
Whether they are stored digitally in computer memories,
or they travel over the Internet, images take up a lot of space.

Fortunately, it is possible to ``condense''
them without changing the quality! 

a digital image can be compressed, just as
orange juice can be reduced to a few grams
of concentrated powder. This is not by sleight
of hand, but by mathematical and computer
science techniques making it possible to reduce
the amount of space occupied by an image in
computer memory, or in communication
cables. Nowadays, these techniques are essen-
tial for storing information, or for transmit-
ting it by Internet, telephone, satellite or any
other means.

The compression of an image amounts to
representing it using a smaller number of
parameters, by eliminating redundancies. A
exaggerated example will help in under-
standing the basic principle: in the case of a
uniformly white image, it is unnecessary to
explicitly specify for each one of its points the
grey level at that point; that would take much
more space than to simply state: ̀ `all the points
of the image are white''. The problem of rep-
resentation is central in mathematics, and its

Wavelets
for compressing images

Figure 1. These three images illustrate the power of current compression methods. The original image (A) consists of 512 x 512 points, each of
which has a certain level of gray taken from a palette of 256 levels. Image (B) is the result of a compression by a factor 8, obtained by reducing the
levels of gray to 2 possible values only (black or white). Image (C) was obtained from (A) upon compressing by a factor 32 by using a wavelet basis.
The difference in quality from the initial image is hardly perceptible. (Illustration by the author)
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applications go well beyond data compres-
sion. During the last ten years, considerable
progress has been made thanks to the devel-
opment of the theory of wavelets. In the field
of image processing, this progress has led to
the adoption of the new standard of com-
pression JPEG-2000. This is a meandering tale,
which well illustrates the role of mathemat-
ics in the modern scientific, or technological
landscape.

Thirty-two times less space thanks to
wavelets

Let us consider an image such as that of
Figure 1A. It consists of 512 x 512 points, whose
levels of grey can vary from 0 (black) to 255
(white). Each of the 256 possible levels of grey
can be represented by a byte, i.e., a binary num-
ber made up of 8 bits (a byte is thus simply a
succession of 8 bits 0 or 1, for example
11010001).

One thus needs 512 x 512 x 8 = 2097152
bits to encode a single image of this kind -
which is a lot! The first idea which comes to
mind to reduce the number of bits is to decrease
the number of levels of grey, for example, by
limiting oneself to white and black, as in Figure
1B. The two possible values of the level of grey
are encoded with only one bit (either 0 or 1),
and one has thus decreased the number of bits
by a factor of 8. Obviously, the quality of the
image has deteriorated quite a bit. Now look
at the image of Figure 1C.

It has been encoded with 32 times fewer
bits than the original image, by a method using
the theory of wavelets; the deterioration is
hardly perceptible! Why? Because instead of
reducing the precision, it is the manner of rep-
resenting the information which was changed.

It all started with the analysis of
Joseph Fourier...

As we have said, a digital image is defined
by 512 x 512 numbers which specify the light
intensity at each point. One can thus think of
this image as a point in a space of 512 x 512
dimensions - in the same way that a point on
a surface, a two dimensional space, can be
located by two co-ordinates - and to ask which
co-ordinate axes are best adapted for repre-
senting such a point. A system of axes (of a
more abstract nature here than the familiar
axes of elementary geometry) defines what
one calls a basis.

A first fundamental advance was made by
the mathematician-physicist Joseph Fourier in
1802, in his report to the the Académie des
Sciences on the propagation of heat, a subject
which is a priori unrelated to our problem.
Fourier showed, in particular, that to repre-
sent in a compact and convenient way the func-
tion f(x) (from a mathematical point of view,
such a function is a point in a space having
infinitely many dimensions) one can use ̀ `axes''
made up of an infinite set of sinusoidal func-
tions. More precisely: Fourier showed that one
can represent a function f(x) as a sum of infi-
nitely many sine and cosine functions of the
form sin(ax) or cos(ax), each one carrying a cer-
tain coefficient.

These ``Fourier bases'' became an essen-
tial tool, frequently used in science, because
they can be used to represent many types of
functions, therefore many physical quantities.
In particular, they are also used to represent
sounds and images. And yet, engineers know
well that these sinusoids are far from being
ideal for signals as complex as images: they do
not efficiently represent transitory structures
such as contours of the image.
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...then came the wavelet transform

Specialists in signal processing were not
the only ones to become aware of the limita-
tions of Fourier bases. In the 1970’s, a French
engineer-geophysicist, Jean Morlet, realised
that they were not the best mathematical tool
for underground exploration; this led to one
of the discoveries-in a laboratory of Elf-
Aquitaine-of wavelet transform. This mathe-
matical method, based on a set of basic func-
tions different from the sinusoidal functions
used in Fourier's method, advantageously
replaces the Fourier transform in certain situ-
ations. In addition, already in the 1930’s, physi-
cists had realised that the Fourier bases were
not well-adapted for analysing the states of
an atom. This spurred much work, which later
on contributed much to the theory of wavelets.
It was also in the 1930’s that mathematicians
started trying to improve the Fourier bases for
analysing localised singular structures, which
opened an important research program still
very much alive today.

In other words, a multitude of scientific
communities developed modifications of
Fourier bases with the means at their disposal.

In the 1980’s, Yves Meyer, a French mathe-
matician, discovered the first orthogonal
wavelet bases (orthogonality is a property
which considerably simplifies reasoning and
calculations; Fourier bases are also orthogo-
nal). This discovery, followed by some unex-
pected meetings around photocopiers or cof-
fee tables, started a vast multi-disciplinary
scientific movement in France, which has had
a considerable impact internationally. The
applications of the theory and algorithms of
wavelets have made their way not only into
many scientific and technological disciplines,
but have also led to the creation of several
companies in the United States.

Mathematics of wavelets
has played a pivotal role
in a number of fields 

Mathematics has played a fundamental
role here as a catalyst, and in the clarification
and deepening of ideas. By isolating the fun-
damental concepts from specific applications,
it allowed scientists from very diverse fields
of physics, such as signal processing, computer

science, etc. to realise that they
were working with the same tool.
Modern mathematical work on
Fourier analysis has now permitted
us to go further and to refine these
tools, and to control their per-
formance. Finally, this theory pro-
vides a standard technique for sci-
entific computation (the fast
wavelet transform), thanks to a col-
laboration between mathemati-
cians and specialists in signal pro-
cessing. The image of Figure 1C was
thus obtained thanks to the same
wavelet bases as those used in sta-
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Figure 2. The graph of a wavelet used in the compression of images.



tistics, seismology, or scientific computation,
with the same fast algorithm. And through
the international standard JPEG-2000 for the
compression of images, these wavelets have
currently invaded all fields of imaging, from
the Internet to digital cameras, and is mov-
ing towards satellites.

A bridge remains to be built between
the world of wavelets and the world
of geometry 

Fourier bases were not well-adapted to
the analysis of transitory phenomena, whereas
wavelet bases are. Is this the end of the story?
No. In image processing, as in all other fields
where wavelets have became a basic tool,
everyone currently confronts the same type
of problem: how to exploit geometrical reg-
ularities. Indeed, we know that an image,
however complex, is remarkably well repre-
sented by a simple drawing made up of rela-
tively few strokes, and one can often think of
the contours of the objects appearing in the
image as being made up of rather simple geo-
metrical curves. Using profitably these curves
and their regularity should make it possible
to improve considerably the results obtained
up until now; but wavelet theory is not at
present capable of this. To build this bridge
with the world of geometry poses difficult
mathematical problems. However, the scien-
tific and industrial stakes being high, one can
expect that it will be built in the coming ten
years. In France?
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