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Abstract

We study approximations of non-Gaussian stationary processes having long range
correlations with microcanonical models. These models are conditioned by the empiri-
cal value of an energy vector, evaluated on a single realization. Asymptotic properties
of maximum entropy microcanonical and macrocanonical processes and their conver-
gence to Gibbs measures are reviewed. We show that the Jacobian of the energy vector
controls the entropy rate of microcanonical processes.

Sampling maximum entropy processes through MCMC algorithms require too many
operations when the number of constraints is large. We define microcanonical gradi-
ent descent processes by transporting a maximum entropy measure with a gradient
descent algorithm which enforces the energy conditions. Convergence and symmetries
are analyzed. Approximations of non-Gaussian processes with long range interactions
are defined with multiscale energy vectors computed with wavelet and scattering trans-
forms. Sparsity properties are captured with l1 norms. Approximations of Gaussian,
Ising and point processes are studied, as well as image and audio texture synthesis.

1 Introduction

Building probabilistic models of large systems of interacting variables that can be e�ciently
estimated from data is a core problem in statistical physics, machine learning and signal
processing. We consider the estimation of the probability measure of stationary processes
X(u) on the infinite grid u 2 Z` given a single realization x̄(u), observed over a finite
domain u 2 ⇤d ⇢ Z` of cardinal d. For ` = 2 and ` = 1, such processes provide models
of image and audio textures. Given a piece of texture over ⇤d, we may want to synthesize
similar texture examples by sampling the resulting probability model. Building probability
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models from a single observation is also needed in finance and in many physical problems,
such as geophysics exploration or fluid dynamics. These estimations rely on the ability to
build low-dimensional approximations of the underlying stationary measure. This paper
introduces microcanonical sparse multiscale models, which can take into account non-
Gaussian phenomena and long range interactions.

In his seminal paper, Jaynes [27] interprets statistical physics as an inference of a prob-
ability distribution from partial measurements, by maximizing its entropy. In Jaynes words
[27], maximizing the entropy of a probability distribution “is maximally noncommittal with
regard to missing information.” Macrocanonical models are maximum entropy distribu-
tions conditioned on the expected value of a vector of potential energies. They are used in
large classes of stochastic models [24] and will thus be our departure point.

Since we only know a single realization x̄(u) of X(u) in ⇤d, the expected value of
stationary energies are estimated by the average potential energy vector �d(x̄) of x̄ in
the domain ⇤d of size d. When d is su�ciently large, weak ergodicity assumptions imply
that �d(X) concentrates near the empirical energy vector �d(x̄) with high probability. A
microcanonical model is a probability measure supported over the microcanonical set of all
x having nearly the same energy: k�d(x)��d(x̄)k  ✏. Maximum entropy microcanonical
models have a uniform density over this set. Under appropriate hypotheses, the Boltzmann
equivalence principle states that a maximum entropy microcanonical model converges to
the same Gibbs measure as the macrocanonical model, when d goes to 1. Section 2.4
reviews these results.

Microcanonical models exist with mild assumptions, even-though macrocanonical dis-
tributions may not exist, particularly for signals x having strong sparsity properties. We
thus consider these models not as approximations of macrocanonical models, which may
not exist, but as stochastic models in their own sake. Section 3 relates their entropy rate to
their energy vector. Sampling micro and macrocanonical measures is a classic problem in
statistical mechanics, typically approached with MCMC algorithms or Langevin Dynam-
ics [6, 15] or variational methods [45]. Their numerical e↵ectiveness on high-dimensional
problems is hindered by the slow mixing speed of the Markov Chain [15], which limits their
applications. To avoid this computational issue, we introduce an alternative class of mi-
crocanonical models where the Markov chain is replaced by a gradient flow resulting from
the microcanonical energy vector. A microcanonical gradient descent model begins from a
high entropy measure and computes a progressive transport of this measure with gradient
steps, towards the microcanonical set. Similar algorithms have been applied to texture
synthesis [23] with deep convolutional neural networks. Section 3 studies their convergence
to a microcanonical set. Although the gradient descent transport does not converge to a
maximum entropy measure, we prove that it preserves an important subset of symmetries
which is specified.

A major issue is to specify energy vectors �d providing accurate microcanonical gradient
descent approximations of non-Gaussian processes with long range interactions. Section
4 introduces energy vectors which take into account long range interactions by separating
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scales with wavelet transforms. Non-Gaussian properties are captured with l1 norms which
measure the sparsity of wavelet coe�cients. These energy vectors are augmented with
wavelet scattering coe�cients, providing information on the geometry of sparse wavelet
coe�cients [34, 10].

Section 5 studies the approximation of Gaussian, Ising and point processes, with micro-
canonical gradient descent models computed with wavelet and scattering energy vectors.
For Ising, the wavelet scale separation is closely related to the Wilson renormalization
group approach [5]. We show that scattering microcanonical model can also give good
perceptual approximations of large classes of image and audio textures.

Notation We use cursive captial letters A,B, . . . to denote sets, small capital letters
x, y, . . . to denote vectors, capitals X,Y, Z to denote random processes, and capital letters
E,H,�, . . . to denote operators and functions. x̂ denotes the Fourier transform of x.

2 Microcanonical and Macrocanonical Models

We consider a stationary process X(u) taking its values in an interval I ✓ R for all u 2 Z`.
We denote by µ the probability measure of this stationary process. We write Eµ(f(x)) the
expected value of f(X) or Ep(f(x)) if µ has a density p. Let ⇤d ⇢ Z` be a cube with d grid
points and I⇤d the product domain. Let x̄ 2 I⇤d be a realization of X restricted to ⇤d.
Microcanonical models described in Section 2.1 are probability densities conditioned on
a K-dimensional energy vector �d(x̄). Section 2.2 reviews the properties of macrocanon-
ical models which have a maximum entropy conditioned on Eµ(�d(x)). We concentrate
on shift-invariant energies �d introduced in Section 2.3, to define stationary maximum
entropy processes. Section 2.4 reviews the resulting convergence properties of micro and
macrocanonical models towards the same Gibbs measures. In statistical physics terms, it
amounts to verify the Boltzmann equivalence principle in the thermodynamical limit, for
lattice gaz models. We shall then see that microcanonical models are also interesting in
their own sake, even in regimes where macrocanonical models do not exist.

2.1 Maximum Entropy Microcanonical Models

A microcanonical model is computed from y = �d(x̄). To estimate the measure µ of a
stationary X from a single realization, we need ergodicity assumptions. We assume that
�d(X) concentrates with high probability around Eµ(�d(x)) when d goes to 1:

8✏ > 0 , lim
d!1

Probµ(k�d(X)� Eµ(�d(x))k  ✏) = 1. (1)

If there exists C > 0 such that kEµ(�d(x))k  C then this convergence in probability is
implied by a mean-square convergence:

lim
d!1

Eµ(k�d(x)� Eµ(�d(x))k2) = 0 . (2)
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The microcanonical set of width ✏ associated to y = �d(x̄) is

⌦d,✏ = {x 2 I⇤d : k�d(x)� yk  ✏} .

The concentration property (1) implies that when d goes to1, X belongs to microcanonical
sets ⌦d,✏ of width ✏ = ✏(d) converging to 0, with a probability converging to 1. In other
words, (1) guarantees that the support of the measure µ is mostly concentrated in ⌦d,✏ for
large d.

The di↵erential entropy of a probability distribution µ which admits a density p(x)
relatively to the Lebesgue measure is

H(µ) := �
Z

p(x) log p(x) dx . (3)

A maximum entropy microcanonical model µmi(d, ✏, y) was defined by Boltzmann as the
maximum entropy distribution supported in ⌦d,✏. We usually define �d(x) so that ⌦d,✏ is
compact. It results the maximum entropy distribution has a uniform density pd,✏:

pd,✏(x) :=
1⌦d,✏(x)R
⌦d,✏

dx
. (4)

Its entropy is therefore the logarithm of the volume of ⌦d,✏:

H(pd,✏) = �
Z

pd,✏(x) log pd,✏(x) dx = log
⇣Z

⌦d,✏

dx
⌘
. (5)

We thus face a fundamental trade-o↵ when constructing microcanonical models. On the
one hand, we seek representations �d that satisfy a concentration property (1) to ensure
that typical samples from µ are included in ⌦d,✏ with high probability, and hence typical
for the microcanonical measure µmi. On the other hand, the sets ⌦d,✏ must not be too large
to avoid having elements of ⌦d,✏ and hence typical samples of µmi which are not typical for
µ. To obtain an accurate microcanonical model, the energy �d must define microcanonical
sets of minimum volume, while satisfying the concentration (1).

2.2 Macrocanonical Models

Since �d(X) concentrates close to Eµ(�d(x)) and x̄ is a realization of X, one could expect
that the maximum entropy distribution conditioned on �d(x̄) converges to the maximum
entropy distribution conditioned on Eµ(�d(x)) when d goes to 1. Section 2.3 studies con-
ditions under which this Boltzmann equivalence principle is verified. We begin by reviewing
the properties of macrocanonical maximum entropy models conditioned on Eµ(�d(x)) = y.
Let M(I⇤d) denote the space of measures of I⇤d .
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A macrocanonical measure µma with density pma has a maximum entropy conditioned
on Epma(�d(x)) = y:

pma 2 arg max
p2Ay

H(p) , with

Ay = {p 2 M(I⇤d);

Z

I⇤d

�d(x) p(x) dx = y} . (6)

The entropy is a concave function of p whereas Ep(�d(x)) = y is a set of linear conditions
over p. If �d(x) is bounded over ⌦d,✏ then the set of densities p which satisfy the moment
conditions is compact. As a consequence, there exists a unique macrocanonical density pma

which maximizes H(p). It is obtained by minimizing the following Lagrangian

Ld(p,�) = �H(p) + h�,Ep(�d(x))� yi , (7)

also called free energy in statistical physics. The Lagrange multipliers � = {�k}kK are
adjusted so that the moment condition (6) is satisfied. The density which minimizes (7)
can be written as an exponential family

pma(x) = Z�1 exp(�h�,�d(x)i) , (8)

where Z guarantees that
R
pma(x) dx = 1 and hence

Z =

Z

I⇤d

exp(h�,�d(x)i) dx . (9)

A direct calculation shows that the resulting maximum entropy is

H(pma) = � logZ + h�, yi . (10)

If the probability measure of the restriction of X to ⇤d has a density p relatively to the
Lebesgue measure, then we can also verify that the Kullback-Liebler divergence

KL(p||pma) =

Z

⇤d

p(x) log
pma(x)

p(x)
dx

satisfies
KL(p||pma) = H(pma)�H(p) � 0 . (11)

Optimizing the interaction energy �d thus amounts to minimizing the resulting maximum
entropy H(pma) [49] so that H(pma) = H(p) and hence µma = µ.

Note that it is not necessary to impose that �d is bounded on I⇤d . If there exists
� 2 RK such that the distribution (8) satisfies the moment condition (6), then one can
verify from (11) that µma is the unique maximum entropy distribution. However, if �d is
not bounded on I⇤d then there may not exist such a � 2 RK . Indeed, the maximization of
entropy defines a limit distribution over distributions which satisfy the moment constraints,
but this limit may not satisfy the moment constraints anymore. One can construct such
examples with high order moment conditions [44]. In this case the macrocanonical model
does not exist although we may still define a microcanonical model.

5



Macrocanonical Estimation Given an energy vector �d, and desired moment con-
straints y = Eµ[�(x)], fitting macrocanonical models requires estimating Eµma [�d(x)]. This
expectation can be estimated with MCMC algorithms such as Metropolis-Hastings, which
sample the Gibbs distribution (8) to estimate Eµma(�d(x)) and iteratively update the La-
grange multipliers � until Eµma(�d(x)) converges to y. However, when d is large, this
is numerically unfeasible because sampling a high-dimensional probability distribution is
computationally dominated by the mixing time of the Markov Chain, which in generally
has an exponential dependence on the data dimensionality [33].

2.3 Shift Equivariant and Finite Range Potentials

Microcanonical densities in (4) and macrocanonical densities in (8) depend on �d. These
densities remain constant under any transformation of x which leaves �d(x) constant. Sta-
tionary densities are obtained with a �d which is invariant to translations. It is calculated
by averaging a potential vector which is equivariant to translations. We review simple
examples with l1 and l2 norms. It illustrates convergence issues of micro and macrocanon-
ical densities when d goes to 1, with sparse regimes where microcanonical models exist
without macrocanonical models.

Equivariant Potentials For any x 2 IZ`
we define a potential Ux(u) 2 RK for each

u 2 Z`. We write T⌧x(u) = x(u � ⌧) a translation of x by ⌧ 2 Z`. A potential U is
shift-equivariant if

8(x, ⌧) 2 IZ` ⇥ Z` , UT⌧x = T⌧Ux .

The energy �d(x) is computed from the restriction of x in a square ⇤d = [a, b]`. We extend
x over Zd into a signal which is b� a = d1/` periodic along each of the ` generators of the
grid Z`. With an abuse of notation we write Ux the potential U applied to the periodic
extension of x and

�d(x) = d�1
X

u2⇤d

Ux(u). (12)

Observe that �d(x) 2 RK is invariant to periodic translations of x in ⇤d modulo d1/`.
We say that Ux has a finite range � if Ux(u) only depends upon the values of x(u0) for

u � u0 2 [��,�]`. The resulting macrocanonical density (8) is a Markov Random Field
over cliques [u��, u+�]` around each u

pma(x) = Z�1 exp(�d�1
X

u2⇤d

h�, Ux(u)i) . (13)

To approximate random processes, we must choose � to be the integral scale beyond which
structures become independent. When there are long range interactions as in turbulent
flows, this integral scale may be very large. Before reviewing the general convergence
properties of the resulting micro and macrocanonical densities we consider two important
examples obtained with lr norms.
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Convergence of lr macro and microcanonical densities The potential Ux(u) =
|x(u)|r for u 2 Z defines an lr norm energy over intervals ⇤d = [1, d] ⇢ Z:

�d(x) = d�1 kxkrr = d�1
X

u2⇤d

|x(u)|r . (14)

The macrocanonical measure with density pma defined by Epma(�d(x)) = y � 0 is

pma(x) = Z�1e�� d
�1 kxkrr

for some � > 0. It is the density of a vector of d i.i.d random variables Xd(u) having an
exponential distribution / e��|z|r .

A microcanonical density pd,✏,y is uniform over ⌦d,✏ = {x 2 Rd : |d�1kxkrr � y|  ✏},
which is a thin shell around an lr ball in Rd. It is the density of a random vectorXd,✏ defined
on ⇤d. For a fixed m > 0, when d goes to 1 and ✏ goes to zero then the joint density of
Xd,✏(1), ..., Xd,✏(m) converges in total variation distance to i.i.d random variables having an
exponential distribution / e��|z|r [4], and E(|Xd,✏(u)|r) converges to y. The microcanonical
distribution thus converges to the macrocanonical distribution. This family of results has
a long history, first proved in 1906 by Borel [7] for r = 2 and in 1987 by Diaconis and
Freeman for r = 1 [18].

Intersections of l1 and l2 balls The situation becomes more complex for the two-
dimensional potential Ux(u) = (|x(u)|1, |x(u)|2) which defines an energy �d(x) = (d�1kxk1, d�1kxk22)
over intervals ⇤d = [1, d] ⇢ Z. We shall see that microcanonical models may exist without
macrocanonical models.

One can verify that there exists a unique maximum entropy density pma conditioned
on Epma(�d(x)) = y if and only if

1  y2
y21

 2,

in which case there exists �1 and �2 such that

pma(x) = Z�1e�d
�1 (�1kxk1+�2kxk22).

The microcanonical set ⌦d,✏ = {x : k�d(x) � yk  ✏} is a thin shell around the
intersection of the simplex kxk1 = d y1 and the sphere kxk22 = d y2. Since kxk22  kxk21 
dkxk22, this intersection is non-empty over a wider range defined by

1  y2
y21

 d.

When 1 < y2

y
2
1
 2, micro and macrocanonical densities have the same limit when d

goes to 1 and ✏ goes to zero. S. Chatterjee [13] proves that the joint microcanonical
density of Xd,✏(1), ..., Xd,✏(m) for a fixed m converges to i.i.d random variables having an
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exponential distribution equal to ↵e��1|z|��2|z|2 , and (E(|Xd,✏(u)|1,E(|Xd,✏(u)|2) converges
to y. If y2/y21 = 2 then �2 = 0. In this regime where macrocanonical densities are well-
defined, micro and macrocanonical measures converge to each other so the Boltzmann
equivalence principle is again verified.

However, when y2/y21 > 2 the macrocanonical density is not defined, so the Boltzmann
equivalence principle is violated. The microcanonical set contains sparse signals which are
not captured by exponential distributions. In this case, Chatterjee [13] proves that when
d goes to 1 and ✏ to 0, Xd,✏ has one large coe�cient randomly located at some u0 2 ⇤d

for which X2
d,✏
(u0) ⇠ d(y2� 2y21) with a probability which tends to 1. All other coe�cients

have a much smaller O(y1) amplitude. For m fixed, Xd,✏(1), ..., Xd,✏(m) converge in law
to i.i.d random variables having marginals equal to e��1|z|, but there is no convergence of
moments. This example shows that the Boltzmann equivalence principle is not necessarily
satisfied, particularly when signals exhibit a strong sparsity behavior.

2.4 Boltzmann Equivalence Principle

Micro and macrocanonical densities are defined over configurations x specified in a finite
cube ⇤d of dimension `. Let �d(x) be a shift-invariant energy vector computed by averag-
ing a finite range potential Ux. To compute estimators which converge when d goes to 1,
we need to ensure that microcanonical densities converge in the moments sense. We con-
sider the limit among measures defined on the configuration space IZ`

, with the product
topology of Borel fields on the interval I ⇢ R. The asymptotic equivalence between micro
and macrocanonical measures is called the Boltzmann Equivalence Principle [22]. Their
convergence to the same Gibbs measures was first proved by Landford [31]. It is the center
of a large body of work, rooted in the theory of large deviations [20]. We review results
obtained when I is a bounded interval and for Gaussian processes.

Macrocanonical Convergence When I is a bounded interval, macrocanonical distri-
butions are unique minimizers of the Lagrangian (7). When d goes to 1, the limit Gibbs
measure is defined by normalizing this Lagrangian so that it converges to a variational
problem defined over a stationary measure µ. Suppose that µ exists. Since Ux is equivari-
ant to translations and µ is stationary it results that Eµ(Ux(u)) = Eµ(Ux) does not depend
upon the grid point u. Suppose that µ has no long range correlation so that boundary
values have a negligible influence. Since �d(x) is an average of Ux(u) in ⇤d it follows that

lim
d!1

Eµ(�d(x)) = Eµ(Ux) .

The Lagrangian (7) includes a negative entropy term that diverges as d ! 1 if µ has
finite range correlations. The normalisation replaces the entropy by an entropy rate H(µ),
defined by considering the restriction µd of µ on the finite dimensional configuration space
I⇤d . Let qd be the density of µd relatively to the Lebesgue measure. If µ has a finite range
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correlation we expect that H(qd) grows linearly with d. The entropy rate is defined by

H(µ) = lim
d!1

d�1H(qd) . (15)

Normalizing the free energy Lagrangian (7) by d and taking the limit when d goes to
1 defines a new Lagrangian

L1(µ,�) = �H(µ) + h�,Eµ(Ux)� yi . (16)

Gibbs measures minimize this Lagrangian over the space of stationary measures for � fixed.
If U is a bounded, finite range and continuous potential, then one can prove [17, 25]

that the set of Gibbs measures which minimize this Lagrangian is a non-empty, convex
and compact set of measures. In general the solution is not unique because contrarily to
the finite Lagrangian (7) where �H(p) is strictly convex, the entropy rate H(µ) is a�ne
[17, 25]. This implies that depending upon boundary conditions in ⇤d, macrocanonical
densities may converge to di↵erent Gibbs measures, which is a phase transition phenomena.

Periodic boundary conditions over the finite cube ⇤d simplify computational algorithms,
but they are artificial. The limit Gibbs measure will not depend upon these boundary
conditions if it is unique, and hence if there is no phase transition. This happens when
there is no long range interactions, so that boundary values do not condition the probability
distributions of far away values. In this paper, we concentrate on problems where there is
no such phase transition.

Microcanonical convergence The main di�culty is to find conditions which guarantee
that microcanonical measures converge to the same Gibbs measure, having a maximum
entropy rate conditioned by moment conditions. Suppose that U is continuous, bounded
and has a finite range. When d goes to 1 and ✏ goes to zero, one can prove [17, 25]
that microcanonical distributions converge for an appropriate topology, to a limit measure
which minimizes the same Lagrangian (16) as the one obtained from canonical densities.
If there is no phase transition, so that the canonical measure converges to a unique Gibbs
measure µ, then this limit is the same for canonical and microcanonical measures. More
specifically, if f(x) is a bounded and continuous function defined for any x 2 IZ`

, then the
expected value of f computed over ⇤d with microcanonical and macrocanonical measures
converge to Eµ(f(x)) when d goes to 1. We thus have a convergence for all bounded
moments. However, it is not necessary to impose that I is bounded to verify the Boltzmann
equivalence principle, as shown by the following Gaussian example.

Gaussian processes Gaussian stationary measures are important examples of Gibbs
measures where x takes its values in I = R. They are obtained with a quadratic potential
Ux = {Ukx}kK computed with convolutions so that it is equivariant to translations over
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the grid Zd. Let us define

Ukx(u) = |x ? hk(u)|2 =
���
X

m2Zd

x(u�m)hk(m)
���
2
,

where each hk has a support in [��,�].
If x 2 R⇤d then Ux is computed by extending x on Z` with a periodic extension beyond

boundaries. Potentials can then be rewritten with circular convolutions of x

Ukx(u) = |x ? hd,k(u)|2 =
���
X

m2⇤d

x(m)hd,k(n�m)
���
2
. (17)

with periodic filters

hd,k(n) =
X

m2Z`

hk(n�md1/`) . (18)

The energy �d(x) is thus a vector of normalized l2 norms:

�d(x) =
n
d�1

X

u2⇤d

|x ? hd,k(u)|2 = d�1kx ? hd,kk22
o

kK

. (19)

If ĥk(!) does not vanish for all ! 2 [0, 2⇡] and k  K then Varadhan and Donsker
[19] proved that Boltzmann equivalence principle is satisfied when d goes to 1. The
microcanonical and macrocanonical models converge to a Gaussian stationary process µ
whose power-spectrum is

Pµ(!) =
⇣ KX

k=1

�k|ĥk(!)|2
⌘�1

. (20)

The next section studies asymptotic properties of microcanonical models even though the
macrocanonical model may not exist.

3 Microcanonical Models beyond Boltzmann Equivalence

We can guarantee that a maximum entropy microcanonical measure exists by making sure
that microcanonical ensembles are compact. Even if this valid, the macrocanonical measure
may not exist if x(u) is defined over an interval I which is not bounded. In this case the
Boltzmann equivalence principle is violated. Section 2.3 gives an example with uniform
measures over intersections of l1 and l2 balls, in the sparse regime. Microcanonical models
thus o↵er more flexibility, particularly for signals having sparse behavior.

In the rest of the paper, we embed all processes, including binary processes such as
Ising and Bernoulli over R. We thus consider that x(u) takes its value in I = R and
I⇤d = Rd, where the grid topology is omitted for ease of notation. We study microcanonical
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properties independently from the corresponding macrocanonical measures which may not
exist. For this purpose, Section 3.1 relates the maximum entropy of a microcanonical
measure to the Jacobian of the energy potential. It gives su�cient conditions so that
the entropy rate converges when d goes to 1. However, sampling a maximum entropy
microcanonical process is computationally very expensive. Section 3.2 introduces a di↵erent
class of microcanonical processes obtained by transporting a maximum entropy measure
with a gradient descent algorithm which converges towards the microcanonical set. The
transported measure does not have a maximum entropy but we prove that it has common
symmetries with the maximum entropy measure. Convergence to microcanonical sets is
studied in Section 3.3.

3.1 Microcanonical Entropy and Jacobian

We study the convergence of maximum entropy microcanonical models when d goes to 1
by studying the convergence of their entropy rate without supposing that there exists a
macrocanonical model. This is done by relating the maximum entropy rate to the Jacobian
of the energy �d.

We consider a shift-equivariant and finite range potential from Section 2.3, and the
corresponding microcanonical measure µmi

d,✏
, defined as the uniform distribution on compact

sets of the form
⌦d,✏ = {x 2 Rd : k�d(x)� yk  ✏} .

We saw in (5) that the entropy of µmi
d,✏

is

H(µmi
d,✏
) = �

Z
pd,✏(x) log pd,✏(x) dx = log

⇣Z
1⌦d,✏(x) dx

⌘
. (21)

Since �d(x) = d�1P
u2⇤d

Ux(u) and Ux(u) only depends on the values of x(i) for

i 2 [u ��, u +�]`, one can verify that the i-th column Ji�d(x) = @x(i)�d(x) 2 RK only

depends upon the restriction of x in [i ��, i +�]`. Moreover, thanks to the equivariant
structure of U , one can verify that

8 i  d , Ji�d(x) = d�1
X

|m|�

@x(0)U(T�i)x(m) ,

so the global properties of the Jacobian J�d(x) can be derived from the Jacobian of the
potential, restricted on a window:

JU : R(2�+1)` ! RK (22)

x 7!
X

|m|�

@x(0)Ux(m) .

We denote by @A the frontier of a set A and by Ao = A � @A the interior of A, and
by A the complement of A. We also denote by |J�d(x)| =

p
det (J�d(x)J�d(x)T ) the
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K-dimensional determinant of J�d, and by dH(x)L the L-dimensional Hausdor↵ measure.
We shall make the following assumptions on U :

(A) U is uniformly Lipschitz on compact sets, which implies that for any compact C ⇢ Rd

there exists � � 0 such that

8(x, x0) 2 C2d , k�d(x)� �d(x
0)k2  � kx� x0k2 . (23)

It also implies that |J�d(x)|  �K for x 2 C. We denote � = Lip�.

(B) We shall also suppose that ��1
d

maps compact sets C to compact sets, with a con-
trolled growth with respect to d. For each compact set C ⇢ RK , there exists a
constant C independent of d such that

8 d , ��1
d

(C) = {x 2 Rd : �d(x) 2 C} ✓ B2,d(C
p
d) , (24)

where Bp,d(R) denotes the d-dimensional lp Euclidean Ball of radius R. It follows
that ��1

d
(y) is a compact and Lipschitz manifold whose dimension is typically d�K,

except for degenerated cases. For example, if d�1kxk22 is a component of the vector
�d, this condition is satisfied.

Lastly, we need to control the integrability of |J�d|�1 nearby microcanonical sets. More
precisely, for each y and any su�ciently small ✏ > 0, we require that |J�d(x)|�1 is integrable
in ⌦y

d,✏
. The following gives a su�cient condition which depends only on the potential

function.

(C) For some R > 0, let X be drawn from the uniform measure in the ball B(2�+ 1, R)
and Z = JU(X) 2 RK be the random vector obtained by applying the mapping JU
defined in (22). We shall suppose that there exists ⌘ > 0 such that

8 S ⇢ RK Lebesgue measurable , P (Z 2 S) . |S|⌘ . (25)

This condition assumes that the di↵erential of U does not concentrate too much on a
low-dimensional subspace of RK , nor in a discrete subset, but it does not require that its
distribution is absolutely continuous with respect to the Lebesgue measure. We shall see
next that potentials of the form Ux = {|x ? hk|p}kK with p = 1, 2 with complex filters hk
define an integrable |J�d|�1.

The following theorem computes the entropy of a microcanonical process from a change
of variable metric, which depends upon the Jacobian of the interaction energy �d. The
theorem derives a microcanonical entropy rate which converges when d goes to 1.

Theorem 3.1. Suppose U verifies (A), (B) and (C) above. Then the following properties
are verified:

12



(i) For su�ciently large d,

H(µmi
d,✏
) = log

Z

kz�yk✏

�d(z) dz , (26)

where �d is the change of variable metric which satisfies

�d(y) =

Z

��1
d (y)

|J�d(x)|�1 dHd�K(x) < 1 a.e, (27)

where Hd�K is the d � K dimensional Hausdor↵ measure. Moreover, �d(y) has a
finite integral on compact sets.

(ii) The function �d is strictly positive in the interior of �d(Rd), up to a thin shell on the
boundary; ie, on sets Cd ⇢ �d(Rd) satisfying

sup
y2Cd

dist(y,�d(Rd))  c · d�1/` ,

for some constant c.

(iii) Suppose that either � = 1, or that the potential U is Hölder continuous with param-
eter ↵ < 2/`: |U(x) � U(x0)|  Ckx � x0k↵. Then, for each ✏ > 0, the entropy rate
d�1H(µmi

d,✏
) converges as d ! 1 and satisfies

�1 < lim
d!1

d�1H(µmi
d,✏
)  C log kyk2 , (28)

where C is a universal constant.

The proof is in Appendix A. This theorem highlights the connection between the en-
tropy and the Jacobian through �d(y), via the coarea formula. It defines the entropy rate
of a microcanonical ensemble for general �d in the thermodynamical limit d ! 1, without
relying on a macrocanonical model. One can compare the conditions of Theorem 3.1 with
those that ensure the convergence of the microcanonical and macrocanonical measures. In
[43, 16] this equivalence is established for bounded, finite-range potentials U . Our condi-
tion to prove that the entropy rate converges is weaker (U Hölder continuous), but we do
not study convergence beyond the entropy rate. Studying the convergence of the micro-
canonical measure in more general conditions remains an open question. Finally, notice
that for positive integers, the Hausdor↵ measure is equivalent to the Lebesgue measure up
to a constant rescaling.

The microcanonical thickness parameter ✏ is important to ensure appropriate conver-
gence. The following corollary quantifies the e↵ect of ✏ in the entropy rate, and proves that
its contribution to the energy is small for su�ciently large d.

13



Corollary 3.2. Under the same conditions as Theorem 3.1, for d fixed and when ✏ ! 0,
the entropy rate of the ✏-thick microcanonical model satisfies

d�1H(µmi
d,✏
) ⇠ K

d
log ✏.

As a consequence of this corollary, the entropy variation due to a change in the thickness
from ✏ to ✏0 is of the order of K

d
log

�
✏

✏0
�
, which is negligible if K log

�
✏

✏0
�
⌧ d.

This paper concentrates on interaction energy vectors �d defined by l2 and l1 norms of
convolutions of x with multiple filters. The next proposition proves that such interaction
energies satisfy the assumptions of Theorem 3.1. The proof is in Appendix C.

Proposition 3.3. �d satisfies assumptions (A), (B) and (C) in the following cases:

(i) �d(x) = {d�1kx ? hkk22}kK and the {hk}kK are linearly independent.

(ii) �d(x) = {d�1kxk2, d�1kxk1}.

(iii) �d(x) = {d�1kxk2, d�1kx?hkk1}kK and the hk are linearly independent with |ĥk(�!)| 6=
|ĥk(!)| for all !.

3.2 Microcanonical Gradient Descent Model

Computing samples of a maximum entropy microcanonical model is typically done with
MCMC algorithms or Langevin Dynamics [15], which is computationally very expensive.
Computations can be considerably reduced by avoiding to enforce the maximum entropy
constraint over the microcanonical set. Microcanonical models computed with alternative
projections and gradient descents have been implemented to sample texture synthesis mod-
els [26, 39, 23]. Another related sampling algorithm is the so-called Herding algorithm by
Welling [47], which produces ‘pseudo-samples’ of a microcanonical model in a deterministic
fashion by solving a sequence of primal-dual updates.

We consider microcanonical gradient descent models obtained by transporting an initial
measure towards a microcanonical set, using gradient descent with respect to the distance
to the microcanincal ensemble. We prove that the gradient descent preserves many sym-
metries of the maximum entropy microcanonical measure.

Let �d be a shift-invariant function as defined in Section 2.3 and y 2 �d(Rd). We
transport an initial measure µ0 towards a measure supported in a microcanonical set ⌦d,✏,
by iteratively minimising

E(x) =
1

2
k�d(x)� yk2 (29)

with mappings of the form

'n(x) = x� nrE(x) = x� nJ�d(x)
T (�d(x)� y) , (30)
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where n is the gradient step at each iteration n.
Given an initial measure µ0, the measure update is

µn+1 := 'n,#µn, (31)

with the standard pushforward measure f#(µ)[A] = µ[f�1(A)] for any µ-measurable set
A, where f�1(A) = {x; f(x) 2 A}.

Samples from µn are thus obtained by transforming samples x0 from µ0 with the map-
ping '̄ = 'n �'n�1 · · · �'1. It corresponds to n steps of a gradient descent initialized with
x0:

xl+1 = xl � lJ�d(xl)
T (�d(xl)� y) .

Next section studies the convergence of the gradient descent measures µn. Even if
they converge to a measure supported in a microcanonical set ⌦d,✏, in general they do not
converge to a maximum entropy measure on this set. However, the next theorem proves
that if µ0 is a Gaussian measure of i.i.d Gaussian random variables then they have a large
class of common symmetries with the maximum entropy measure. Let us recall that a
symmetry of a measure µ is a linear invertible operator L such that for any measurable
set A, µ[L�1(A)] = µ[A]. A linear invertible operator L is a symmetry of �d if for all
x 2 Rd, �d(L�1x) = �d(x). It preserves volumes if its determinant satisfies |detL| = 1. It
is orthogonal if LtL = LLt = I and we say that it preserves a stationary mean if L1 = 1
for 1 = (1, ..., 1) 2 R`.

Theorem 3.4. (i) If L is a symmetry of �d which preserves volumes then it is a symmetry
of the maximum entropy microcanonical measure.
(ii) If L is a symmetry of �d and of µ0 then it is a symmetry µn for any n � 0.
(iii) Suppose that µ0 is a Gaussian white noise measure of d i.i.d Gaussian random vari-
ables. If L is a symmetry of �d which is orthogonal and preserves a stationary mean then
it is a symmetry of µn for any n � 0.

The theorem proof is in Appendix D. The initial measure µ0 is chosen so that it has
many symmetries in common with �d and hence the gradient descent measures have many
symmetries in common with a maximum entropy measure. A Gaussian measure of i.i.d
Gaussian variables of mean m0 and �0 is a maximum entropy measure conditioned by a
stationary mean and variance. It is uniform over spheres which guarantees that it has
a large group of symmetries. The stationary mean m0 and variance �20 are adjusted so
that that microcanonical sets are nearly included over the sphere of mean m01 and radius
�0, where µ0 concentrates and is uniform. We thus set m0 and �20 to be the empirical
stationary mean and variance calculated from the realization x̄ of X:

m0 = d�1
X

u2⇤d

x̄(u) and �20 = d�1
X

u2⇤d

(x̄(u)�m0)
2 . (32)
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Observe that periodic shifts are linear orthogonal operators and preserve a stationary
mean. The following corollary applies property (iii) of Theorem 3.4 to prove that µn are
circular-stationary.

Corollary 3.5. If �d is invariant to periodic shift and µ0 is a Gaussian white noise then
µn is circular-stationary for n � 0.

3.3 Convergence of Microcanonical Gradient Descent

This section studies conditions so that the gradient descent (31) converges to a stationary
measure supported in a microcanonical ensemble, and we give a lower bound of its entropy
rate. To guarantee that the algorithm is not trapped in local minima, we use the character-
ization of stable solutions from [32, 38] based on the second-order analysis of critical points
of (29). Such analysis reveals that gradient descent methods do not get stuck at critical
points which are strict saddles — in which at least one Hessian eigenvalue is strictly nega-
tive, since the set of initialization parameters corresponding to the non-negative spectrum
has measure 0 relative to µ0.

Definition 3.6. We say that �d = (�1, . . . ,�K) has the strict saddle condition if �d is at
least C2 and for each v 2 Null(J�d(x)>) ✓ RK , v 6= 0, the matrix

X

kK

vkr2�k(x) + J�d(x)
>J�d(x) (33)

has at least one strictly negative eigenvalue, where r2�k is the Hessian of �k.

The following theorem, proved in Appendix E, establishes basic properties of the dis-
tribution generated by gradient descent, including su�cient conditions for its convergence
to the microcanonical ensemble.

Theorem 3.7. Assume �d is C2 and satisfies property (B) (24). Suppose that �d is
Lipschitz with Lip�d

= � and that r�d is also Lipschitz, with Lipr�d
= ⌘. Let y 2 �d(Rd)�.

Then:

(i) If �d satisfies the strict saddle condition, then (29) has no poor local minima. More-
over, if |J�d(x)| > 0 for all x 2 ��1

d
(y), then by choosing step-sizes n such

that n < ⌘�1 for all n, µn converges almost surely to a limit measure µ1, i.e.

Prob
h
µn(A) ! µ1(A) for any continuity set A

i
= 1. Moreover, µ1 is supported in

the microcanonical ensemble ��1
d

(y) with appropriate choice of learning rate n; that
is, A /2 ��1

d
(y) ) µ1(A) = 0.

(ii) The entropy rate d�1H(µn) satisfies

d�1H(µn) � d�1H(µ0)�
✓
1� K

d

◆
⌘
X

n0n

n0rn0 � K

d
�2

X

n0n

n0 , (34)

16



where rn = Eµn

p
E(x) is the average distance to the microcanonical ensemble at

iteration n.

Part (i) gives su�cient conditions for the gradient descent sampling to converge towards
the microcanonical ensemble. Each gradient descent step can reduce the entropy rate.
By computing an upper bound of this entropy reduction, part (ii) gives a lower bound
of the entropy rate after n iterations. Although the gradient descent converges to the
microcanonical ensemble in general the resulting measure will not have a maximum entropy.
However, (34) gives a lower bound of its entropy rate. By choosing a measure µ0 having a
maximum entropy, we maximize the entropy of the lower-bound (34).

Our current results rely on second-order stationarity assumptions, but first-order sta-
tionary condition rE(x⇤) = 0 may be su�cient to characterize convergence as d ! 1. In-
deed, this condition implies that either we reached the microcanonical ensemble, �(x⇤) = y,
or that we have found a non-regular point, with |J�d(x⇤)| = 0. Such points occur with
vanishing probability as d ! 1, but the rigorous analysis of this phenomena is left for
future work.

The su�cient condition for µn to converge to a limit measure µ1 requires |J�d(x)| > 0
for x 2 ��1

d
(y), which for certain choices of �d may be hard to check. The following corol-

lary, proved in Appendix F, provides an alternative su�cient condition which is stronger
but easier to evaluate.

Corollary 3.8. If �d is C1 and Lipschitz and satisfies the strict saddle condition, then
µn converges for any y 2 �d(Rd) up to a set of zero measure, and µ1 is supported in the
microcanonical ensemble.

We now give examples of energies �d which satisfy the assumptions of previous theorem.
The next theorem, proved in Appendix G, shows that the l2 ellipsoid representation satisfies
the strict saddle condition, and therefore that the microcanonical gradient descent measure
is supported in the microcanonical ensemble.

Theorem 3.9. If �d(x) = {d�1kx ? hkk22}k with linearly independent and compactly sup-
ported hk, then �d satisfies the strict saddle condition and |J�d(x)| > 0 for x 2 ��1

d
(y)

with y 2 �d(Rd)�, and therefore µ1 is supported in the microcanonical ensemble.

A current limitation of the convergence analysis is that it relies on smoothness properties
of �d, thus leaving out of scope the l1-based representations. This limitation is intrinsic to
the convergence analysis of non-smooth, non-convex optimization methods, which provides
no guarantees using simple gradient descent. The analysis of other algorithms such as
ADMM [46] or gradient sampling [12] in such conditions is left for future work.

Continuous-time limit dynamics: The measure transport (31) defined by gradient
descent can be seen as a discretization of an underlying partial di↵erential equation in the
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space of measures, describing the behavior as the step-size n ! 0. The resulting dynamics
is described by the well-known Liouville equation, expressed in the distributional sense as

@tµt = �div(rE · µt) , (35)

or equivalently

8 � 2 C1 , @t

✓Z
�(x)µt(dx)

◆
= �

Z
hr�(x),rE(x)iµt(dx) .

As opposed to MCMC algorithms, which are discretizations of di↵usion Stochastic Di↵er-
ential Equations (SDEs), the dynamics in our case are deterministic, and the only source
of randomness comes from the initial measure µ0. Notice also that the symmetry preser-
vation properties described in Theorem 3.4 directly apply to the Liouville equation above.
Equation (35) can also be interpreted as a Wasserstein Gradient Flow over the functional
energy

E [µ] =

Z
E(x)µ(dx) , @tµt = �div

✓
r@E
@µ

µt

◆
.

Recent work [14, 41] has established global convergence of such Wasserstein Gradient Flows
in the cases where E is positively homogeneous, for suitable initialization. Although in our
case E is not homogeneous, we leave for future work to exploit the homogeneity properties
of �d to derive similar convergence results that can generalize 3.7.

4 Multiscale Microcanonical Wavelet and Scattering Models

We study multiscale microcanonical models obtained with energy vectors computed with a
wavelet transform. Next section introduces energy vectors computed with l2 and l1 norms
of wavelet coe�cients. Section 4.2 introduces scattering which provide complementary l1

norm coe�cient computed with a second wavelet transform.

4.1 Wavelet Transform l
2
and l

1
Norms

A wavelet transform, computes signal variations at di↵erent scales through convolutions
with dilated wavelets. Maximum entropy models conditioned by wavelet l2 norms define
Gaussian processes. Wavelet transforms define sparse representations of large classes of
signals. This sparsity characterize non-Gaussian behavior which is specified by wavelet l1

norms. We write bx the Fourier transform of x.

Wavelet Transform Wavelet coe�cients are convolutions x ?  j,q(u) for u 2 R`, where
each wavelet  j,q is a dilated band-pass filters which cover di↵erent frequency domains

 j,q(u) = 2�`j q(2
�ju) ) b j,q(!) = b q(2

j!). (36)
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TheQmother wavelets  q have a support in [�C,C]` so the support of  j,q is in [�C2j , C2j ]`.

The Fourier transform  ̂q(!) have an energy concentrated in frequency intervals which
barely overlap for di↵erent q.

If x is supported in a cube ⇤d ⇢ Z`, then u is discretized on this square grid. Con-
volutions are defined by extending x into a periodic signal over Z`. We showed in (17)
that it is equivalent to compute circular convolutions with periodic wavelet filters (18).
Discrete periodic wavelets  j,q are band-pass filters with a zero average

P
u2⇤d

 j,q(u) = 0.

The minimum scale 2j is limited by the sampling interval normalized to 1, whereas the
maximum scale 2J is limited by the width d1/` of ⇤d.

Wavelet coe�cients x ?  j,q(u) separate the frequency components of x in several fre-
quency bands, at scales 1  2j  2J . The remaining low frequencies at scales larger than
2J are carried by a single low-pass filter which we write  J,0(u) = 2�Jd 0(2�Ju), whose
support is also included in [�C2J , C2J ]`.

The wavelet transform is defined by

Wx =
n
x ?  j,q

o

1jJ,qQ

. (37)

We impose that the frequency supports  ̂j,q cover uniformly the whole frequency domain,
which is captured by the following Littlewood-Paley condition. There exists � < 1 such
that

8! , 1� �  | ̂J,0(!)|2 +
1

2

X

j,q

(| ̂j,q(!)|2 + | ̂j,q(�!)|2)  1 + � . (38)

The condition implies the following energy inequalities for any x 2 I⇤d

(1� �)kxk22  kx ?  J,0k22 +
X

j,q

kx ?  j,qk22  (1 + �) kxk22 . (39)

This is proved by multiplying (38) with |x̂(!)|2 and applying the Plancherel equality. This
property implies that W is a bounded and invertible operator, and its inverse has a norm
smaller than (1� �)�1/2. If � = 0 then W is an isometry.

For audio signals in dimension ` = 1, each wavelet is a complex filter whose Fourier
transform  ̂q(!) has an energy concentrated in the interval [2q/Q, 2(q+1)/Q]. It results that

 ̂j,q(!) covers the interval [2�j+q/Q, 2�j+(q+1)/Q] and satisfy the Littlewood-Paley condition
(38). The parameter Q is the number of wavelets per octave, which adjusts their frequency
resolution. Wavelet representations are usually computed with about Q = 12 wavelets per
octave, which are similar to half-tone musical notes. In numerical computations, we choose
Gabor wavelets as in [2].

For images in ` = 2 dimensions, each wavelet is computed by rotating a single mother
wavelet

 j,q(u) = 2�`j  (2�jr�1
q u) ) b j,q(!) = b (2jrq!), (40)
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where rqu is a rotation of u 2 R2 by an angle q⇡/Q. We choose a complex mother wavelet

 (u) whose Fourier transform  ̂(!) is centered at a frequency ⇠ over a frequency domain
of radius approximately |⇠|/2. The support of each  ̂j,q is dilated and rotated according to
(40). Wavelet coe�cients x ?  j,q thus compute variations of x at scales 2j along di↵erent
directions. In numerical computations we use Morlet wavelets as in [10] with Q = 8 angles
to satisfy the Littlewood-Paley condition (38).

Wavelet l2 norms We saw in Section 2.4 that microcanonical maximum entropy mea-
sures conditioned by energy vectors (50) of l2 norms converge to Gaussian processes. We
can define such energy vectors with wavelet l2 norms, with the quadratic potential

Ux = {|x ?  j,q|2}jJ,qQ . (41)

Since each filter support is included in [�C2J , C2J ]`, this potential has a finite range
� = C2J . When x is defined over a cube ⇤d then Ux is computed by periodizing x which
is equivalent to periodizing the wavelet filters and replacing convolutions with circular
convolutions, as shown in (17). To simplify notations, the periodized filters are still written
 j,q. According to (50) the energy over a cube ⇤d is given by normalized l2 norms

�d(x) = {d�1 kx ?  j,qk22}jJ,qQ. (42)

It measures the energy of x in the di↵erent frequency bands covered by each  ̂j,q.

Wavelet l1 norms for sparsity Non-Gaussian properties can be captured with sparsity
properties. Suppose that X ?  j,q(u) has few large amplitude coe�cients and a large
proportion of negligible coe�cients. For example, if X(u) is piecewise regular then X ?
 j,q(u) is negligible over domains where X(u) is regular and it has a large amplitude near
singularities and sharp variations. The marginal probability density of X ?  j,q(u) is then
highly concentrated near 0. It is thus better approximated by a Laplacian rather than a
Gaussian distribution. We saw in Section 2.3 that Laplacian distributions are maximum
entropy distributions conditioned by 1st order moments. This suggests to estimate Eµ(|x?
 j,q(u)|) as opposed to Eµ(|x ?  j,q(u)|2), with a normalized l1 norm

d�1kx ?  j,q(u)k1 = d�1
X

u2⇤d

|x ?  j,q(u)| .

A wavelet l1 norm energy is defined by replacing the quadratic potential (41) by a modulus
potential

Ux = {|x ?  j,q|}jJ,qQ , (43)

which also has a finite range � = C2J . The resulting energy over a cube ⇤d is

�d(x) = { d�1 kx ?  j,qk1}jJ,qQ. (44)

It captures the sparsity of wavelet coe�cients for each scale and orientation.
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4.2 Scattering Transform

Wavelet l1 norm measure the sparsity of wavelet coe�cients but do not specify the spa-
tial distribution of large amplitude wavelet coe�cients. Scattering transforms provide
information about this geometry by computing interaction terms across scales, with an
iterated wavelet transform. Their mathematical properties are described in [34, 11], and
applications to image and audio classification are studied in [10, 2]. We review impor-
tant properties needed to define microcanonical models, including the energy conservation
allowing to recover wavelet l2 norms.

The mean of x is estimated over a cube u 2 ⇤d by d�1P
u2⇤d

x(u). The modulus
of a wavelet coe�cient |x ?  j,q(u)| measures the variation of x around its mean, in a
neighborhood of u of size proportional to 2j . A normalized l1 norm is the average of
|x ?  j,q(u)|

d�1kx ?  j,qk1 = d�1
X

u2⇤d

|x ?  j,q(u)| .

Similarly, we can capture the variability of |x? j,q(u)| around this mean by convolving
|x ?  j,q(u)| with a new set of wavelets:

||x ?  j,q| ?  j0,q0(u)|.

It measures the variations of |x? j,q(u)| in a neighborhood of size 2j
0
. We shall consider the

second wavelet  j0,q0 is calculated from the same mother wavelet than  j,q but for di↵erent
j0, q0, although the second mother wavelet may be changed as in [2].

The maximum scales 2j and 2j
0
remain below a cut-o↵ scale 2J which specifies the

maximum interaction range of the model. Incorporating first and second order coe�cients
defines a new potential which captures the multiscale variations of x as well as interaction
terms across scales:

Ux = {x , |x ?  j,q| , ||x ?  j,q| ?  j0,q0 |}j,j0J,q,q0Q. (45)

The corresponding energy vector is

�d(x) =
n
d�1

X

u2⇤d

x(u) , d�1 kx ?  j,qk1 , d�1 k|x ?  j,q| ?  j0,q0k1
o

1j,j0J,q,q0Q

. (46)

It includes K = 1 + JQ+ J2Q2 coe�cients.
The following proposition, shows that wavelet l2 norms can be closely approximated

from l1 norm scattering coe�cients. As a result, we will be able to approximate Gaussian
process as well as non-Gaussian processes with a scattering energy vector. It is proved in
Appendix H,
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Proposition 4.1. Suppose that the wavelets satisfy (38) with � = 0 then for J = log2 d

kx ?  j,qk22 = kx ?  j,qk21 +
log2 dX

j0=1

QX

q0=1

k|x ?  j,q| ?  j0,q0k21 (47)

+

log2 dX

j0=1

QX

q0=1

log2 dX

j00=1

QX

q00=1

k|x ?  j,q| ?  j0,q0 | ?  j00,q00k22.

This proposition proves that l2 of wavelet coe�cients are approximated by sums of
first and second order scattering coe�cients plus a third order term

P
j0,q0,j00,q00 k|x ?  j,q| ?

 j0,q0 | ?  j00,q00k22. For most stationary process this third order term is much smaller than
the first two and can be neglected [28]. The theorem hypothesis supposes that wavelets
satisfy the Littlewood inequality (38) with � = 0. If � is non-zero, it creates corrective
terms proportional to (1 � �)2. Observe also that we set J = log2 d. In microcanonical
models, 2J is a fixed scale so that the number of scattering coe�cients does not increase
with d.

5 Approximations of Stationary Processes

We study approximation of probability measures associated with stationary processesX(u),
u 2 Z`, taking its values in R, with gradient descent microcanonical models calculated with
shift-invariant energy vectors. We first concentrate on Gaussian, Ising and point processes
whose properties are well understood mathematically. We then consider the synthesis of
image and audio textures from a single example.

5.1 Microcanonical Approximation Errors

This section analyzes the approximation errors of a stationary process X of probability
measure µ by a gradient descent microcanonical model of measure µn. The gradient descent
is initialized with a Gaussian white measure µ0 whose mean and variance are defined in
(32). Since the energy �d is shift-invariant, Corollary 3.5 proves that the gradient descent
measures µn are stationary.

Concentration Section 2.1 explains that a microcanonical model is based on a concen-
tration hypothesis, which needs to be verified. For almost all realization x of X, �d(x)
should remain in a ball of radius ✏d which converges to zero when d goes to 1. We can
verify this convergence in probability from a mean-square convergence, by calculating the
variance

�2µ = Eµ

⇣
k�d(x)� Eµ(�d(x))k2

⌘
.
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The Markov inequality implies that limd!1 �µ(�d(x))/✏d = 0 then

lim
d!1

Prob
⇣
k�d(X)� Eµ(�d(x))k  ✏d

⌘
= 0 .

This means that when d increases there is a probability converging to 1 that a realization
of X belongs to a microcanonical set computed from a single realization x̄ with y = �d(x̄):

⌦d,✏d
=
n
x 2 R⇤d : k�d(x)� �d(x̄)k  ✏d

o
.

In numerical calculations, we stop the gradient descents after a fixed number n of
iterations so that the resulting gradient descent measure is supported in a microcanonical
set ⌦d,✏ for ✏ small enough. If ✏/�2µ(�d(x)) � 1 then nearly all realizations of X are
included in ⌦d,✏. However, the microcanonical set may become too large and hence include
points which are not typical realizations of X. We thus typically wait to reach a smaller ✏
width

Since �(x) is in a space of dimension K, Corollary 3.2 proves that reducing ✏ by a factor
� reduces the maximum entropy of the microcanonical model by a factor of the order of
K log �. In the extensive case, this maximum entropy is proportional to d so the entropy
reduction is negligible if K | log(✏/�µ(�d(x))| ⌧ d. In all numerical calculations of this
paper ✏/�µ(�d(x)) is of the order of 10�3. We evaluate the concentration of �d(X) by
computing the normalized variance

�2µ(�d) =
Eµ

⇣
k�d(x)� Eµ(�d(x))k2

⌘

Eµ

⇣
k�d(x)k2

⌘ . (48)

Microcanonical gradient descent entropy Since I = R, the gradient descent is ini-
tialized with a Gaussian white noise measure µ0 of variance �20 = d�1kx̄k22. The convergence
of the gradient descent algorithm to the microcanonical set is checked by verifying that for
almost all Gaussian white realization x0, after a su�cient large number n of gradient steps

k�d(xn)� �d(x̄)k  ✏,

and hence xn 2 ⌦d,✏. Convergence issues may be due to existence of local minima or
because the Hessian of �d(x) is too ill-conditioned. Let µn be the resulting microcanonical
gradient descent measure. If µn is supported in ⌦d,✏ then it has a smaller entropy than the
maximum entropy microcanonical measure, which is uniform in ⌦d,✏. Theorem 3.7 gives
an upper bound on the reduction of entropy.

Model error Suppose that the restriction of X to ⇤a has a maximum entropy measure µ
associated to a known energy �µ

d
(x). This will be the case for Gaussian or Ising processes.
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The typical sets where the realizations of X are almost all concentrated are sets where
k�µ

d
(x) � Eµ(�

µ

d
(x))k is su�ciently small. In this case we can verify that the gradient

descent microcanonical measure µn computed with a model energy �d is also included in
such a typical set with high probability. This concentration property is satisfied if the
mean-square variation of the process energy Eµn(k�

µ

d
(x) � Eµ(�

µ

d
(x))k2) converges to 0

when d increases. This convergence is evaluated by computing the concentration of �µ

d
(x)

around Eµ(�
µ

d
(x)) for µn:

e2µn
(�d) =

Eµn(k�
µ

d
(x)� Eµ(�

µ

d
(x))k2)

Eµn(k�
µ

d
(x)k2) . (49)

If µn = µ then e2µn
(�d) = �2µ(�

µ

d
) but the reverse is not true. It would be true only if

the microcanonical gradient descent measure had a maximum entropy, which is not valid
in general. On the other hand, if e2µn

(�d) � �2µ(�
µ

d
) then it indicates that there is a model

error.

5.2 Approximation of Gaussian Processes

We study approximations of stationary Gaussian random processes with gradient descent
microcanonical models, defined with wavelet and scattering energy vectors.

We consider a scalar quadratic potential Ux = |x ? h(u)|2 for u 2 Z2. As in (18), we
define a periodic filter hd(n) =

P
m2Z2 h(n�md1/2) over square images of d pixels and an

energy

�µ

d
(x) = d�1kx ? hdk22 = d�1

X

!

|x̂(!)|2 |ĥd(!)|2. (50)

If inf! |ĥ(!)| > 0 then we saw in (20) that microcanonical and macrocanonical models
converge to a Gaussian stationary process µ over Z2 whose power spectrum is

Pµ(!) = ��1 |ĥ(!)|�2 . (51)

In numerical experiments, we choose a discrete filter h(n) = c e�|n|/⇠ with ⇠ = 0.5, whose
Fourier transform satisfies for ! 2 [�⇡,⇡]2

|ĥ(!)|2 =
X

m2Z2

(⇠2 + |! + 2m⇡|2)3. (52)

Figure 1(a) shows realizations of the Gaussian process of power spectrum Pµ(!), which
is nearly the same as the maximum entropy microcanonical process computed with the
scalar energy �µ

d
. Since �µ

d
is an l2 energy, Theorem 3.9 proves that the gradient descent

is not trapped in a local minima and thus converges to a microcanonical set of �µ

d
. This is

verified by Table 1 where e2µn
(�µ

d
) = �2µ(�

µ

d
). However Figure 1(b)shows that realizations

of the microcanonical gradient descent process are di↵erent from realizations of the original
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�d = �µ

d
�d =Wavelet l2 �d = Wavelet l1 �d = Scattering

dim(�d) 1 40 40 114
�2µ(�d) 5e-4 4e-3 4e-3 5e-3
e2µn

(�d) 5e-4 2e-2 0.15 2e-2

Table 1: The first line gives the dimension of each energy vectors �d(x). The next
lines give the normalized variance �2µ(�d) and the process energy concentration e2µn

(�d),
depending upon the microcanonical energy vector �d, for the Gaussian process (51).

(a) (b) (c) (d) (e)

Figure 1: (a): Realization of the Gaussian process (51). (b): Realization of the micro-
canonical gradient descent computed with �d(x) = �µ

d
(x) = kx ? hk22. (c): Realization

computed with a vector �d(x) of l2 wavelet norms. (d): �d(x) is composed of l1 wavelet
norms. (e): �d(x) is a scattering transform.

Gaussian process and hence of the maximum entropy microcanonical process. Figure 2(a,b)
show that the maximum entropy microcanonical process has a power spectrum which is
di↵erent from the spectrum of the microcanonical gradient descent process.

Observe that the power spectrum in Figure 2(a,b) are invariant by rotations in the
Fourier plane. These rotations are orthogonal operators and they preserve the stationary
mean which corresponds to the Fourier transform value at ! = 0. If bhd(!) is invariant by
a rotation of ! then (50) implies that �µ

d
(x) is invariant to these rotations, and Theorem

3.4 proves that µmin
d,✏

and µn are invariant to these rotations. This rotation invariance is
not strictly valid at the highest frequencies because of the square grid sampling.

Wavelet l2 norms Let us now compute the gradient descent microcanonical measure
µn with a wavelet l2 norm energy vector �d in (42). We shall see that it can provides good
approximations of Gaussian processes. The normalized variance �2(�d) in Table 1 remains
small which indicates that this energy vector remains concentrated around its mean. Figure
1(c) shows a realization of the resulting microcanonical gradient descent model and Figure
2(c) gives an estimation of the power spectrum of this stationary process. This power
spectrum is now much closer to the original power spectrum.

To understand this, observe that wavelet l2 norms specify the signal energy in the
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(a) (b) (c) (d) (e)

Figure 2: (a): Power spectrum of the original Gaussian process. (b): Estimation of the
spectrum of a microcanonical gradient descent computed with the energy vector �d(x) =
�d(x) = kx ? hk22. (c): The energy vector �d(x) consists of l2 wavelet norms. (d): �d(x)
includes l1 wavelet norms. (e): �d(x) includes l1 scattering norms.

di↵erent frequency bands covered by each band-pass wavelet filter  ̂j,q(!):

kx ?  j,qk2 =
X

!

|x̂(!)|2 | ̂j,q(!)|2. (53)

The fact that the power spectrum remains nearly constant over the support of each  ̂j,q

is a consequence of Theorem 3.4(iii). Indeed, suppose that Lx is a linear operator which
performs a permutation of the values of x̂(!1) and x̂(!2), for two non-zero frequencies
!1 and !2 such that  ̂j,q(!1) =  ̂j,q(!2) for all j, q. It is an orthogonal operator which
preserves the mean (zero frequency) and it is a symmetry of �d. Theorem 3.4(iii) implies
that the gradient descent measure µn is also invariant to the action of L and is thus a
stationary process whose power spectrum is the same at !1 and !2. This property is
approximately valid for any frequencies !1 and !2 located near the center of the support
of each  ̂j,q, where it remains nearly constant and where all other  ̂j0,q0 nearly vanish. It
implies that the spectrum of µn remains nearly constant in these frequency domain.

The energy concentration e2µn
in Table 1 is small although not as small as �2µ(�

µ

d
) which

indicates the presence of a bias. To reduce this bias we must reduce the support size of
each wavelet  ̂j,q where the spectrum must remain nearly constant. Appropriate wavelet
design can yield arbitrarily small errors when d increases.

Besides having an appropriate power spectrum, these microcanonical gradient descent
models are also nearly Gaussian processes. This can be shown with a phase symmetry ar-
gument, which is explained without a formal proof. The wavelet norms in (53) and hence
�d(x) are invariant if we preserve |x̂(!)| but change the complex phase of x̂(!) for ! 6= 0.
Arbitrary rotations of the Fourier complex phases which transform real signals into real
signals are linear orthogonal operators which preserve the stationary mean. As a result,
Theorem 3.4 proves that the gradient descent process is invariant to any such Fourier phase
rotation. This means that Fourier transforms of realizations of these microcanonical gradi-
ent descent processes have phases which are independent and uniformly distributed. Given
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a fixed power spectrum, a standard result based on the central limit theorem proves that
stationary random processes with independant and uniformly distributed Fourier phases
converge to a Gaussian processes when the dimension d goes to 1 [21]. Under appropriate
hypotheses, microcanonical gradient descent processes conditioned by l2 wavelet norms
will thus converge to Gaussian processes.

Wavelet l1 norms Maximum entropy models conditioned by wavelet l1 norms capture
sparsity with Laplacian distributions but do not approximate Gaussian processes accu-
rately. Figure 1(d) shows samples of the microcanonical gradient processes computed with
a wavelet l1 norm energy (44). The l1 norm constraints produce wavelet coe�cients which
are more sparse than a true Gaussian process. It creates images which are more piecewise
regular than in Figure 1(c). Errors are also visible in the resulting power spectrum shown
in Figure 2(d). Table 1 shows that the resulting model error e2µn

for the l1 norm wavelet
vector is about 10 times larger than with the l2 wavelet energy vector.

Scattering energy The scattering energy vector (46) includes high order multiscale
terms which can nearly reproduce the l2 norms of wavelet coe�cients, as proved by Propo-
sition 4.1. Table 1 gives the normalized variance �2µ(�d(x)) which shows that it concentrates
nearly as well as wavelet l2 norm energy vectors, despite the fact that it is much larger.
Figure 1(e) shows a realization of the scattering microcanonical gradient descent model and
Figure 2(e) gives its power spectrum. It is nearly as precise as the l2 norm microcanonical
model and the model error e2µn

in Table 1 has about the same amplitude.

5.3 Ising Processes

We consider a two-dimensional Ising process with no outside magnetization, over a two-
dimensional square lattice with periodic boundary conditions. We denote by x(u) the spin
values in {�1, 1}. The Ising probability of a configuration x is

p(x) = Z�1 exp (�� �d(x)) with �d(x) = d�1
X

u2⇤d

X

u02Nu

x(u)x(u0), (54)

where Nu is the 4 point neighborhood of x(u) in the two-dimensional grid. The constant
� = (kBT )�1 is the inverse temperature scaled by the Boltzmann constant kB. In two
dimension, the free energy can be exactly computed with the method of Onsager [37]. It has
a phase transition when T reaches a critical value Tc ⇡ 2.27. We study the approximation
of Ising for several values of the temperature.

The complex behavior of Ising arises from the conjunction of the quadratic Hamiltonian
with the binary constraint. This binary condition may be replaced by a condition on a
fourth order moment to obtain the same critical behavior but we shall impose it here
through first and second order moments. For all x 2 Rd, one has kxk2  kxk1 

p
dkxk2,
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�d = �µ

d
�d =Wavelet l2 �d = Wavelet l1 �d = Scattering

dim(�d(x)) 3 42 42 116
�2µ(�d) T = 2.2 6e-6 3e-4 4e-4 6e-4
e2µn

(�d) T = 2.2 2e-2 7e-2 5e-2 9e-3
�2µ(�d) T = 3 3e-6 2e-5 4e-5 4e-5
e2µn

(�d) T = 3 7e-3 4e-2 5e-2 5e-3

Table 2: The first line gives the dimension of each energy vectors �d(x). We consider
two Ising processes (54), computed near the critical temperature T = 2.2 and at a larger
temperature T = 3. The table gives the normalized variance �2µ(�d) and the Ising energy
concentration e2µn

(�d), for di↵erent �d(x).

and kxk1 =
p
d kxk2 if and only if |x(u)| is constant. It follows that

8u , x(u) = ±1 , kxk1 = kxk22 = d .

We can thus impose that x is binary by adding d�1kxk22 and d�1kxk1 into the energy
vector. The resulting microcanonical interaction energy for x 2 R⇤d is

�µ

d
(x) = {d�1kxk22 , d�1kxk1 , �d(x)}. (55)

If we remove the l1 term, this energy is quadratic and the maximum entropy model is
therefore a stationary Gaussian process.

The Ising model has a phase transition at the critical temperature Tc ⇡ 2.27, from an
‘ordered’ to a ‘disordered’ state. The spin spatial correlation exhibits a characteristic scale
⇠(T ) for T > Tc and E{X(u)X(u+ r)} ' e�|r|/⇠(T ) [30], with ⇠(Tc) = 0. The correlation is
self-similar at T = Tc and E{X(u)X(u+ r)} ' |r|�1/2.

Figure 2(a) gives two realizations of Ising for a large temperature (bottom) and a
temperature just above the critical temperature (top). Figure 2(b) shows realizations
of the microcanonical gradient descent process computed with the Ising energy vector
�µ

d
. The first column of Table 2 shows that e2µn

(�µ

d
) � �2(µ(�µ

d
) which means that the

microcanonical gradient descent does not converge to a microcanonical set for ✏ small. Near
the critical temperature, the gradient descent microcanonical model is unable to recover
low-frequency long-range structures which appear in Ising. This is due to a well-known
instability near criticality.

Renormalization and wavelets As in Wilson renormalization group, wavelets separate
the frequency components of x into dyadic frequency annulus. Relations between wavelets
and renormalization group decompositions were studied by Battle [5]. In the following, we
give a qualitative argument to explain how to approximate the Ising potential with wavelet
norms.
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(a) (b) (c) (d) (e)

Figure 3: (a): Realizations of an Ising process near the critical temperature T = 2.2 (top),
and for T = 3 (bottom). (b): Realizations computed with the microcanonical gradient
descent with �d = �µ

d
. (c): �d(x) includes l2 wavelet norms. (d): �d(x) includes l1

wavelet norms. (e): �d(x) includes l1 scattering norms.

Since x(u) 2 {�1, 1}, for an integer p

x(u)x(u0) = 1� 2�1 |x(u)� x(u0)|p

so we can rewrite the Ising energy �d(x) = d�1P
u2⇤d

P
u02Nu

x(u)x(u0) satisfies

d� �d(x) = 2�1
X

u2⇤d

X

u02Nu

|x(u)� x(u0)|p = k�1xkpp + k�2xkpp, (56)

with �1x(u1, u2) = x(u1, u2)� x(u1, u2 � 1) and �2x(u1, u2) = x(u1, u2)� x(u1 � 1, u2).
The equivalence of lp norms of increments and lp norms of wavelet coe�cients is es-

tablished in [36]. For any p > 1 there exists Ap > 0 and Bp > 0 so that for any x 2 l2(Z2)

Ap

X

j,q

2�jpkx ?  j,qkpp  k�1xkpp + k�2xkpp  Bp

X

j,q

2�jpkx ?  j,qkpp. (57)

For p = 1 the upper-bound remains valid but to get a lower-bound we must replace the sum
over j, q by a sup operator. However, we conjecture that there exists A1 which verifies the
lower bound for p = 1 when the values of x(u) are restricted to {�1, 1}. With equations
(56) and (57) one can approximate the Ising energy �d(x) with discrete wavelet lp norms
computed at all scales 2j  2J = d. We limit the maximum scale 2J independently of d,
which is set to be the largest correlation length of the process.
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As in Section 5.3, we capture the fact that x(u) 2 {�1, 1} by including a condition on
d�1kxk1 and d�1kxk22. The resulting energy vector for p = 1 and p = 2 is

�d(x) =
n
d�1kxk22 , d�1kxk1 , d�1 kx ?  j,qkpp

o

jJ,qQ

. (58)

Table 2 shows the normalized variance �2(�d) is smaller at high temperature than near
critical temperature but the separation of scale still provides a high concentration of �d(x)
for an Ising process, close to the critical temperature. Figure 3(c,d) show realizations of
a microcanonical gradient descent Ising model computed with the wavelet energy (58) for
p = 1 and p = 2. Near critical temperature, the microcanonical gradient descent still
converges where as it was not the case when the energy was calculated directly with the
Ising Hamiltonian energy �d(x) in Figure 3(b). The scale separation avoids having an ill-
conditioned gradient descent. The Ising approximation with an l2 energy vector for p = 2
amounts to compute a Gaussian approximation of Ising, which is not precise, when we are
close to the critical temperature [29]. One can indeed visualize important di↵erences with
the statistical distribution of original Ising in Figure 3(a). Table 2 shows that the model
error e2µn

is smaller at higher temperature.
The Ising approximation with an l1 energy vector has about the same error as the model

computed with an l2 energy vector. Near the critical temperature, the microcanonical
models obtained with l1 wavelets norms shown in Figure 3(d) are more piecewise regular
than the ones in Figure 3(c) obtained with wavelet l2 norms. This is due to the wavelet
coe�cient sparsity imposed by these l1 norms.

Scattering energy A scattering energy vector is defined for Ising process, by comple-
menting the scattering energy vector (46) with l1 and l2 norms of x in order to impose
that x(u) takes binary values:

�d(x) =
n
d�1kxk22 , d�1kxk1 , d�1

X

u2⇤d

x(u) , d�1 kx? j,qk1 , d�1 k|x? j,q|? j0,q0k1
o

j,j0J,q,q0Q

.

(59)
Table 2 shows that the normalized variance of the scattering energy is about twice larger
than for l2 wavelet energy vectors. Figure 3(e) shows realizations of microcanonical gradient
descent models computed with this scattering energy vector. They are visually di�cult
to distinguish from realization of the original Ising process above the critical temperature
and close to the critical temperature. Table 2 shows that the model error e2µn

is about 10
times smaller than with l2 or l1 wavelet energies.

These numerical experiment seem to indicate that scattering microcanonical gradient
descents can provide accurate model of Ising even close to critical temperature. However,
this needs to be sustained by a better mathematical of these approximations, by analyzing
the preservation of symmetries.
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5.4 Point Processes

Point processes provide powerful models of stochastic geometry, with applications in many
areas of astrophysics, neuroscience, finance and computer vision. Realizations of point
processes have a support reduced to isolated points. We first show that this sparsity can
be captured by wavelet l1 norms. We then study approximations of point processes and
shot noises with microcanonical models defined by scattering coe�cients.

Support from wavelet l1 norms We prove that wavelet l1 norms capture important
geometric properties of the support of point processes. Young’s inequality implies that

kx ?  j,qk1  kxk1 k j,qk1.

If x is a Dirac in ⇤d then this inequality is an equality. Conversely, the following theorem,
proved in Appendix I proves that if this inequality is an equality then x is a sum of Diracs,
with conditions on their distances. The inner product and norm of v and v0 in R` is written
v.v0 and |v|.

We suppose that wavelets are defined from a mother wavelet  (u) which is continuous
with  (0) 6= 0. We suppose that  (u) = | (u)| ei'(⇠.u) where ⇠ 2 R` and the complex
phase ' is a bi-Lipschitz function. We may choose linear phase '(⇠.u) = ⇠.u. This wavelet
is rotated and dilated  j,q(u) = 2�j` (2�jr�1

q u), where the rq are Q � ` di↵erent rotations

in R`. The following theorem applies to these wavelets.

Theorem 5.1. (i) If kx ?  j,qk1 = kxk1 k j,qk1 then x is non-zero at u and u0 only if
⇠q.(u� u0) = 0 with ⇠q = rq⇠ or if |⇠q.(u� u0)| � C 2j , where C > 0 does not depend on x.
(ii) Suppose that  has a compact support, and that x has a support which is a union of
isolated points with distances larger than �. If x0 satisfies

8q  Q , 8j  log2� , kx0 ?  j,qk1 = kx ?  j,qk1 and kx0k1 = kxk1 (60)

then the support of x0 is a set of isolated points of distances larger than C�, where C > 0
does not depend on x.

In dimension ` = 2, property (i) of Theorem 5.1 proves that the support of x is included
in straight lines perpendicular to ⇠q, whose distances are larger than C 2j . If this is valid
for several q then the support is included over intersections of non-parallel lines and hence
reduced to isolated points, as proved by property (ii).

If x is a realization of a point process, its support is a union of isolated points whose
minimum distance depends the point process distribution. If we construct an ✏ = 0 mi-
crocanonical model with wavelet l1 norms then property (ii) proves that all realizations of
this microcanonical model will also be a point process with a similar separation between
points.
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Microcanonical models of point processes We study microcanonical models of point
processes with wavelet l1 norms and scattering coe�cients. A point process N on R` is
a measure whose support is composed of isolated points. Second-order point processes [8]
are those satisfying E[N(C)2] < 1 for all bounded Borel sets C ⇢ R`. If N is a stationary,
second-order point process then one can define its associated Bartlett spectral measure [8]
PN , which generalizes the power spectrum of second-order stationary processes.

Given a non-negative stationary process �(t), t 2 R`, a Cox process N is defined as a
Poisson process conditional on � with intensity �(t). Important geometric information of N
is captured by its Bartlett power spectrum, which satisfies PN (d!) = P�(d!) +E(�) �(d!)
[8]. Shot noises are classes of random processes defined by convolutions of point processes
with a filter h(t)

X(t) = N ? h(t) .

The filter h(t) can be interpreted as a pattern which is randomly translated at point
locations and added. It may also be the transfer function of a detector measuring the
point-process. In this case, the power spectrum of X is P (d!) = PN (d!) |ĥ(!)|2, which
mixes the geometric information of N with the profile of the filter h. We will show that
they can be disentangled by a wavelet scattering transform.

The loss of information in the power spectrum is due to the fact that it does not measure
scale interactions. When there is a scale separation between N and h, ie

E(�)2 �
Z

u2|h(u)|2du (61)

then for su�ciently small scales 2j , one can verify [11] that

|X ?  j,q| = |N ? ( j,q ? h)| ⇡ N ? | j,q ? h| (62)

with high probability, due to the fact that the events in N rarely interact at spatial scales
j such that 2j ⌧ E(�). From this approximation, it follows that for su�ciently large scale
gap j0 � j, we have

||X ?  j,q| ?  j0,q0 | ⇡ Cj,q|N ?  j0,q0 | , (63)

since | j,q ? h| ?  j0,q0 ⇡ Cj,q� ?  j0,q0 . Second order scattering coe�cients, indexed with
pairs (j, q, j0, q0), thus provide measurements that convey spectral information about the
point process N as (j0, q0) varies, disentangled from the spectral information of h.

We illustrate this phenomena by considering a two-dimensional Cox point process N(u),
whose rate �(u) is a stationary Gaussian process whose power spectrum is concentrated in
the low-frequencies, and with an integral scale of 100 pixels. This Cox process is convolved
with a pattern h(u) with zero mean and small spatial support of 5 pixels. We build micro-
canonical models with energy vectors �d(x) defined by wavelet l1 norms or scattering coef-
ficients, computed up to a maximum scale 2J . For the shot noise measure µ shown in Figure
4(a), Table 3 gives the normalized variances �2µ = Eµ(k�d(x)� E(�d(x))k2)/kEµ(�d(x))k2
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J = 2 J = 4 J = 6
�2µ(�d) dim(�d) �2µ(�d) dim(�d) �2µ(�d) dim(�d)

�d: Wavelet l1 410�6 21 3 10�6 38 3 10�6 52
�d: Scattering 8 10�6 88 10�5 422 10�5 580

Table 3: Estimated normalized variance for wavelet l1 norm and scattering energy vectors
�d, at di↵erent maximum scales 2J . They are computed for a shot noise of size d = 2562

defined from a Cox point process. Figure 4(a) shows a realization.

(a) (b) (c) (d) (e)

Figure 4: (a): Realization of a shot noise computed with a Cox process. (b,c): Realizations
of a gradient descent process, computed with an energy �d including wavelet l1 norms of
maximum scale respectively 2J = 8 and 2J = 64. (d,e): Same computed with an energy
�d including scattering l1 norms of maximum scale respectively 2J = 8 and 2J = 64.

as a function of the maximum scale 2J . Although the size of scattering vectors for large
J becomes relatively large, the normalized variance remains small which proves that these
energy vectors remain concentrated around their mean, for images of size d = 2562. We
can thus define microcanonical models from an energy vector �d(x̄) calculated from the
realization x̄ shown in Figure 4(a).

Figure 4 gives realizations of microcanonical gradient descent models computed from
wavelet l1 norms and scattering energies, at di↵erent maximum scales 2J . Figure 4(b,d) are
computed with 2J = 8. These microcanonical models can only capture sparsity properties
up to this maximum scale. At larger scale, the entropy maximisation creates Gaussian
random process like variations having a uniform low-frequency spectrum. Figure 4(c,e) are
microcanonical realizations computed at a larger maximum scale 2J = 64. In this case,
wavelet l1 norm and scattering microcanonical models capture the point process sparsity.
The geometry of the shot noise is defined by the stationary rate �(u) which has relatively
high frequency oscillations vertically but low frequency variations horizontally. The scat-
tering model Figure 4(e) captures this distribution thanks to second order coe�cients.
This is not the case for the l1 norm model in Figure 4(c) which can not reproduce the
low-frequency horizontal alignments.
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5.5 Image and Audio Texture Synthesis

An image or an audio texture is usually modeled as the realization of a stationary process.
Modeling textures amounts to compute an approximation of this stationary process given a
single realization. A texture synthesis then consists in calculating new realizations from this
stochastic model, which are hopefully perceptually identical to the original texture sample,
although di↵erent if considered as deterministic signals. As opposed to the Gaussian,
Ising or point process examples, since we do not know the original stochastic process,
perceptual comparisons are the only criteria used to evaluate a texture synthesis algorithm.
Microcanonical models can be considered as texture models computed from an energy
function �d(x) which concentrate close to its mean. We review previous work and give
results obtained with a scattering microcanonical gradient descent model.

Geman and Geman [24] have introduced macrocanonical models based on Markov ran-
dom fields. They provide good texture models as long as these textures are realizations of
random processes having no long range correlations. Several approaches have then been
introduced to incorporate long range correlations. Heeger and Bergen [26] capture texture
statistics through the marginal distributions obtained by filtering images with oriented
wavelets. This approach has been generalized by the macrocanonical Frame model of
Mumford and Zhu [49], based on marginal distributions of filtered images. The filters are
optimized by trying to minimize the maximum entropy conditioned by the marginal dis-
tributions. Although the Cramer-Wold theorem proves that enough marginal probability
distributions characterize any random vector defined over Rd the number of such marginals
is typically intractable, which limits this approach.

Portilla and Simoncelli [39] made important improvements to these texture models, with
wavelet transforms. They capture the correlation of the modulus of wavelet coe�cients
with a covariance matrix which defines an energy vector �d(x). Although they use a
macrocanonical maximum entropy formalism, their algorithm computes a microcanonical
estimation from a single realization, with alternate projections as opposed to a gradient
descent. This approach was extended to audio textures by McDermott and Simoncelli
[35]. A scattering representation is related to Portilla and Simoncelli model but covariance
coe�cients are replaced by a much smaller number of scattering l1 norms.

Excellent texture synthesis have recently been obtained with deep convolutional neural
networks. In [23], the authors consider a deep VGG convolutional network, trained on a
large-scale image classification task. The energy vector �d(x) is defined as the spatial cross-
correlation values of feature maps at every layer of the VGG networks. This energy vector is
calculated on a particular texture image. Texture syntheses of very good perceptual quality
are calculated with a gradient descent microcanonical algorithm initialized on random
noise. However, the dimension of this energy vector �d(x) is larger than the dimension d
of x. These estimators are therefore not statistically consistent and have no asymptotic
limit.

In the following, we give results obtained with di↵erent wavelet microcanonical models
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computed on a collection of natural image and auditory textures. The Brodatz image
texture dataset 1 consists of 155 texture classes, with a single 512 ⇥ 512 sample per class.
Auditory textures are taken from McDermott and Simoncelli [35], which contains 1 second
samples of di↵erent sounds.

Since we have a single realization of each texture, we can not compute the concentration
properties of energy vectors over these textures. Figure 5(a) gives input examples x̄ corre-
sponding to realizations of di↵erent stationary processes X(u). Figure 5(b) shows texture
samples obtained with a microcanonical gradient descent computed with an energy vector
�d(x) of wavelet l2 norm. It provides a good model for the bottom texture which is nearly
Gaussian but it otherwise destroys the texture geometry. Figure 5(c) displays textures ob-
tained with a vector �d(x) of wavelet l1 norms. Their wavelet coe�cients are more sparse
than in Figure 5(b) which produces more “piecewise regular” images, but it does improve
the texture geometry. On the contrary, scattering microcanonical textures in Figure 5(d)
have a geometry which is much closer to original textures. Scattering coe�cients can be
interpreted as convolutional deep neural networks computed with predefined wavelet filters
[28] as opposed to filters learned on a supervised image classification problem as in VGG.

The reconstruction of auditory textures is computed with a one-dimensional Gabor
wavelet transform [9] with Q = 12 scales per octave. Auditory textures have a rich mixture
of homogeneous and impulsive, transient components, as well as amplitude and frequency
modulation phenomena. Figure 6(a) displays the spectrograms of original auditory tex-
tures x̄. Figure 5(b) shows the spectrogram of Gaussian texture models calculated with a
microcanonical gradient descent computed with an energy vector �d(x) of wavelet l2 norm.
The global spectral energy is preserved but the time variations which destroys ability to
recognize these audio textures. On the contrary, Figure 5(c) shows that audio textures
synthesized with a scattering energy vector have spectrograms with the same type of time
intermittency as the original textures. The resulting audio textures are perceptually di�-
cult to distinguish from the original ones.

Synthesis from scattering energy vectors can also destroy some certain structures which
a↵ect their perceptual quality. This is the case for speech or music backgrounds which
have harmonic alignments which are not reproduced by scattering coe�cients. Deep con-
volutional network reproduce image and audio textures of better perceptual quality than
scattering coe�cients, but but use over 100 times more parameters. Much smaller models
providing similar perceptual quality can be constructed with wavelet phase harmonics for
audio signals [40] or images [48], which capture alignment of phases across scales. However,
understanding how to construct low-dimensional multiscale energy vectors to approximate
random processes remains mostly an open problem.

1Available at http://sipi.usc.edu/database/database.php?volume=textures
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(a) (b) (c) (d)

Figure 5: (a): Original texture. (b): texture synthesized with a microcanonical gradient
descent model with a vector �d(x) of wavelet l2 norms. (c): �d(x) has wavelet l1 norms.
(d): �d(x) has wavelet scattering coe�cients.
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Figure 6: (a): Spectrograms of original audio textures produced (from to to bottom) by
jackhammer, applause, wind, helicopter, sparrows, train, rusting paper. (b): Spectrograms
of an audio texture synthesized with a microcanonical gradient descent model with a vector
�d(x) of wavelet l2 norms. (c): Spectrogram produced with a vector �d(x) of wavelet
scattering coe�cients.
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6 Conclusion

This paper shows that gradient descent microcanonical models computed with multiscale
energy vectors can provide powerful models to approximate large classes of stationary
processes. Realizations of such models are calculated with a gradient descent algorithm
which is much faster than MCMC algorithms, used to sample from macrcocanonical models.

We introduced a mathematical framework to analyze the statistical and algorithmic
properties of these microcanonical gradient descent models. Our analysis reveals that,
whereas micrcocanonical gradient descent measures do not generally agree with the mi-
crocanonical maximum entropy measure, they have rich regularities through shared sym-
metries, and, under appropriate conditions, are shown to converge to the microcanonical
ensemble. In the high-dimensional setting, gradient descent microcanonical models are
therefore valid alternatives to classic macrocanonical and microcanonical maximum en-
tropy measures, thanks to their computational tractability.

However, many mathematical questions remain open. For instance, on the convergence
properties of this gradient descent algorithm, on the choice of the energy vector to obtain
accurate approximations of random processes, and on the extension to locally stationary
processes.
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[4] F. Barthe, O. Guédon, S. Mendelson, and A. Naor. A probabilistic approach to the
geometry of lnp -ball. Ann. Probab., 33(2):480–513, 2005.

[5] G. Battle. Wavelets and Renormalization. World Scientific, Singapore, 1998.

[6] Michael Betancourt. A conceptual introduction to hamiltonian monte carlo. arXiv
preprint arXiv:1701.02434, 2017.

38



[7] E. Borel. Sur les principes de la theorie cinetique des gas. Ann. de l’Ecole Norm.
Sup., 23:9–33, 1906.
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A Proof of Theorem 3.1

A.1 Proof of part (i)

The main technical challenge to prove (26) is to show that assumption (C) is su�cient
to guarantee that |J�dx|�1 is integrable. Since �d is Lipschitz from assumption (A), the
coarea formula proves that for any integrable function g(x)

Z

B

g(x) |J�dx| dx =

Z

RK

Z

��1
d (y)

g(x) dHd�K(x) dy . (64)

In order to apply (64) to |J�d(x)|�1 and obtain the expression of H(µmi
d,✏
), we need to

show that |J�d(x)|�1 is integrable in ��1
d,✏

(y). Using the notation for each Jacobian column
(22), we verify that |J�d(x)| satisfies

|J�d(x)| � d�`max
�
|det[JU(X̄1), . . . , JU(X̄K)]|, . . . , |det[JU(X̄

d̃+1), . . . , JU(X̄
d̃+K

)]|
 

,
(65)

where X̄i is a projection of x onto disjoint subsets of 2�+ 1 coordinates, and d̃ � d(2�+
1)�1 = ⇥(d).

We will show that for d large enough and arbitrary R > 0,
Z

|x|1<R

|J�d(x)|�1dx < 1 , (66)

by interpreting (66) as proportional to the expected value of EX⇠Unif(d,R)|J�d(X)|�1. Since

��1
d,✏

(y) is a compact set thanks to assumption (B), it is bounded, so ��1
d,✏

(y) ✓ {x ; |x|1 <

R} for some R, which proves that |J�d(x)|�1 is integrable in ��1
d,✏

(y).
For that purpose, let us prove that assumption (C) from (25) is su�cient to guarantee

(66). If FV (y) denotes the cumulative distribution function of a random variable V , and
Y denotes the r.v. Y = |det[JU(X̄1), . . . , JU(X̄K)]|, we first observe that thanks to (65)
it is su�cient to show that

FY (y) . y⌘ , for some ⌘ > 0 , (y ! 0) . (67)

Indeed, since V = |J�d(X)| � max(Y1, . . . , Yd̃) with Yi independent and identically dis-
tributed, we have that

FV (y)  FY (y)
d̃ ' y⌘d̃ .
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It follows that

EX⇠Unif(d,R)|J�d(X)|�1 
Z

v�1fV (v)dv = C +

Z
R

0

0
v�2FV (v)dv < 1

as soon as d̃⌘ > 1, which will happen for large enough d.
Let us thus prove (67) by induction on K. When K = 1, V = |detJU(X̄1)| = |JU(X̄1)|

and assumption (C) directly implies that

FV (y) = P (V  y) . y⌘ .

Now, suppose (67) is true for K�1 and let us prove it for K. We use the following lemma:

Lemma A.1. We say that a bounded random vector Z in B(K,R) ⇢ RK has property (*)
if there exists ⌘ > 0 such that

8 S ⇢ RK Lebesgue measurable , P (Z 2 S) . |S|⌘ .

If Z has property (*) and K > 1, then ZH , the orthogonal projection of Z onto any
hyperplane, also has property (*), and

E(kZk�⌘) < CR,⌘ . (68)

Before proving the lemma, let us conclude with (67). By denoting Zi = JU(X̄i),
i = 1 . . .K, and assuming kZ1k > 0, one Gram-Schmidt iteration yields

|det [Z1, . . . , ZK ] | = kZ1k|det
h
Z̃2, . . . , Z̃K

i
| ,

where Z̃i is the projection of Zi onto the orthogonal complement of Z1. Using assumption
(C), we use lemma A.1 to observe that Z̃i, i = 2, . . .K also satisfies assumption (C), since
we compute it with an orthogonal projection that depends only on Z1, which is independent
from all the Zi, i � 2. Thus by induction hypothesis and using (68) we obtain

FY (y) = P (|det [Z1, . . . , ZK ] |  y) = P
⇣
kZ1k|det

h
Z̃2, . . . , Z̃K

i
|  y

⌘

= EZ1P
⇣
|det[Z̃2, . . . , Z̃K ]|  ykZ1k�1 | Z1

⌘

 EZ1y
⌘kZ1k�⌘ . y⌘ ,

which proves (67).
Let us finally prove lemma A.1. Let SH be a measurable set in a given hyperplane H

of dimension K � 1, and let S̃ = SH ⇥ (�R,R) be the corresponding cylinder in B(K,R).
By definition, we have

P (ZH 2 SH) = P (Z 2 S̃)  |S̃|⌘ = |SH |⌘(2R)⌘

43



which proves that ZH also has the property (*).
Finally, let us show that E(kZk�⌘) < CR,⌘. For positive random variables we have

E(kZk�⌘) =

Z
R

0
r�⌘fkZk(r)dr

= R⌘ � lim
r!0

r�⌘P (kZk  r) + ⌘

Z
R

0
r�⌘�1P (kZk  r)dr

 R⌘ + C⌘

Z
R

0
r�⌘�1+⌘Kdr  CR,⌘ ,

since K > 1 and ⌘ > 0. This proves lemma A.1 and thus (26). ⇤
To prove that �d(y) is integrable on any bounded set, we apply the coarea formula to

(64) to g(x) = |JK�x|�1 1A(�x) where A is bounded:

Z

Rd
1A(�x) dx =

Z

A

Z

��1(z)
|JK�x|�1 dHd�K dz =

Z

A
�d(z) dz .

If A is a compact set then by assumption (B) it follows immediately that

Z

Rd
1A(�x) dx =

Z

��1(A)
dx  |B2,d(C

p
(d))| < 1, (69)

which proves that �d is integrable on a compact.

A.2 Proof of part (ii)

Let us now prove that for each d, �d(y) can only vanish when dist(y,�d(Rd))  c/d for some
fixed constant c. We will exploit the relationship between the sets �d(Rd) and �d/2(Rd/2)
thanks to the fact that �d is an average potential over the domain.

The inequality (27) proves that �d(y) = 0 only if
R
��1(y) dH

d�K = 0. Since in finite

integer dimensions the Hausdor↵ measure H` is a multiple of the Lebesgue measure in R`,
it is su�cient to show that whenever y 2 (�d(Rd))� , the set ��1(y) has positive Lebesgue
measure of dimension d�K.

Without loss of generality, assume that � = (�1, . . . ,�K) are linearly independent
functions. Otherwise, if there were a linear dependency of the form

X

kK

↵k�k(x) ⌘ 0 ,

then �d(Rd) = @�d(Rd), thus �d(Rd)o is empty and there is nothing to prove.
Let us write d = r`, with r denoting the length of the cube ⇤d. Suppose first that

r is even. Given y 2 (�2�`d(R2�`
d))� we will see that there exists x 2 ��1(y) whose
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Jacobian J�(x) has rank K. Then, by the Implicit Function Theorem, one can find a local
reparametrization of ��1(y) in a small neighborhood V of the form x = (v,'(v)) such that

{(v,'(v)); v 2 V ⇢ Rd�K ,' : V ! RK} = {(v, v0) 2 V ⇥ '(V ); �(v, v0) = y} ,

which has positive Lebesgue measure of dimension d�K.
Suppose first that � = 1. Then the sets Sd = �d(Rd) ⇢ RK satisfy Sd ✓ Sq`d for q =

1, 2, . . . . Indeed, given y 2 Sd, by definition there exists x 2 Rd with �d(x) = y. Consider

x̃ = (x, . . . , x)⌦` 2 Rq
`
d, a tiling of x, q times along each dimension. By construction, x̃

satisfies �q`d(x̃) = y and therefore y 2 Sq`d.
Now, consider y 2 S�

d
✓ S�

2`d. If �d was a smooth Cs map, with s > d �K, then by

Sard’s theorem, the image of critical points {x 2 Rd; |J�d(x)| < K} has zero Lebesgue
measure in Sd. Although one can extend Sard’s theorem to weaker regularity assumptions
[3], for our purposes we will use a weaker and simpler property that does not require the
smoothness assumption, as described in the following lemma:

Lemma A.2. Under the assumptions of the theorem, the set A = {y 2 RK ; 0 < �d(y) <
1} is dense in �d(Rd), and for each y 2 A there exists x 2 ��1

d
(y) with |J�d(x)| > 0.

It follows that for a su�ciently small � > 0, a neighborhood B(y, �) ⇢ Sd of y necessarily
contains two points y1 = y + ⌘, y2 = y � ⌘ such that ��1

d
(y1) or �

�1
d

(y2) contain a regular
point. Let x1 2 ��1

d
(y1) and x2 2 ��1

d
(y2) be two points such that at least one is regular.

The point x̃ = (x⌦`

1 , x⌦`

2 ) 2 R2`d, obtained by concatenating x1 and x2 along the first
coordinate, and tiling them along the rest, satisfies

�2`d(x̃) =
1

2
(�d(x1) + �d(x2)) = y , and

|J�2`d(x̃)| � max(|J�d(x1)|, |J�d(x2|) > 0 ,

which shows that we have just found an element x̃ of ��1
2`d

(y) with rank(J�2`d(x̃)) = K.
Suppose finally that � > 1. The proof follows the same strategy, but we need to handle

the border e↵ect introduced by the support �. In that case, given y 2 Sd, we consider
x̃ = (x, u, x)⌦`, where u has 2(��1) zero coordinates and x 2 ��1

d
(y). That is, we consider

2` copies of x separated by 2(� � 1) zeroes along each dimension so that their potential
functions do not interact.

Let d̃ = (2r + 2(�� 1))`. It follows that

�
d̃
(x̃) =

2`d�d(x)

d̃
=

✓
1 +

�� 1

r

◆�`

�d(x) =

✓
1 +

�� 1

d1/`

◆�`

y ,

which shows that dist(y;S
d̃
) . C`kyk/d1/` for any y 2 Sd.
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Now consider y in the open set Cd = Sd \ S
d̃
, such that dist(y, @Sd) � kyk`�d�1/`. It

follows from the previous argument that there exists small � > 0 and x1 2 ��1
d

(y1) with
|J�d(x1)| > 0 and y1 2 B(y, �) \ Sd \ S

d̃
. We verify from the assumption that

y2 = 2

✓
1 +

�� 1

r

◆
`

y � y1 2 Sd ,

and therefore for any x2 2 ��1
d

(y2) the point x̃ = (x1;u, x2)⌦` that contains 2`�1 copies of
x1 and 2`�1 copies of x2 satisfies by construction

�(x̃) =
d2`�1y1 + d2`�1y2

d̃
= y and

rank(J�2d(x̃)) = K. Finally, the case where r is odd is treated analogously, but splitting
the coordinates into b r2c and d r2e parts.

It remains to prove Lemma A.2. We know from part (i) that thanks to the coarea
formula,

8 ✏ 8y 2 (�d(Rd))�, 0 <

Z

kz�yk✏

�d(z)dz =

Z

k�(x)�yk✏

dx < 1 .

It follows that A = {z; 0 < �d(z) < 1} is dense in �d(Rd). But if y 2 A, by
definition this implies that ��1

d
(y) has positive (d�K)-Hausdor↵ measure, and that there

is necessarily x 2 ��1
d

(y) with |J�d(x)|�1 < 1, therefore with a full-rank Jacobian. ⇤

A.3 Proof of part (iii)

In order to prove (28), we will again exploit the relationships between the sets Sd = �d(Rd)
as d grows. We also first establish the result for � = 1, and then generalize it to � > 1.
Denote as before Sd = �d(Rd) and Fd,✏ = d�1H(µmi

d,✏
) the entropy rate associated with y

and ✏.
In the last section we proved that when � = 1, Sd ✓ Sq`d for q = 1, 2, . . . . For any

✏ > 0 and y 2 Sd, observe that

⌦d,✏(y)⌦ · · ·⌦| {z }
2` times

⌦d,✏(y) ✓ ��1
2`d,✏

(y) . (70)

Indeed, if x 2 ⌦d,✏(y)⌦ · · ·⌦| {z }
2` times

⌦d,✏(y), then by definition x = (x1, . . . , x2`) with

k�d(xi)� yk  ✏ .

But

�2`d(x) = 2�`

2`X

i=1

�d(xi)
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and k�2`d � yk  ✏ by the convexity of the l2 norm, thus x 2 ��1
2`d,✏

(y). It follows that

F2`d,✏ = d�12�`H(µmi
2`d,✏) � d�12�` log

0

@
"Z

k�d(x)�yk✏

dx

#2`1

A = Fd,✏ . (71)

Thus, for any fixed d0, y 2 Sd0 and ✏ > 0, the sequence Fk = F2k`d0,✏ is increasing. Also,
thanks to assumption (B), we have that

8 d , x 2 ⌦d,✏(y) =) kxk  C
p
d(kyk+ ✏) ,

which implies that |⌦d,✏(y)|  |Bd(
p
dR0)|. Therefore

8 d , F y

d,✏
 d�1 log |Bd(

p
dR0)| ,

and we verify from |Bd(R)| = ⇡
d/2

�(d/2+1)R
d that |Bd(

p
dR0)| ' K̃d with K̃ = 2⇡R2

0e, which

shows that limd!1 d�1 log |Bd(
p
dR0)| = log K̃ and thus that the entropy rate Fk is also

upper bounded, and therefore its limit exists limk!1 Fk = F̄ . We shall see later that the
limit does not depend upon the choice of d0.

Let us now prove the case when � > 1. The idea is to show that (70) is now valid
up to an error that becomes small as d increases, provided that the potential U is Holder
continuous.

Consider y 2 Sd. Given ✏ > 0, we form

 2`d,✏(y) =
⇣
��1
d,✏

(y)
⌘⌦2`

as the Cartesian product of 2` copies of ��1
d,✏

(y). When � = 1, we just saw that

 2`d,✏(y) ✓ ��1
2d,✏̃(y) (72)

with ✏ = ✏̃, but when � > 1, let us see how to increase ✏̃ so that (72) is verified. Given
x 2  2`d,✏(y), we write x = (x1, . . . , x2`) to denote its projections into each of the 2`

subdomains C1,d, . . . , C2`,d of size d. We have

�2`d(x) =

P
n
Ux(n)

2`d

= 2�`

2`X

k=1

d�1

0

@
X

n2C�
k,d

Ux(n) +
X

n2@Ck,d

Ux(n)

1

A , (73)

where each C�
k,d

contains the interior of the domain that does not interact with the other

domains, and @Ck,d = Ck,d \ C�
k,d

. We have |@Ck,d| = d� (d1/` � 2�)`, thus

d�1|@Ck,d| = 1� (1� 2�d�1/`)` . `�

d1/`
. (74)
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Since |Ux(n)|  Bkxk↵ with ↵ < 2/` by the Holder assumption, and kxk  C
p
d by

assumption (B), we have |Ux(n)|  B0d↵/2. It follows from (73) and (74) that

k�2`d(x)� yk =

������
2�`

2`X

k=1

2

4d�1

0

@
X

n2C�
k,d

Ux(n) +
X

n2@Ck,d

Ux(n)

1

A� y

3

5

������

 2�`

2`X

k=1

⇣
k�d(xi)� yk+ 2B0d↵/2(1� (1� 2�d�1/`)`)

⌘

 ✏+ o
⇣
d

↵
2 �

1
` `�

⌘
,

Thus by taking ✏̃ = ✏+o
⇣
d

↵
2 �

1
` `�

⌘
(72) is verified. By denoting ⌫ = ↵

2 �
1
`
, it follows that

the entropy rate Fd,✏ satisfies
Fd,✏  F2`d,✏+˜̀d⌫ ,

with ˜̀= C�`, and ⌫ < 0 since ↵ < 2/`. By repeating the inequality for su�ciently large
d and k = 1, 2, . . . and ✏ > 0 we have

Fd,✏  F
d2k` , ✏+˜̀d⌫

Pk
k0=0 2

k0`⌫  Fd2k`,2✏  C̃ , (75)

and thus by defining

F1,✏ := lim
k!1

Fd02k`,✏k , with ✏k = ✏+ ˜̀d⌫0

kX

k0=0

2`⌫k
0

(76)

we have shown that its entropy rate is well-defined for each ✏ > 0 and d0 su�ciently large.
It remains to be shown that this limit does not depend upon d0. Suppose F1,✏,0 6= F1,✏,1

where F0 is associated with d0 and F1 is associated with d1, and suppose d1 > d0 without

loss of generality. Let ri = d1/`
i

for i = 0, 1.
Observe that an analogous argument to (73) shows that if r = ra + rb, then

Fr`,✏̃ �
ra
r
Fr`a,✏

+
rb
r
F
r
`
b,✏

, (77)

and
Fl`d,✏̃ � Fd,✏ for l = 1, 2, . . . , (78)

with ✏̃ = ✏ + o (d⌫`�). Consider now large integers k and k̃ '
p
k, and let q, q̃ denote

respectively the quotient and residual such that

r12
k = r02

k̃q + q̃
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with 0  q̃ < r02k̃. Then, for any � > 0, by choosing k large enough we obtain from (77)
and (78) that

|Fd12k`,✏̃ � F1|  �/4 ,

|F
d02`k̃q`,✏̃

� F0|  �/4 , and

|Fd12k`,✏̄ � F
d02k̃`q`,✏̃

|  �/4 , (79)

with ✏̄ = ✏̃+ o (d⌫`�).
Finally, let us show that Fd,✏ is continuous with respect to ✏ for ✏ > 0. Let us denote

�d,✏ =
R
kz�yk✏

�d(z)dz. Since Fd,✏ = d�1 log(�y
d,✏
) and �d(y) > 0 for all y 2 S�

d
from

the previous section, it is su�cient to show that �d,✏ is continuous with respect to ✏.
Let ✏̃ = ✏ + � with ✏ > 0, and suppose � > 0 without loss of generality. By denoting
Q(�, ✏, y) = {z ; ✏ < kz � yk  ✏+ �}, we have

|�d,✏̃ � �d,✏| =

Z

✏<kz�yk✏+�

�d(z)dz =

Z
�d(z)1Q(�,✏,y)(z)dz

:=

Z
�d�(z)dz

For each z, �d�(z) = �d(z)1Q(�,✏,y)(z) converges pointwise to 0 as � ! 0, except for a set of
measure zero, {z; kz � yk = ✏}. Also, |�d�|  �d, which is integrable in �(⌦d) by part (i).
We can thus apply the dominated convergence theorem, and conclude that

lim
�!0

Z
�d�(z)dz =

Z ✓
lim
�!0

�d�(z)

◆
dz = 0 ,

which shows that �d,✏ is continuous with respect to ✏.
It follows from (79) that

|Fd12k`,✏̃ � F
d02k̃`q`,✏̃

| ! 0 as k ! 1 ,

but Fd12k`,✏̃ ! F1 and F
d02k̃`q`,✏̃

! F0 as k ! 1, which is a contradiction with the fact
that F0 6= F1. ⇤

B Proof of Corollary 3.2

We saw in Theorem 3.7 that the entropy rate of the microcanonical measure can be mea-
sured with the co-area formula as d�1H(µmi

d,✏
) = d�1 log

R
kz�yk✏

�d(z)dz and that �d(z) > 0

in the interior of �d(Rd). As ✏ ! 0, we can interpret the previous formula in terms of an
L1(RK) approximate identity h✏(z) = CK✏�K1kzk✏(z):

CK✏
�K

Z

kz�yk✏

�d(z)dz = �d ? h✏(y) ! �d(y) as ✏! 0
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in L1(RK). One can verify that, by possibly reparametrising ✏, this implies pointwise
convergence for almost every y, so

���log
⇣
CK✏

�K�y
d,✏

⌘
� log �d(y)

��� !
✏!0

0 , a.e. , (80)

which shows that d�1H(py
d,✏
) ' �K

d
log ✏ as ✏! 0 ⇤.

C Proof of Proposition 3.3

Properties (A) and (B) are verified for (i-ii) because the potentials U are continuous and
the resulting features � always include d�1kxk2 respectively. We thus focus on proving
property (C).

Part (i) is easily obtained, since the l2 wavelet model has a Jacobian J�(x) that is
linear with respect to x, and therefore it has absolutely continuous density relative to the
Lebesgue measure.

Part (ii) is proved by directly controlling |J�d(x)|�1. A direct computation shows
that |J�d(x)| = d�1

p
dkxk2 � kxk21, which only vanishes when |x| is a constant vector.

Therefore, for y 6= (↵,⇤d↵), �
�1
d,✏

(y) does not contain those points for su�ciently small ✏.
Let us now show part (iii). The Jacobian matrix in that case is given by

J�d(x)j = d�1Re

⇢✓
x ? hj
|x ? hj |

◆
? h⇤j

�
,

with j  K. We proceed by induction over the scale K. Suppose first K = 1. Since hj has
compact spatial support, its Fourier transform only contains a discrete number of zeros.
Denote by �j the spatial support of hj . We can thus generate all but a zero-measure set
of unitary signals z with zs = ei✓s , s = 1 . . .�j from the uniform measure over x using

z = x?hj

|x?hj | . In the uniform phase space defined by ✓1, . . . , ✓�j , the event |detJ̄U(X̄1)|  y

has a probability proportional to y, since it is equivalent to
�����
X

s

cos(✓s)Re(h
⇤
j (s))�

X

s

sin(✓s)Im(h⇤j (s)

�����  y .

Suppose now the result holds for the K � 1 filters in the family with smallest spatial
support, and let us show how to extend it to an extra filter hK with strictly larger spatial
support. Among the variables X̄ 2 R2�+1, a subset of them, say RK , only a↵ect the K-th
output corresponding to filter hK . It follows that a set S ⇢ RK with shrinking measure
necessarily introduces constraints on the variables in RK , and therefore P (Z 2 S)  |S|1/K
⇤ .
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D Proof of Theorem 3.4

(i) Let us first prove that volume preserving symmetries of �d(x) are symmetries of the
microcanonical maximum entropy measure. If for all x 2 Rd, �d(L�1x) = �d(x) then a
microcanonical set ⌦d,✏ is invariant to the action of L and L�1. Since L preserves volume
and hence the Lebesgue measure of a set, for any measurable set A, since µmi

d,✏
is supported

over ⌦d,✏ and uniform relatively to the Lebesgue measure, we have

µmi
d,✏
[L�1A] = µmi

d,✏
[L�1A \ ⌦d,✏] = µmi

d,✏
[L�1(A \ ⌦d,✏)] = µmi

d,✏
[A \ ⌦d,✏] = µmi

d,✏
[A],

so L is a symmetry of µmi
d,✏
.

(ii) We prove that symmetries of �d(x) and µ0 are symmetries of µn, by induction on
n. It is trivially valid for n = 0. Suppose now by induction that µn is invariant to the
action of L which is a symmetry of �d. From (31), µn+1 = 'n,#µn, with

'n(x) = x� nJ�d(x)
>(�d(x)� y) .

Let us verify that 'n is equivariant to the action of L: 'nL�1x = L�1'nx for all x. Since
�d(L�1x) = �d(x), and since L is linear

J�d(L
�1x)> = L�1(J�d(L

�1x))> = L�1(J�d(x))
> (81)

so

'nL
�1x = L�1x� nJ�d(L

�1x)>(�d(L
�1x)� y)

= L�1x� L�1nJ�d(x)
>(�d(x)� y)

= L�1'nx ,

which proves that 'n is equivariant to the action of L. Moreover, if 'n is equivariant to
the action of L then we verify that it is equivariant to the action of L�1. Also, observe
that

'�1
n (L�1(A)) = {x;'n(x) 2 L�1A}

= {x;L'n(x) 2 A}
= {x;'n(Lx) 2 A}
= L�1'�1

n (A) .

Finally, using the definition of pushforward measure, µn+1 = 'n,#µn, for any measur-
able A, the induction hypothesis yields

µn+1[L
�1A] = µn['

�1
n (L�1A)]

= µn[L
�1'�1

n (A)] = µn['
�1
n (A)]

= µn+1[A] ,
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which proves that µn+1 is also invariant to the action of L, and hence or induction hypoth-
esis.

(iii) We prove that an orthogonal operator which preserves a statioanry mean is a
symmetry of a Gaussian measure µ0 of d i.i.d Gaussian random variables. Applying the
statement (ii) then implies the statement (iii). Let m0 be the mean of each of the d
Gaussian random variables. The Gaussian measure µ0 is uniform over all spheres of Rd

centered over the stationary mean m0 1. An orthogonal operator L which preserves the
stationary mean leaves invariant all spheres centered in m0 1 2 Rd. Indeed L(m0 1) = m0 1
and kLxk2 = kxk2 so

kLx�m01k2 = kL(x�m01)k2 = kx�m01k2.

If S(m1, r) is a sphere centered in m1 of radius r then Rd = [(m,r)2R⇥R+S(m1, r). So
for any measurable set A

µ0[L
�1A] = µ0[L

�1A \ [(m,r)2R⇥R+S(m1, r)] = µ0[[(m,r)2R⇥R+L�1(A \ S(m1, r))]

= µ0[[(m,r)2R⇥R+A \ S(m1, r)] = µ0[A],

so L is a symmetry of µ0.

E Proof of Theorem 3.7

E.1 Proof of part (i)

Let us first show how the strict saddle condition (33) implies that the minimisation E(x)
has no poor local minima. The statement follows directly from [32], which shows that when
the saddle points are strict, gradient descent does not converge to those saddle points, up to
a set of initialization values with Lebesgue measure 0. Observe first that n < ⌘�1 ensures
that 'n(x) = x�⌘rE(x) is a di↵eomorphism for each n. Observe also that a critical point
x such that rE(x) = J�d(x)T (�d(x)� y) = 0 necessarily falls into two categories. Either
�d(x) = y, which implies that x is a global optimum, or x is such that J�d(x)T v = 0 with
v = �d(x) � y 6= 0. We verify that assumption (33) implies that in that case x is a strict
saddle point by observing that the Hessian of E satisfies

r2E(x) =
KX

k=1

r2�k(x)vk + J�(x)TJ�(x) .

Since µ0 is absolutely continuous with respect to the Lebesgue measure, we can apply
Theorem 2.1 from [38], and establish that gradient descent does not converge to any saddle
point with probability 1.

Let us now prove that the hypothesis that |J�d(x)| > 0 for x 2 ��1
d

(y) with y 2
�d(Rd)�, together with the strict saddle condition, implies that the gradient descent se-
quence xn has a limit limn!1 xn (that may depend upon x0). For that, we will apply the
following result from [1]:
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Theorem E.1. If E(x) is twice di↵erentiable, has compact sub-level sets, and the Hessian
r2E(x) is non-degenerate on the normal space to the level set of local minimisers, then xn
has a limit, denoted x1 := limn!1 xn.

Indeed, since �d satisfies assumption (B), it follows that the sub-level sets of E,
{x;E(x)  t} are compact for each t. We need to show that the Hessian of E is non-
degenerate on the normal space of ��1

d
(y). Since �d > 0 for y 2 �d(Rd)� for su�ciently

large d from Theorem 3.1, ��1
d

(y) has positive d�K-dimensional Hausdor↵ measure, hence
it is su�cient to show that r2E(x) has K strictly positive eigenvalues when x 2 ��1(y).
But by definition,

r2E(x) =
X

kK

r2�k(x)(�k(x)� yk) + J�d(x)
TJ�d(x) ,

thus
r2E(x) = J�d(x)

TJ�d(x) for x 2 ��1
d

(y) . (82)

Therefore, if |J�d(x)| > 0 for x 2 ��1
d

(y), we can apply Theorem E.1, and conclude that
the iterates xn from gradient descent have a limit, for each x0 ⇠ µ0.

We have just proved that

Pµ0 {(xn)n is Cauchy} = 1 ,

or, equivalently, thatXn ⇠ µn is almost surely Cauchy, which implies [42] that µn converges
almost surely to a certain measure µ1. Moreover, since limn!1 krE(xn)k = 0, the strict
saddle condition implies that xn does not converge to saddle points, so we conclude that
necessarily

µ1
⇥
��1
d

(y)
⇤
= Pµ0

n
lim
n!1

xn 2 ��1
d

(y)
o
= 1 ,

therefore that µ1 is supported in the microcanonical ensemble ��1
d

(y), which finishes the
proof. ⇤

E.2 Proof of part (ii)

We first compute how the entropy is modified at each gradient step. By definition of the
pushforward measure, for any di↵eomorphism ' and any measurable g

Ex⇠'#µg(x) = Ex⇠µg('(x)) .

Also, from a change of variables we have, by denoting µ̃ = '#µ, µ̃(x) = |J'�1(x)|µ('�1(x)) ,
and thus

log µ̃(x) = log µ('�1(x))� log |J'('�1(x))| .

It follows that
�Ex⇠µ̃ log µ̃(x) = �Ex⇠µ logµ(x) + Ex⇠µ log |J'(x)|
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and hence
H('#µ) = H(µ)� Eµ log |J'(x)| . (83)

The change in entropy by applying the di↵eomorphism is thus given by the term
Eµ log |J'(x)|, and thus the entropy of µn is given by

H(µn) = H(µ0)�
X

n0n

Eµn0 log |J'n(x)|

By definition, the Jacobian of 'n is

J'n(x) = 1� �n

0

@
X

kK

r2�k(x)(�k(x)� yk) + J�d(x)
TJ�d(x)

1

A . (84)

We know that � is Lipschitz, which implies that kJ�(x)k  �, and that r� is also
Lipschitz, meaning that kr2�k(x)k  ⌘ for all k. Applying the Cauchy-Schwartz inequality,
it follows that ������

X

kK

r2�k(x)(�k(x)� yk)

������
 ⌘K

p
E(x) .

We abuse notation and redefine ⌘ := ⌘K sinceK is a constant. Also, the term J�(x)TJ�(x)
is of rank at most K. We can thus write J'n(x) as

J'n(x) = An(x) +Bn(x) , (85)

with An(x) full rank d and with singular values within the interval (1 � �n⌘
p
E(x), 1 +

�n⌘
p
E(x)); and �Bn(x) positive semidefinite of rank K, with singular values bounded by

�n�2. It follows that the singular values of J'n(x), called �1, . . . ,�d, satisfy

| log |J'n(x)|| 
dX

i=1

| log �i|


d�KX

i=1

max(| log(1 + �n⌘
p
E(x))|, | log(1� �n⌘

p
E(x))|)

+
KX

i=1

| log(1� �n�
2)|

 (d�K) log(1 + �n⌘
p
E(x)) +K log(1 + �n�

2) + o(�2n)

and thus up to second order terms we have

Eµn log |J'n(x)|  (d�K) log
⇣
1 + �n⌘Eµn

p
E(x)

⌘
+K log

�
1 + �n�

2
�
,

 (d�K)�n⌘Eµn

p
E(x) +K�n�

2 , (86)
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where we have used Jensen’s inequality on the concave function log(1+x) and log(1+x)  x
for x � 0 to obtain the inequality E log(1+X)  log(1+EX). Denoting by rn = Eµn

p
E(x)

the average distance to the microcanonical ensemble at iteration n, it results from (86) that
after n steps of gradient descent the entropy rate has decreased at most

✓
1� K

d

◆
⌘
X

n0n

�n0rn0 +
K

d
�2

X

n0n

�n0 .

F Proof of Corollary 3.8

The proof is a direct application of Theorem 3.7 and Sard’s theorem, that states that if �d

is a C1 Lipschitz function, then the image of its critical points {x , ; |J�d(x)| = 0} has
zero measure. We can thus apply Theorem E.1 from part (ii) of the proof of Theorem 3.7
for almost every y ⇤.

G Proof of Theorem 3.9

We show that �d(x) = {d�1kx ? hkk22}k satisfies the strict saddle condition. Here x 2 Rd,
and we recall that the Fourier transform is defined as x̂(!) =

P
u
x(u)e�i!u2⇡/d, with

! 2 (�d/2, d/2]. The gradient of the loss function E(x) = 1
2k�(x)� yk2 is

rE(x) = J�d(x)
T (�d(x)� y) ,

and its Hessian is
r2E(x) =

X

k

r2�k(x)vk + J�d(x)
>J�d(x) ,

where vk = �k(x) � yk. Expressing the gradient and the Hessian in the Fourier domain
yields

rE(x̂) = x̂ · (
X

k

vk|ĥk|2) (87)

r2E(x̂)(!,!0) =
X

k

vk|ĥk(!)|2�(! � !0) + x̂(!)|ĥk(!)|2x̂(!0)⇤|ĥk(!0)|2 . (88)

The Hessian thus contains a diagonal term and a rank-K term. We need to show that a
critical point x satisfying rE(x̂) = 0 with kvk > 0 has a Hessian matrix with at least one
negative eigenvalue. From (87), it follows that a critical point satisfies

8! , x̂(!) · (
X

k

vk|ĥk(!)|2) = 0 . (89)
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Let C = {! ; x̂(!) 6= 0}. The Hessian is expressed in terms of block matrices regrouping
the frequencies in C as

r2E(x̂) =

✓
M 0
0 r2

C,C

◆
,

where M is the diagonal matrix of size (d� |C|)⇥ (d� |C|) given by the frequencies outside
C, such that x̂(!) = 0:

M!,! =
X

k

vk|ĥk(!)|2 , ! /2 C .

We examine the diagonal block corresponding to M. The image of �d is the convex cone
C in RK

+ determined by the directions o! = (|ĥ1(!)|2, . . . , |ĥK(!j)|2) 2 RK , ! = 1 . . . d.
Without loss of generality, we assume here that ko!k > 0 for all !, since frequencies that
are invisible to all the filters do not play any role in the gradient descent. The target y is
by hypothesis in the interior of C. Further, any two directions o, o0 in C satisfy

ho, o0i =
X

k

|ĥk(!)|2|ĥk(!0)|2 > 0 ,

since the filters have compact spatial support.
If C is empty, then x = 0, which implies that v = �(x) � y = �y has all its entries

negative, and therefore diag(
P

k
vk|ĥk(!)|2) < 0. We shall thus assume in the following

that C is non-empty. Similarly, we verify that the space spanned by o!, ! 2 C, cannot
have full rank K. Indeed, if this was the case, the first order optimality condition (89)
reveals that v should be orthogonal to all directions o!, ! 2 C. Since this system has rank
K, this contradicts the fact that v 6= 0.

We can thus write C as generated by directions OC = {o!;! 2 C} and O
C
= {o!;! /2

C}, with |O
C
| > 0, |OC | > 0. Since y is in the interior, it follows that

y =
X

!2C
�!o! +

X

!/2C

�!o! , �!, �! > 08 ! . (90)

We need to show that there exists at least one ! /2 C such that hv, o!i < 0. Suppose
otherwise, i.e. that for all ! /2 C, h�d(x), o!i � hy, o!i. Since o! 2 OC ) h�d(x), o!i =
hy, o!i by the first order critical conditions, we have

hy, yi =
X

!2C
�!ho!, yi+

X

!/2C

�!ho!, yi


X

!2C
�!ho!,�d(x)i+

X

!/2C

�!ho!,�d(x)i . (91)

On the other hand, from (90) we also have

hy,�d(x)i =
X

!2C
�!ho!,�d(x)i+

X

!/2C

�!ho!,�d(x)i , (92)
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and since �(x) =
P

!2C ↵!o! is a linear combination of vectors in O
C
, we also have

h�(x), yi = h�(x),�(x)i. This implies from (91) that

hy, yi  hy,�d(x)i = h�d(x),�d(x)i , (93)

which leads to y = �(x) and therefore v = 0, which is a contradiction.
Finally, if x 2 ��1

d
(y) for y 2 �d(Rd)�, then y falls necessarily inside the convex hull

of C, which implies that {r�k(x) = x̂(!) · |ĥk|2(!)}kK have rank K. This concludes the
proof ⇤.

H Proof of Proposition 4.1

If � = 0 then (39) proves that

kxk22 = kx ?  J,0k22 +
log2 dX

j0=1

X

q

kx ?  j0,q0k22.

If J = log2 d then  J,0(u) = d�11⇤d and x ?  J,0(u) is the average of x over ⇤d. We thus
get

kxk22 = d�1
⇣X

u

x(u)
⌘2

+

log2 dX

j0=1

X

q

kx ?  j0,q0k22. (94)

Replacing x by |x ?  j,q| gives

kx ?  j,qk22 = d�1kx ?  j,qk21 +
log2 dX

j0=1

X

q

k|x ?  j,q| ?  j0,q0k22.

We finally prove (47) by decomposing each term k|x ?  j,q| ?  j0,q0k22 into an l1 norm plus
a sum of l2 norms, obtained replacing x by ||x ?  j,q| ?  j0,q0 | in (94).

I Proof of Theorem 5.1

Let us first prove property (i). Young inequality is proved by observing that

kx ?  j,qk1 =
X

n2⇤d

���
X

u2⇤d

x(u) j,q(n� u)
��� 

X

n2⇤d

X

u2⇤d

|x(u) j,q(n� u)| = kxk1 k j,qk1 .

The inequality is an equality if and only if for any fixed n, the product x(u) j,q(n�u) has
a constant phase when u varies. Since x(u) is real, its phase is either 0 or ⇡. It implies that
 j,q(n�u) has a phase modulo ⇡ which does not depend upon u when x(u) j,q(n�u) 6= 0
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and hence x(u) 6= 0. Since the phase of  is '(⇠.u), the phase of  j,q(u) = 2�`j (2�jr�1
q u)

is '(2�j⇠q.u) with ⇠q = rq⇠ so

8u 2 ⇤d , '(2�j⇠q.(n� u)) = a(2�jn) + k⇡ if x(u) j,q(n� u) 6= 0 with k 2 Z . (95)

Since ' is bi-Lipschitz, there exists � > 0 such that

��1|a� a0|  |'q(a)� 'q(a
0)|  �|a� a0| . (96)

Since  q(0) 6= 0 and  q is continuous, there exists ↵ > 0 such that | q(u)| > 0 for
u 2 [�↵,↵]`. If 2�j |u � u0|  2↵ then for n = (u + u0)/2 we have 2�j |n � u|  ↵ and
2�j |n� u0|  ↵, so  j,q(n� u) 6= 0 and  j,q(n� u0) 6= 0. If the inner product ⇠q.(u� u0) is
not zero then (96) implies that |'(2�j⇠1.(n� u))� 'q(2�j⇠q.(n� u0))| > 0. So if x(u) and
x(u0) are non-zero (95) implies that

|'(2�j⇠1.(n� u))� '(2�j⇠q.(n� u0))| � ⇡.

It results from (96) that if 2�j |u� u0|  2↵ then

2�j�|⇠q.(u� u0)| � ⇡,

which proves (??) for C = min(⇡��1, 2↵|⇠q|), and hence Theorem 5.1.
Let us now prove property (ii). Since  q has a compact support it is included in [��, �]`

for � large enough. Since the support of x are points of distance at least � it results that
for any n 2 Z` and 2j  � ��1, the product x(u) j,q(n � u) is non-zero for at most one
u 2 Z`. It results that

kx ?  j,qk1 =
X

n2⇤d

���
X

u2⇤d

x(u) j,q(n� u)
��� =

X

n2⇤d

X

u2⇤d

|x(u)| | j,q(n� u)| = kxk1 k j,qk1 .

The hypothesis (60) implies that kx0k1 = kx0 ? j,qk1 for all q  Q and 2j  � min(1, ��1).
Applying Theorem 5.1 for 2j � 2�1� min(1, ��1) proves that x0(u) and x0(u0) are non-zero
only for all q  Q we have ⇠q.(u�u0) = 0 or |⇠q.(u�u0)| � C 0�, where C 0 does not depend
upon x and x0.

Since the {⇠q}qQ are Q � ` di↵erent rotations of a non-zero ⇠ 2 R`, they define a
frame of R`. It results that there exists A and B such that for any v 2 R`

A |v| 
X

qQ

|v.⇠q|  B |v| . (97)

This inequality applied to v = u � u0 6= 0 proves that there exists q  Q such that
⇠q.(u � u0) 6= 0. If x(u) 6= 0 and x(u0) 6= 0 then we proved that if ⇠q.(u � u0) 6= 0 then
|⇠q.(u�u0)| � C 0�. The frame inequality (97) implies that |u�u0| � B�1C 0� which shows
that any two points in the support of x0 have a distance at least C� with C = C 0B�1.
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