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Abstract. The recovery of geological
reflection coefficients from seismic data
includes a deconvolution operation. The
sparse spike deconvolution algorithm
used in seismic inversion is computed
with an l1 minimization. Although
this procedure was developed in 1973,
there is no mathematical model that
explains the efficiency of this approach
for seismic data. Using recent results
on sparse signal representations in re-
dundant dictionaries, this paper proves
that reflectivities that are sums of Diracs
sufficiently far away can indeed be re-
covered with an l1 penalized deconvo-
lution. Numerical examples on seismic
signals illustrate these results.

1. Seismic inversion

Measuring the reflectivity of the underground
is necessary for mineral and oil exploration. Seis-
mic techniques compute this reflectivity by sending
pressure wave in the underground and by record-
ing the reflected pressure waves on the surface, as
a function of time and spatial position. Seismic in-
version includes different steps such as migration
and stacking to invert the wave propagation equa-
tion. At a given position of the surface, in a first
approximation one can relate the resulting seismic
data Y to the underground reflectivity R through
a convolution equation, as a function of the depth
variable z. The convolution kernel is a “wavelet”
ψ which depends upon the pressure wave sent in
the underground. A bounded noise W that incor-
porates all the errors of this linear model is added
to the convolution equation:

(1) Y = ψ ? R +W.

To invert the convolution equation (1), geophysi-
cists model the reflectivity R as a sum of Diracs
that are reflectivity coefficients between different
homogeneous layers:

R =
X

i∈S
aiδi

Each Dirac δi is located at a depth i which is a
junction of two homogeneous geological layers.

Clearbout and Muir [4] proposed in 1973 to use a
l1 minimization to recover R. Santosa and Symes
[12] implemented this idea in 1986 with an l1 re-
laxed minimization. The resulting sparse spike de-
convolution algorithm defines the solution as:

(2) R = arg min
f

1

2
‖Y − ψ ? f‖22 + γ‖f‖1.

Daubechies, Defrise and De Moll [5], Chambolle [3]
and Figueiredo and Nowak [8] proposed in 2003 a
new iterative algorithm to solve this l1 minimiza-
tion problem. All numerical results in this paper
are computed with this algorithm.

Although sparse spike deconvolutions are often
used in seismic data processing, there has been very
little mathematical analysis of the estimation error
depending upon the properties of the underground
reflectivity. In the following we introduce a min-
imum scale parameter on the reflectivity model.
The minimum scale ∆ of R =

P
i∈S aiδi is the

minimum distance between two reflectivity Diracs
in R:

∆ = min
(i,j)∈S2

|i − j| .

The minimum scale of R depends only on its sup-
port S so this notion applies to a set S as well. Us-
ing recent results on sparse signal representations in
redundant dictionaries, we shall prove that for any
wavelet ψ a sparse spike deconvolution can com-
pute the exact support of a reflectivity if its mini-
mum scale is sufficiently large. This result is valid
for general l1 penalized deconvolution algorithms.

2. Deconvolution Without Noise

To simplify the mathematical analysis, the de-
convolution problem without noise is studied first.
We want to find conditions under which R can be
exactly recovered from:

(3) Y = ψ ? R

with an l1 minimization:

(4) R0 = arg min ‖f‖1, with ψ ? f = Y.
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The wavelet ψ is a band-pass filter which removes
the lowest frequencies as well as high frequencies.

Figure 1. At the top is a seismic
image with a vertical axis corre-
sponding to depth. A grey point
correspond to a zero. Below are
shown three results of a sparse
spike deconvolution using a pa-
rameter γ in (2) that decreases
from top to bottom. Observe
that the supports of these solu-
tions increase as γ decreases.
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Figure 2. Reflectivity R with 5
non zero coefficients (top). Com-
pactly supported wavelet ψ (mid-
dle). Resulting seismic data Y =
R ? ψ (bottom).

If R =
P
i∈S aiδi then

(5) Y (z) = ψ ? R(z) =
X

i∈S
ai ψ(z − i).

If the support of ψ is included in an interval of
width ∆ then if the minimum scale of R is larger
than ∆ the wavelet components ψ(z − i) do not
overlap, as illustrated by figure 2. It thus seems
clear that the ai as well the positions i can be re-
covered from Y and that the l1 minimization recov-
ers R0 = R. Our goal is to extend this property to
filters ψ that are not compactly supported and find
the largest possible lower bound on the minimum
scale to reconstruct signals with an l1 minimiza-
tion.

To use recent results on sparse signal represen-
tations in redundant dictionaries, we introduce a
dictionary constructed by translating the wavelet
ψ at all locations. It is a matrix whose column
vectors are

D = [gi = ψ ? δi for 1 6 i 6 N ].
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Viewing D as a matrix, one can rewrite l1 mini-
mization:

(6) R0 = arg min ‖f‖1, with Df = Y.

Gribonval and Nielsen in [11] give a condition for
a vector R to be recovered by (6). This condition
relates the support of R to the kernel of D without
using the more classical coherence measure of D.
Tropp [13] and Fuchs [9, 10] have refined these con-
ditions to guarantee the reconstruction of R with
the l1 minimization (6).

Using an approach similar to Fuchs and Tropp,
the following lemma introduces a weaker condition
called Weak Exact Recovery Coefficient (WERC),
which is sufficient to guarantee the exact recon-
struction of R in our deconvolution problem.

Lemma 1. Let S ⊂ {1, . . . , N}, we define

WERC(S) =

sup
j /∈S

P
k∈S |〈gk, gj〉|

1 − sup
i∈S

P
k∈S,k 6=i |〈gk, gi〉|

If WERC(S) < 1 and if the support of R is included
in S then R is the only solution of (6).

This lemma is proved in [7]. Using this WERC
condition the following theorem proves that any
signal whose minimum scale is larger than a ∆ large
enough is uniquely recovered by an l1 minimization.

Lemma 2. If ψ is a filter whose Fourier trans-
form is C1 then there exists ∆ and Λ such that
any set S whose minimum scale is above ∆ satis-
fies WERC(S) 6 Λ < 1.

This lemma is also proved in [7]. As a conse-
quence of Lemma 1 and Lemma 2, it results that
any signal R whose minimum scale is larger than
∆ is recovered by the l1 minimization (6) from the
convolved data Y = DR = R ? ψ.

3. Sparse Spike Deconvolution With Noise

Let us now come back to the original noisy de-
convolution problem (1), with a convolution oper-
ator that is rewritten using the dictionary matrix
D:

Y = DR+W.

We shall prove that a sparse spike deconvolution
with an l1 minimization can recover a signal whose
support is the same as the support of R. An ap-
proximation of R is then computed by finding the
minimum norm signal which is solution of 3, and
whose support is equal to the calculated support.
This is performed with alternate projections on this
support as in the algorithm of Candès and Tao [2].

A sparse spike deconvolution computes

(7) R0 = arg min
f

1

2
||Df − Y ||22 + γ||f ||1, γ > 0.

Fuchs [9, 10] and Tropp [13] have introduced two
conditions which guaranty that the support of R0

is the same as the support of R. Using their work,
the following theorem proves that the support of
signals having a sufficiently large minimum scale is
recovered by (7) if γ is well chosen.

Theorem 1. Suppose that ψ has a Fourier trans-
form which is C1. There exists ∆ and Λ such that if
R has a minimum scale larger than ∆, WERC(S) <
Λ and if

(8) γ > ‖W‖∞‖ψ‖1
(1− Λ)

then the solution (7) has a support included in the
support of R.
Moreover if

min
z,R(z)6=0

|R(z)| > 5‖W‖∞‖ψ‖1
(1− Λ)

then there exists γ such that if R has a minimum
scale larger than ∆ then the solution (7) has a sup-
port equal to support of R.

This theorem is proved in [7]. It shows that
if the regularization parameter γ is large then the
solution has a support included in the support of
the original signal. Moreover, if the original signal
has spikes of sufficiently large amplitude then its
support can be exactly recovered by a sparse spike
deconvolution.

4. Minimum Scale Bound

Lemma 1 shows that the lower bound ∆ on the
signal minimum scale can be calculated with the
WERC, which depends on the dictionary D and
hence of the wavelet ψ. We give a numerical method
to compute such a lower bound for a given ψ. Since

〈gi, gj〉 = 〈ψ ? δi, ψ ? δj〉 = ψ ? ψ̄(|i − j|)
with ψ̄(z) = ψ(−z). Let us introduce

∀k, φ(k) = max
|j|>k

ψ ? ψ̄(j).

Let ∆0 be the minimum scale of S. One can verify
that

α(S) = sup
i∈S

X

k∈S,k 6=i
|〈gk, gi〉| 6 2

X

k

φ(k∆0)

and

sup
j /∈S

X

k∈S
|〈gk, gj〉| 6 max

j6∆0

(φ(j) + φ(∆0 − j)) + α(S).
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Figure 3. Two seismic traces Y
and two estimations of the reflec-
tivity R by sparse spike deconvo-
lution.

Using these two equations, we obtain an upper bound
of WERC(S) as a function of the minimum scale
∆0. Using lemma 1 we derive a lower bound ∆ on
the minimum scale of a signal R to recover it with
an l1 minimization.

To see whether the lower bound ∆ is tight, we
find signals that have Diracs whose distances are
smaller than ∆ and which can not be recovered

with an l1 minimization. This uses the ERC crite-
ria introduced by Tropp, in [13]. Tropp proves that
if a set S satisfies ERC(S) < 0 then there exists
a signal supported in S and whose support can’t
be recovered by (7). If the minimum scale of S is
∆1, this proves that the constant ∆ in Theorem 1
is larger than ∆1. We thus get a lower bound on
∆.

For a filter ψ such that ψ̂(ω) = cos2(ω) for ω ∈
[−π/2, π/2] and ψ̂(ω) = 0 for |ω| ∈]π/2, π], the
lower bound is equal to the upper bound and the
optimal ∆ in Theorem 1 is 5.

If ψ̂(ω) is dilated by a factor 5/6, the upper
and lower bounds remain equal and ∆ = 6. If it
is dilated by 2/3 the upper and lower bounds are
also equal and ∆ = 8. If it is dilated by 1/2 the
calculated upper bound is 12 and the calculated
lower bound is 11. The optimal value for ∆ in
Theorem 1 may thus be 11 or 12.

This shows that the minimum scale of a sparse
signal gives a precise criteria to evaluate if it can
be reconstructed with with a sparse spike decon-
volution using an l1 penalization. These results
were applied to seismic signal processing but re-
main valid for other deconvolution problems.
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