
MUSIC GENERATION AND TRANSFORMATION WITH MOMENT
MATCHING-SCATTERING INVERSE NETWORKS

Mathieu Andreux and Stéphane Mallat
Département d’informatique de l’ENS, École normale supérieure,

CNRS, PSL Research University, 75005 Paris, France

ABSTRACT

We introduce a Moment Matching-Scattering Inverse
Network (MM-SIN) to generate and transform musical
sounds. The MM-SIN generator is similar to a variational
autoencoder or an adversarial network. However, the en-
coder or the discriminator are not learned, but computed
with a scattering transform defined from prior information
on sparse time-frequency audio properties. The genera-
tor is trained by jointly minimizing the reconstruction loss
of an inverse problem, and a generation loss which com-
putes a distance over scattering moments. It has a similar
causal architecture as a WaveNet and provides a simpler
mathematical model related to time-frequency decomposi-
tions. Numerical experiments demonstrate that this MM-
SIN generates new realistic musical signals. It can trans-
form low-level musical attributes such as pitch with a lin-
ear transformation in the embedding space of scattering co-
efficients.

1. INTRODUCTION

This paper investigates musical sound generation and
transformation with a simplified algorithmic architecture,
which relates generative networks to time-frequency rep-
resentations. Image generation has led the way through
the development of Generative Adversarial Networks
(GANs) [7] and Variational Autoencoders [13] where im-
ages are generated from a Gaussian white noise vector,
which defines a latent space. Arithmetic operations in this
latent space lead to controlled transformations over the im-
ages such as aging of faces or transforming women in men.
The problem is however different for audio signals which
must take into account time causality properties. Some au-
thors have applied image generation algorithms over spec-
trograms [3, 10] but it then requires to invert the spectro-
grams with a vocoder or a Griffin-Lim algorithm which is
long and has a reduced quality.

Deep autoregressive neural networks such as
WaveNet [15, 16] or SampleRNN [14] have achieved
exceptional synthesis of music and speech signals. They

c© Mathieu Andreux and Stéphane Mallat. Licensed under
a Creative Commons Attribution 4.0 International License (CC BY 4.0).
Attribution: Mathieu Andreux and Stéphane Mallat. “Music Genera-
tion and Transformation with Moment Matching-Scattering Inverse Net-
works”, 19th International Society for Music Information Retrieval Con-
ference, Paris, France, 2018.

do not take as input a Gaussian white noise but estimate a
probability distribution with a Markov chain factorization,
which computes conditional probabilities given from
past values. The generated signals have an outstanding
quality but these neural architectures are complex and
lack interpretability. Several effective techniques have
been introduced to modify audio generations [4–6, 9]
by modifying the latent code to change the probability
distribution or by using reference signals as targets, which
is more complex than arithmetic operations used for
images.

This paper introduces a simplified neural network ar-
chitecture which synthesizes and modifies music signals
from Gaussian white noise, with two key contributions.
As opposed to image GANs or variational autoencoders,
we do not learn a discriminator or an encoder: both are
provided by prior information on audio signals, which is
captured by their time-frequency regularity. This is done
by adapting a result obtained in [2] for images, and intro-
ducing a moment matching technique. The second con-
tribution is the introduction of a causal computational ar-
chitecture allowing to progressively synthesize audio sig-
nals, and which can be parallelized in GPU’s. The resulting
Scattering Autoencoder architecture has some similarities
with a Parallel WaveNet [16]. Similarly to warping proper-
ties over images, we show that arithmetic transformations
in the latent space produce time-frequency deformations,
which can modify the pitch of musical notes or interpolate
music. Despite a lower synthesis quality than state-of-the-
art generating methods, these preliminary results pave the
way for a new approach to synthesize audio signals, with-
out learning encoders or discriminators.

2. SCATTERING AUTOENCODER

This section introduces the principles of a scattering au-
toencoder and its computational architecture. The encoder
is not learned but computed based on prior information on
audio time-frequency properties. Audio and musical sig-
nals have sparse representations over time-frequency dic-
tionaries such as audio wavelets [20]. Their perceptual
properties are not much affected by small time-frequency
warpings. We define a signal embedding which takes ad-
vantage of these characteristics.

The architecture of a scattering autoencoder is illus-
trated in Figure 1. The random input audio signal X[t]
is first transformed into a nearly Gaussian random vec-

327

X[t]

Scattering SJ Whitening L

VAR L−1CNN
Z[2Jn]

Fixed Encoder Φ

Trained Generator G

Signal

Waveform

Latent
code

Temporal
Vector

Figure 1. The audio waveforms is encoded with a time-
frequency scattering SJ followed by a linear whitening op-
erator L. The Scattering Inverse Network (SIN) G restores
a signal from a Gaussian white noise by inverting LSJ on
training data.

tor SJ(X)[2Jn] by applying the time-frequency scattering
transform SJ , where J ≥ 0 is a hyperparameter. Gaus-
sianization is achieved through a time averaging over a
sufficiently long time interval thanks to the central limit
theorem. In order to preserve enough information on the
original signal X after averaging, multiple sparse time-
frequency channels are built by applying iterative wavelet
transforms [1]. The Gaussian scattering SJ(X) is then
mapped into a Gaussian white noise with a whitening op-
erator L, which outputs the linear prediction errors of a fu-
ture scattering vector from its neighboring past. Section 4
details the whitened scattering transformation LSJ .

The generator G inverts the linear whitening operator
and the joint scattering transform by synthesizing an ap-
proximation of X[t] from Z[2Jn]. It first applies a vec-
tor autoregressive (VAR) filter L−1, which can be deduced
from L. This operation is followed by a causal convolu-
tional neural network (CNN), with the convolutions acting
along time. The network has J layers to invert a scattering
at scale 2J . Section 3 describes the architecture which has
similarities with a Parallel WaveNet [16]. The optimiza-
tion of the generator G amounts to inverting the scattering
transform SJ in an adapted metric. The statistics of syn-
thesized signals are constrained by ensuring that they have
the same moments in the scattering space as the input sig-
nal X[t]. This network is thus called a Moment Matching-
Scattering Inverse Network (MM-SIN).

3. MOMENT MATCHING-SCATTERING
INVERSE GENERATOR

A Moment Matching-Scattering Inverse Network G is
computed by inverting a scattering embedding computed
at a scale 2J . It is a causal network which takes as input
a nearly Gaussian white noise vector Z computed with a
scattering transform, to recover an estimation of the signal
X . This network is trained with a loss which incorporates
the inverse problem loss computed with a scattering met-
ric, regularized by a moment matching term that can be
interpreted as a discriminative metric.

The MM-SIN generator is a linear recurrent neural net-
work L−1 followed by a causal convolutional network im-
plemented with a cascade of J convolutions and pointwise
non-linearities, illustrated in Figure 2. Each intermediate

W1

WJ−1

ReLU

WJ

ReLU

L−1

ReLU

Layer X0[t0]

Layer XJ [tJ]

Input Noise Z[tJ] Z[2Jn]

X0[2Jn]

Zero insertion

t0

tJ−2

tJ−1

tJ

tJ

2J

Figure 2. An MM-SIN is a linear recurrent network fol-
lowed by a causal deep convolutional network with J lay-
ers. It takes as input a vector of Gaussian white noise
Z[2Jn] (top right, red), and computes the corresponding
scattering vector XJ [2Jn] by applying L−1. Intermedi-
ate layers Xj [tj] are then computed with causal convolu-
tions denoted by blue arrows and zero insertions (white
points). The single vector Z[2Jn] outputs 2J values for
X0[t0], marked with red points.

network layer is composed of vectors Xj [tj] having kj
channels and sampled at intervals 2j , for 0 ≤ j ≤ J . All
layers in Figure 2 appear to be aligned but to understand
the causality structure one must realize that each layer is
indexed by a time index tj which is shifted by 2j relatively
to the absolute time variable t of the original input signal
X[t]: tj = t − 2j . Using the absolute time t, we thus use
the noise vector at a time t = 2J(n+1) to generate 2J new
output signal values at times 2Jn−2J + 1 < t ≤ 2Jn+ 1.

The first layer maps Z[tJ] to XJ [tJ] with a vector au-
toregressive filter L−1 which inverts the whitening opera-
torL, followed by a ReLU non-linearity ρ(u) = max(u, 0)

XJ = ρ
(
L−1Z

)
. (1)

A new noise vector Z[2Jn] outputs a new vector
XJ [2Jn]. At depth j, this initial vector gives rise to 2J−j

temporal vectors Xj [tj] for 2Jn− 2J−j < tj ≤ 2Jn.
At layer j > 0, the layer Xj is mapped to Xj−1 with an

à trous convolution followed by a ReLU non-linearity plus
bias. We first double the size of Xj with a zero insertion:

X̃j [n2j] = Xj [n2j] and X̃j [n2j + 2j−1] = 0. (2)

Each Xj−1 is then calculated with a causal convolution
along time and a linear operator along channels with a bias,
Wj , followed by a ReLU:

Xj−1 = ρ(WjX̃j). (3)

Except for the autoregressive layer, the ReLU is pre-
ceded by a batch normalization [11]. The last convolu-
tion is not followed by a ReLU so that we can output a

328 Proceedings of the 19th ISMIR Conference, Paris, France, September 23-27, 2018

signal with negative values. The final output is X0[t0]
for 2Jn− 2J < t0 ≤ 2Jn which corresponds to X[t] for
2Jn− 2J + 1 < t ≤ 2Jn+ 1. As in standard generative
networks [18], the number of the channels kj decreases
with j according to a geometric law fitted such that X0 has
only one channel and XJ has kJ channels, which is the
dimensionality of each vector Z[2Jn].

The parameters of the network G are optimized by in-
verting the scattering transform followed by the causal
whitening operator L. The loss L minimized by G is a
sum of two terms, weighted by a hyperparameter λ > 0.
The first term Linv measures the accuracy of the inversion.
The second discriminative term LMM measures the dis-
tance between the scattering moments of the synthesized
signals and the scattering moments of the original signals.

min
G
L = Linv + λLMM. (4)

The inverse problem loss Linv computes the reconstruc-
tion error on each training example xi from its embedding
zi computed with the scattering transform SJ followed by
the linear whitening operator L. The reconstruction er-
ror is calculated over scattering coefficients computed at
a scale 2K < 2J :

Linv =
1

N

N∑
i=1

‖SK(xi)− SKG(zi)‖1 with zi = LSJ(xi).

(5)
The l1 norm promotes the sparsity of the responses, while
the scattering SK allows to generate signals which may be
locally deformed, but are perceptually similar to the orig-
inal ones. In order to avoid useless computations, we do
not apply L−1zi but directly input the vectors SJ(xi) to
the convolutional part of G for the computation of Linv.

The loss Linv does not control the quality of the gen-
erated samples G(z) when z is sampled as a Gaussian
white noise. Similarly to GANs which have a discrimi-
nator, the quality is controlled by introducing another loss
term LMM, which controls the distance between the gener-
ated distribution and the distribution of the original signals.

The moment matching term LMM computes the dis-
tance between scattering coefficients of generated signals
averaged over time t and batch index i, SKG(zi)[t], and
scattering coefficients of the training signals averaged over
time t and training examples i, SKxi[t]:

LMM =
∥∥∥SKxi[t]− SKG(zi)[t]

∥∥∥2 (6)

The codes {zi} correspond to a batch of random vectors
which is renewed at each iteration of the gradient descent
algorithm.

The loss LMM is similar to the Maximum Mean Dis-
crepancy regularization introduced in [19]. The moment
matching term can be interpreted as a distance with a scat-
tering transform kernel [8]. However, in this case it can
directly be implemented as a difference of moments.

4. WHITENED TIME-FREQUENCY SCATTERING

This section details the time-frequency scattering trans-
form SJ(X) originally introduced in [1] and its whiten-

X Log-Spectrogr.

ψ1
`

2D filter
Modulus

hξ ⊗ ψ2
`′

Averaging
Subsampling

φJ

Scattering
2J

Figure 3. Time-Frequency Scattering transform. The log-
spectrogram is obtained with a first wavelet transform ψ1

`

followed by a modulus. A joint time-frequency filtering of
this log-spectrogram with the filters hξ⊗ψ2

`′ regularizes the
time-frequency deformations of the signal. The low-pass
convolution with φJ Gaussianizes the resulting tensor.

ing L, which results in the embedding Z[2Jn]. Figure 3
sketches the different computational steps. This transform
relies on priors on musical signals in order to build a time-
dependent vector representation SJX[2Jn] which is ap-
proximately Gaussian and linearizes small time-frequency
deformations.

Musical signals admit a sparse decomposition in time-
frequency representations with a spectrogram. Here, we
first compute a spectrogram with frequencies sampled
on a logarithmic scale thanks to a wavelet filterbank
{ψ1

`}0≤`<J followed by a modulus non-linearity. The
wavelets ψ1

` are defined by dilations of a single mother
wavelet:

ψ1
` [t] = 2−`/Qψ1[2−`/Qt] (7)

We use causal analytic Gammatone wavelets [20],
which are good perceptual models of auditory filters,
with Q = 12 wavelets per octave in order to separate high-
frequency partials.

On this sparse spectrogram, small time-frequency de-
formations of the input signalX produce small local trans-
lations in the time-frequency plane. These deformations
result in smooth perceptual variations. As a consequence,
the embedding should be regular with respect to these de-
formations This is obtained with a joint 2D filtering of
the spectrogram in the time and log-frequency axis. One
can prove that the resulting representation is Lipschitz-
continuous to these deformations, while preserving invert-
ibility thanks to the use of filters spanning all the energy
of the signal [1]. This will imply a form a linearization of
these deformations, paving the way for meaningful arith-
metic in the latent space.

The time-frequency filters are built as a separable prod-
uct hξ ⊗ ψ2

`′ of frequential filters hξ and temporal fil-
ters ψ2

`′ . The frequential filters hξ are localized Fourier
atoms with a Hann window whose size P matches one oc-
tave, P = Q = 12. The convolution is computed in half-
overlaps over the frequency axis. The temporal filters ψ2

`′

Proceedings of the 19th ISMIR Conference, Paris, France, September 23-27, 2018 329

are also Gammatone wavelets, with only Q2 = 1 wavelet
per octave. After performing the convolution, a modulus
non-linearity is also applied in order to remove the local
phase, thereby regularizing the representation.

The time-frequency filtering of the log-spectrogram re-
sults in a large tensor with one temporal axis. Its co-
efficients are sparse along the channel axis and typically
decorrelate as they get farther apart in time. To obtain a
variable which is more Gaussian, we use the central limit
theorem which says that the averaging of a large number of
independant variables converges towards a Gaussian ran-
dom variable. We perform this averaging with a window
size 2J which should be larger than the typical decorrela-
tion length in order to average over enough independent
events. This averaging is carried out with a low-pass filter
φJ along the temporal axis. It is followed by a subsam-
pling by 2J in order to remove redundant information.

The time-frequency scattering transform SJX is de-
fined as:

SJX[2Jn] =
[
x ? φJ [2Jn],

∣∣|x ? ψ1
` | ? hξ

∣∣ ? φJ [2Jn],∣∣|x ? ψ`| ? (hξ ⊗ ψ2
`′)
∣∣ ? φJ [2Jn]

]
, (8)

for all `, ξ, `′, where convolutions with hξ should be in-
terpreted along the frequential ` axis and other convolu-
tions along time. SJX is subsampled in time by a fac-
tor 2J . Each vector SJX[2Jn] has dimension kJ =
1 + Q(2J − 3) + Q(J − 2)2. For J = 10 and Q = 12,
this amounts to 973 channels. The scale 2J is chosen as
a trade-off between the Gaussianization condition which
improves as J increases, and the stability of the scattering
invertibility which improves when J decreases.

Thanks to the local averaging, the vectors SJX tend to
a Gaussian distribution. However, this distribution might
not be white, i.e. it has temporal and channel-wise cor-
relations. The whitening operator L is a causal vector
autoregressive linear filter which removes this correlation
structure. It is trained by minimizing a prediction error
of SJX[2Jn] given previous vectors SJX[2J(n − m)]
for 1 ≤ m ≤ M . The whitening operator L outputs
the innovations of the fitted vector autoregressive process
{Z[2Jn]}n, which have an approximately Gaussian white
distribution.

5. NUMERICAL EXPERIMENTS

We show that the MM-SIN is able to reconstruct wave-
forms from their embeddings and generate new decent
waveforms from noise. Furthermore, we show that it is
possible to manipulate low-level attributes of sounds such
as pitch with a simple arithmetic in the embedding. In
addition, a simple arithmetic in the embedding allows to
merge the contents of different inputs, while preserving the
musical structure of the resulting signal.

5.1 Methods

We describe the numerical details which lay out experi-
ments. The source code supporting experiments is freely

available at http://github.com/AndreuxMath/
ismir2018, where the reader may also find the audio
recordings corresponding to the figures.

The time-frequency scattering transform SJ is com-
puted with an averaging window of size 2J = 210 = 1024.
It is implemented on GPU with a code inspired from [17].
In the case of the loss (4), we employ a first-order scat-
tering SK , which means that it is an averaged scalogram,
with an averaging window of size 2K = 25 = 32. The fil-
terbanks are normalized so as to have responses of average
equal magnitude in each band over the training dataset.

The architecture of the SING is defined as follows. The
whitening operator L has a past size M = 4. All subse-
quent convolutions have a kernel size equal to 7. These val-
ues were not tuned: results could likely be improved with
a careful hyperparameter search. Each network is trained
by Adam [12] with a learning rate of 5 × 10−4 for 1200
epochs and batches of size 128.

We use two different musical datasets: NSynth [5] and
Beethoven [14]. NSynth is a dataset consisting of anno-
tated musical notes from multiple instruments, thereby al-
lowing to perform carefully controlled transformation ex-
periments. All recordings begin with the onset of the note
and last 4s. We restrict ourselves to two types of acoustic
instruments, keyboards and flutes, totalling 40 different in-
struments with MIDI pitches ranging 20− 110, leading to
a varied and well-balanced dataset. In the original dataset,
instruments of the training and testing sets do not overlap.
In this paper, we use an alternative split based on the veloc-
ity’s attributes of the training samples: for each instrument,
a random velocity is picked to define the test set. We only
use the first 2s of the recordings, as they concentrate most
of the energy of the signals.

The Beethoven dataset is closer to an actual musical
composition than NSynth, insofar as it consists in 8s ex-
tracts of Beethoven’s piano sonata. Therefore, it is a good
testbed for music generation experiments. We use the
train-test split provided by the authors.

For both datasets, the amplitudes of all recordings are
normalized in [−1, 1]. The sampling rate is reduced from
16000Hz to 4096Hz so as to reduce the computational
complexity. It is very likely that the quality of the syn-
thesis could be improved by increasing this sampling rate.

5.2 Waveform generation

We first show that the MM-SIN generator is able to recon-
struct and to generate realistic musical samples.

In Figure 4, we display two reconstructions of wave-
forms from their embeddings, along with the correspond-
ing log-spectrograms, for each of the studied datasets. This
shows that the network is able to generalize to a test set,
and to adapt to the specifics of a given dataset. The recon-
struction is not perfect. The network can introduce small
time-frequency deformations because of the scattering en-
coder and the use of a scattering loss. As witnessed in the
log-spectrograms, the time-frequency content of the sig-
nals is correctly retrieved, and perceptually the two signals
sound similar, up to minor artifacts.

330 Proceedings of the 19th ISMIR Conference, Paris, France, September 23-27, 2018

Figure 4. Reconstruction with the MM-SIN G. Left:
Original test sample X . Right: Reconstruction G(Z) for
Z = LSJX . Top: NSynth dataset. Bottom: Beethoven
dataset. A different network was trained for each dataset.

Table 1 provides quantitative reconstruction results on
the Beethoven dataset. Training a network with the mean-
square error (MSE) metric ‖xi − G(zi)‖22 instead of the
proposed perceptual metric within the inverse problem
loss (5) negatively impacts results, both on the training and
testing sets. Further, the moment-matching term has a pos-
itive effect on the reconstruction: even though it degrades
reconstruction on the training set, it improves the general-
ization on the test set both in absolute and relative terms.

We now investigate the ability of the network to gen-
erate new waveforms from Gaussian white noise. Fig-
ure 5 displays several samples generated from white noise
through a network trained on the Beethoven dataset. De-
spite the input being a pure white noise, the network is able
to generate samples which alternate silences and more ac-
tive phases. Further, the fundamental frequency which is
played varies through the samples.

In order to measure the variability of the generated
samples, we measure the spread σ of the distribution of
the time-averaged scattering coefficients SKX of the sam-
ples. This spread corresponds to the average Euclidean
distance between the time-averaged scattering of the wave-
forms and the average scattering coefficients of this distri-
bution. In the case of the training distribution, we obtained

Loss Linv Linv Linv + λLMM

Metric MSE SK SK

Train error 0.56 0.16 0.23
Test error 0.77 0.37 0.31

Gap test/train
(dB)

1.36 3.53 1.21

Table 1. Reconstruction errors on the Beethoven dataset,
expressed in terms of the perceptual loss (5). MSE denotes
the mean-square error metric ‖xi − G(zi)‖22. Using the
perceptual metric for training instead of the MSE metric
reduces the error. Further, adding the moment-matching
term during training improves the reconstruction results
and the generalization.

Figure 5. Musical signal G(Z) generated from a white
noise Z, where G is learned on the Beethoven dataset.
Each line corresponds to an independent sample obtained
from a different white noise realization. The resulting sig-
nals last about 4s.

σ = 6.69, whereas σ = 3.51 for the distribution generated
from white noise. This shows that the generated samples
exhibit a non-negligible variability, even though it is lower
than the one expressed in the training set.

The effect of the moment matching loss (6) on the gen-
erated samples is difficult to assess qualitatively, so we
resort to quantitative measures. In the case of a network
trained without this loss, the moment matching distance
between generated samples and the training set was equal
to 38.7, whereas the same distance was equal to 0.176
when also optimizing this loss. As a comparison, the test-
ing set has a distance of 0.334 with respect to the training
set. Thus, using this loss term brings generated samples
much closer to the natural signals’ statistics.

5.3 Pitch modification

We now study the ability of the algorithm to transform the
pitch of musical signals with an arithmetic operations in
the latent space. We use the NSynth dataset, whose care-
ful construction allows to perform modifications with fixed
factors of variability. In the test set, we pick two sam-
ples belonging to the same instrument, but with a pitch
separated by 5 MIDI scales. We compute their embed-
dings Z1 and Z2, their mean embedding (Z1 +Z2)/2, and
reconstruct the corresponding signals with the generator:
G(Z1), G(Z2) and G((Z1 + Z2)/2).

The results are displayed in Figure 6. The interpolation

Proceedings of the 19th ISMIR Conference, Paris, France, September 23-27, 2018 331

Figure 6. Pitch interpolation. Left column: G(Z1). Mid-
dle column: G((Z1 + Z2)/2). Right column: G(Z2). Z1

and Z2 are the embeddings of samples from the test set.
The generator interpolates the fundamental frequency with
a simple arithmetic. The frequential displacement from left
to right corresponds to 5 MIDI scales.

in the latent space does not result in a linear interpolation
which would double the number of harmonics. It yields
one fundamental frequency in each case. Furthermore, this
fundamental frequency is indeed interpolated by this sim-
ple arithmetic. Observe that this is also the case of the
partials, as can be seen in particular in the bottom exam-
ple. However, this interpolation suffers from some arti-
facts. For instance, in the middle example, the partials at
highest frequencies are cluttered and the resulting signal
misses harmonicity. Yet, these results showcase the ability
to transform signals via linear interpolations in the latent
space with a simple unsupervised learning procedure and a
predefined embedding.

The algorithm owes the ability to perform such pitch
interpolations to the time-frequency scattering transform
SJ used as an encoder, which regularizes small time-
frequency deformations. As such, the pitch interval on
which the interpolations can be performed is bounded by
the size P of the Hann window used to filter the scalogram
along the frequency axis.

Figure 7. Interpolations in the latent and signal space. Top
two signals: G(Z1) andG(Z2), whereZ1, Z2 are Gaussian
white noise realizations and G is trained on the Beethoven
dataset. Bottom left: Latent interpolationG((Z1+Z2)/2).
Bottom right: (G(Z1) + G(Z2))/2. The latent interpo-
lation is able to merge both signals while preserving the
musical structure.

5.4 Waveform interpolation

Let us show results when interpolating waveforms from the
Beethoven dataset, which have a high density of musical
events. We take two random white noise realizations Z1

and Z2, and compare the effect on the waveforms of an
interpolation in the latent space and in the signal space,
with a network G trained on the Beethoven dataset.

The results are represented in Figure 7. The top two
signals are the original signals G(Z1) and G(Z2), while
the bottom left is the latent interpolation G((Z1 + Z2)/2)
and the bottom right the linear interpolation (G(Z1) +
G(Z2))/2. The latent interpolation incorporates patterns
from both signals but it respects the musical structure. It
has successive musical notes with their harmonics, and it
recovers a sound with silences. On the opposite, the linear
interpolation merges both signals, which eliminates the si-
lence regions while producing a cluttered log-spectrogram.

6. CONCLUSION

This paper introduces a causal musical synthesis network
optimized through an inverse problem and which thus in-
volves no learned encoder or discriminator. The encoder is
defined from time-frequency signal priors in order to Gaus-
sianize the input signal. The generator network maps back
the resulting codes to raw waveforms. This network inverts
the encoder and generates new signals whose scattering
moments match those of the original signals. The resulting
system synthesizes new realistic musical signals and per-
forms the transformation of low-level attributes, such as
pitch, by simple linear combinations in the latent space.

Synthesized signals do not reach the quality of state-of-
the-art generating architectures but these first results show
that this approach is a new promising avenue to synthesize
audio signals directly from Gaussian white noise, without
learning encoders or discriminators.

332 Proceedings of the 19th ISMIR Conference, Paris, France, September 23-27, 2018

7. ACKNOWLEDGEMENTS

This work is supported by the ERC InvariantClass grant
320959 and an AMX grant from the MNESR.

8. REFERENCES

[1] J. Anden, V. Lostanlen, and S. Mallat. Joint time-
frequency scattering for audio classification. In Proc.
of IEEE MLSP, 2015.

[2] Tomàs Angles and Stéphane Mallat. Generative net-
works as inverse problems with scattering transforms.
In International Conference on Learning Representa-
tions, 2018.

[3] M. Blaauw and J. Bonada. Modeling and transforming
speech using variational autoencoders. In Interspeech,
pages 1770–1774, 2016.

[4] J. Chorowski, R.J. Weiss, R. A. Saurous, and S. Ben-
gio. On using backpropagation for speech texture gen-
eration and voice conversion. In International Confer-
ence on Audio and Speech Processing (ICASSP), 2018.

[5] J. Engel, C. Resnick, A. Roberts, S. Dieleman,
M. Norouzi, D. Eck, and K. Simonyan. Neural au-
dio synthesis of musical notes with WaveNet autoen-
coders. In Proceedings of the 34th International Con-
ference on Machine Learning, pages 1068–1077, 2017.

[6] L. Gatys, A. S. Ecker, and M. Bethge. Texture synthe-
sis using convolutional neural networks. In Advances
in Neural Information Processing Systems, pages 262–
270, 2015.

[7] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,
D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio.
Generative adversarial nets. Advances in Neural Infor-
mation Processing Systems, pages 2672–2680, 2014.

[8] A. Gretton, K. M. Borgwardt, M. Rasch, B. Schölkopf,
and A. J. Smola. A kernel method for the two-sample-
problem. In Advances in neural information processing
systems, pages 513–520, 2007.

[9] E. Grinstein, N. Duong, A. Ozerov, and P. Pérez. Audio
style transfer. HAL preprint hal-01626389, 2017.

[10] W.-N. Hsu, Y. Zhang, and J. Glass. Learning latent rep-
resentations for speech generation and transformation.
In Interspeech, pages 1273–1277, 2017.

[11] S. Ioffe and C. Szegedy. Batch normalization: Accel-
erating deep network training by reducing internal co-
variate shift. In International Conference on Machine
Learning, pages 448–456, 2015.

[12] D. P. Kingma and J. Ba. Adam: A method for stochas-
tic optimization. arXiv preprint arXiv:1412.6980,
2014.

[13] D. P. Kingma and M. Welling. Auto-encoding varia-
tional bayes. In International Conference on Learning
Representations, 2014.

[14] S. Mehri, K. Kumar, I. Gulrajani, R. Kumar, S. Jain,
J. Sotelo, A. Courville, and Y. Bengio. SampleRNN:
An unconditional end-to-end neural audio generation
model. In International Conference on Learning Rep-
resentations, 2017.

[15] A. Van Den Oord, S. Dieleman, H. Zen, K. Simonyan,
O. Vinyals, A. Graves, N. Kalchbrenner, A. Senior, and
K. Kavukcuoglu. WaveNet: A generative model for
raw audio. arXiv preprint arXiv:1609.03499, 2016.

[16] A. Van Den Oord, Y. Li, I. Babuschkin, K. Simonyan,
O. Vinyals, K. Kavukcuoglu, G. van den Driessche,
E. Lockhart, L. C. Cobo, F. Stimberg, et al. Parallel
WaveNet: Fast high-fidelity speech synthesis. arXiv
preprint arXiv:1711.10433, 2017.

[17] E. Oyallon, E. Belilovsky, and S. Zagoruyko. Scal-
ing the scattering transform: Deep hybrid networks. In
Proc. of ICCV, 2017.

[18] A. Radford, L. Metz, and R. Chintala. Unsupervised
representation learning with deep convolutional gener-
ative adversarial networks. In International Conference
on Learning Representations, 2016.

[19] I. Tolstikhin, O. Bousquet, S. Gelly, and B. Schölkopf.
Wasserstein auto-encoders. In International Confer-
ence on Learning Representations, 2018.

[20] A. Venkitaraman, A. Adiga, and C. S. Seelaman-
tula. Auditory-motivated gammatone wavelet trans-
form. Signal Processing, 94:608–619, 2014.

Proceedings of the 19th ISMIR Conference, Paris, France, September 23-27, 2018 333

