an 
edge at locations where the image intensity is constant, 
in order to close the contour of a triangle region. Closing 
edge curves and understanding illusory contours requires 
computational models that are not as local as multiscale 
differential operators. Variational approaches that incorpo- 
rate the expected regularity of the contours give promising 
strategies to close contours and understand the perception 
of illusory contours [19]. 

IV. TEXTURE DISCRIMINATION 
A texture segmentation divides the image into “ho- 

mogeneous” regions where local texture properties are 
approximatively invariant. Despite many attempts, there 
is still no appropriate model for “homogeneous textures.” 
Right now, a texture homogeneity is defined only with 
respect to our visual perception. A region is said to have 
a homogeneous texture if it is preattentively perceived as 
being homogeneous by a human observer. 

Rather than constructing formal models, several algo- 
rithmic approaches have tried to isolate important texture 
parameters for recognition. These ideas are often inspired 
by the “texton” theory of Julesz [16] who searched for 
elementary patterns which are responsible for our discrim- 
ination abilities. The goal is to find a minimum number 

Fig. 5. Example of cover of the frequency plane ( w z , w y )  with 
dilated dyadic wavelets constructed by modulating a window 
@(z, y) with sinusoidal waves having different orientations. Each 
circle symbolizes the frequency support of a dilated wavelet along 
a particular orientation. 

of measurements that can discriminate textures that are 
perceived to be “different.” These measurements should 
also remain approximatively constant in a region where the 
texture is considered to be homogeneous. 

The orientation of texture elements and their frequency 
contents seem to be important clues for discrimination. 
This has motivated early researchers to study the repartition 
of a texture energy in the Fourier domain. For segmenta- 
tion purposes, it is however necessary to localize texture 
measurements over neighborhoods of varying sizes. It has 
thus been proposed to replace the Fourier transform with 
localized energy measurements at the output of filter banks 
that compute a wavelet-like transform [15], [29]. Besides 
the algorithmic efficiency of this approach, this model is 
partly supported by physiological studies of the visual 
cortex. 

In the cat’s visual cortex, Hubel and Wiesel [13] discov- 
ered a class of cells called simple cells, whose response 
depends upon the frequency and orientation of the visual 
stimuli. Numerous physiological experiments [28] have 
shown that their response can be modeled with linear filters, 
whose impulse response have been measured at different 
locations of the visual cortex. Daugmann [ 111 showed that 
these impulse response can be approximated by Gaussian 
windows modulated by a sinusoidal wave. Depending upon 
the cortical cell, this modulated Gaussian is dilated and 
has a specific spatial orientation tuning. These findings 
suggest the existence of some sort of wavelet transform in 
the visual cortex, combined with subsequent nonlinearities. 
The frequency resolution of these “physiological” wavelets 
seems to be of the order of 1-1.5 octaves. 

Several texture discrimination algorithms 1151, [291 are 
based on Gabor wavelets. These wavelets are constructed 
with a rotationally symmetric Gaussian window O(z, y) that 
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Fig. 6. The original image is at the top The energy of the wavelet transform ITkf(23, U ,  U)]* 
is shown along four orientations at three scales 23, for 1 5 3 _< 3 From left to nght, the 
Orientation tuning of the wavelet are 0, 45, 90, and 135', respectively. The scale increases from top 
to bottom The energy value is large when the onentatlon and scde matches the texture structures 
The distribution of wavelet energy across scales and orientatlons is different for the two textures 

is multiplied by sinusoidal waves that propagates along This wavelet representation is complete and stable if there 
K orientations { a h } l < k < K ,  with different phases. Two exists A > 0 and B such that the Fourier transforms satisfy 

K t o o  
parts of a complex wavelet V(w,,wy) E R2, A <_ ( $ k ( 2 3 ~ Z , 2 3 w y ) [ 2  <_ B. 

(1 11 

wavelets with quadrature phases are the real and imaginary 

k=l ?=-a 

qP((z,y) = ~(x,y)exp [ - i ~ ( x c o s a k  + yssinak)] .  

Let 8(wZ,w,) be the Fourier transform of B(x,y).  The 
Fourier transform of $& ( L C ,  y) is 

G$J(wZ,wy)  = f i 8 ( 2 3 w x  - t cosak ,23w,  - t s inak ) .  

Since the wavelet has a frequency resolution of the order 
of one octave, we can restrict the scales to {23}3Eg and 
define the wavelet transform in each direction by 

It is a translation and dilation of 8(wx, w y ) .  Its fre- 
quency energy is mostly concentrated around the frequency T " ( 2 3 , U , ? J )  = f * 7 g 3 ( U , ? J ) .  (10) 
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(Ea3 cos ( Y k ,  E23 sin a h ) ,  in a neighborhood proportional to 
2-J.  Fig. 5 shows an approximate frequency plane cover 
with such dyadic wavelets that satisfies (1 1). The filtering 
formula (10) shows that I T ’ f ( 2 3 ,  U ,  v)12 can be interpreted 
as a localized measurement of the frequency energy of the 
image f in the neighborhood of ( E  cos ~ r c / 2 ~ ,  E sin (Yk /2’ ) .  

Varying the scale 23 and the angle ak modifies the fre- 
quency channel. Fig. 6 displays the wavelet transform en- 
ergy along four orientations for a textured image. The 
energy ( ~ “ ( 2 3 ,  U ,  . ) I 2  is maximum when the angle (Yk is 
along the orientation of the main texture components and 
when 23 matches the scale of these structures. In Fig. 6, 
the center texture has its energy mostly concentrated in 
horizontal and vertical directions but has little energy in 
diagonal orientations. On the other hand, the texture at the 
periphery has no preferential orientation. The energy spread 
across scales is also different for these two textures. For 
segmentation, the main difficulty is to find an algorithm 
that aggregates the wavelet responses at all scales and 
orientations in order to find the boundaries of homogeneous 
textured regions. Indeed, within any single region, for each 
scale and orientation, the wavelet energy \ T k f ( 2 3 , u ,  . ) I 2  
may have a relatively large degree of variability as shown 
by Fig. 6. Most algorithms attenuate these variations with 
a local spatial averaging of ITkf(2j, U ,  . ) I 2 .  Clustering 
procedures [29], [15] or detection of sharp transitions 
over wavelet energy measurements [21] have been used 
to integrate the information across orientations and scales 
to produce a final segmentation. Despite their good exper- 
imental results, these algorithms are quite ad hoc and are 
probably not the final answer to texture discrimination. We 
also do not know precisely what are the classes of tex- 
tures that are discriminated by these different segmentation 
procedures. 

The formalization of texture recognition problems is 
often easier in a stochastic framework. It does not mean 
that textures are supposed to be created by some random 
physical processes, but we can model mathematically a 
class of images having the same texture as the realizations 
of a particular “texture process,” i.e., wood. These texture 
processes are generally non-Gaussian and nonstationary and 
are thus particularly difficult to analyze. Moreover, when 
looking at a single texture, we see only one realization 
of this process. To identify a process from one realization 
is generally very difficult. Even if we suppose that the 
process is Gaussian, in which case it is characterized by its 
covariance, a reliable estimation of the covariance from a 
single realization is extremely hard when the process is not 
stationary. The Fourier basis diagonalizes the covariance 
matrix of stationary processes, and we thus only need to 
estimate the diagonal entries which correspond to the power 
spectrum. For more general nonstationary processes we 
do not know the basis which diagonalizes the covariance 
matrix. Understanding which class of bases are well adapted 
to estimate particular classes of texture processes is an open 
issue. These outstanding problems illustrate the difficulty to 
develop a coherent texture theory which is in accordance 
with human texture discrimination. 

V. CONCLUSION 
The scale is a fundamental parameter of visual process- 

ing, but wavelets are not the only tools to modify the scale 
and resolution of images. Other diffusion algorithms can 
remove certain image details and keep other components 
such as edges, by applying a nonlinear partial differential 
equation to the image. The application such multiscale 
nonlinear diffusions to edge detection has been introduced 
by Perona and Malik [27], and several important classes 
of nonlinear equations have been studied [ 2 ] ,  [32] .  Similar 
nonlinear diffusions are obtained by thresholding wavelet 
coefficients but no precise relations have been established 
between nonlinear PDE approaches and wavelet decompo- 
sitions. 

The wavelet mathematical theory is reaching a mature 
stage but how to use of this multiscale information for 
information processing is not always clear. The applications 
that we described illustrate the difficulty to design a non ad 
hoc interface between wavelet descriptors and classifica- 
tion algorithms. This leaves many opportunities for new 
research ideas in multiscale computer vision. 
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