

Compressed Sensing

- Acquire few measurements and reconstruct a high resolution signal, if the signal has a sparse representation in a dictionary.
- A super-resolution problem, where the measurement operator can be chosen.
- Key idea: use random measurement operators to construct incoherent transformed dictionaries.
- •

Representation from Linear Sampling

• Linear sampling: an analog signal $\overline{f}(x)$ is projected on a basis $\{\overline{\phi}_n\}_{n < N}$ of an approximation space \mathbf{V}_N , which specifies a linear approximation:

$$P_{\mathbf{U}}\bar{f}(x) = \sum_{n < N} \langle \bar{f}, \bar{\phi}_n \rangle \,\tilde{\bar{\phi}}_n$$

- Uniform sampling: $\bar{\phi}_n(x) = \bar{\phi}(x Tn)$
- Sparse representation of the discrete signal
 f[n] = ⟨f̄, φ̄_n⟩ ∈ ℝ^N
 in a basis {g_p}_{p∈Γ} with the M largest coefficients
 {⟨f, g_p⟩}_{p∈Λ} with |Λ| = M.

- Discretization: if u
 _q(x) ∈ V_N then Y[q] = Uf[q] + W[q] = ⟨f, u_q⟩ + W[q]
 where f[n] = ⟨f̄, φ̄_n⟩ and u_q[n] ∈ ℝ^N is a random vector.
- If f is sparse in $\{g_p\}_{p\in\Gamma}$ can we recover f from Y?

Compressive Sensing Recovery

• From measurements with a random operator

Y[q] = Uf[q] + W[q]

sparse super-resolution estimation:

$$\tilde{F} = \sum_{p \in \tilde{\Lambda}} \tilde{a}[p] \, g_p$$

where $\tilde{a}[p]$ has a support $\tilde{\Lambda}$ computed with a sparse decomposition of Y in $\mathcal{D}_U = \{Ug_p\}_{p \in \Gamma}$ by minimizing:

$$\frac{1}{2} \|\sum_{p \in \Gamma} a[p] Ug_p - Y\|^2 + T \sum_{p \in \Gamma} |a[p]|$$

or with an orthogonal matching pursuit.

Restricted Isometry and Incoherence

• Riesz basis condition for recovery stability

$$(1-\delta_{\Lambda})\sum_{p\in\Gamma}|a[p]|^{2} \leq \left\|\sum_{p\in\Lambda}a[p]Ug_{p}\right\|^{2} \leq (1+\delta_{\Lambda})\sum_{p\in\Gamma}|a[p]|^{2}.$$

• Restricted isometry condition: $\delta_{\Lambda} \leq \delta_M(\mathcal{D}_U) < 1$ if $|\Lambda| \leq M$

$$(1 - \delta_M) \sum_{p \in \Gamma} |a[p]|^2 \le \left\| \sum_{p \in \Lambda} a[p] Ug_p \right\|^2 \le (1 + \delta_M) \sum_{p \in \Gamma} |a[p]|^2$$

any such family $\{Ug_p\}_{p \in \Lambda}$ is "nearly" orthogonal.

• Relation to incoherence:

 $\delta_M(\mathcal{D}_U) \le (M-1)\,\mu(\mathcal{D}_U) \text{ with } \mu(\mathcal{D}_U) = \max_{p \ne q} \langle Ug_p, Ug_q \rangle.$

Exact Recovery

• Theorem:

If
$$f = \sum_{p \in \Lambda} a[p] g_p$$
 with $|\Lambda| = M$ and $\delta_{3M} < 1/3$
then $a = \arg\min_b \frac{1}{2} \|\sum_{p \in \Gamma} b[p] Ug_p - Y\|^2 + T \|b\|_1$

• Sparse signals are exactly recovered.

Gaussian Random Matrices

- We want to have $\{Ug_p\}_{p\in\Gamma}$ nearly uniformly distributed over the unit sphere of \mathbb{R}^Q so that $\{Ug_p\}_{p\in\Lambda}$ is as orthogonal as possible even for Λ not small.
- The distribution of a Gaussian white noise of variance 1 is a uniform measure in the neighborhood of the unit sphere of \mathbf{R}^Q .
- If $\{g_p\}_{p\in\Gamma}$ is an orthonormal basis of \mathbb{R}^N and if U is a matrix of Q by N values taken by independent Gaussian random variables (white noise) then $\{Ug_p\}_{p\in\Gamma}$ are values taken by Q independent Gaussian random variables.

RIP Stability for Gaussian Matrices

• **Theorem:** If U is a Gaussian random matrix then for any $\delta < 1$ there exists $\beta > 0$ such that

$$\delta_M(\mathcal{D}_U) \le \delta \text{ if } M \le \frac{\beta Q}{\log(N/Q)}.$$

• Valid for random Bernouilli matrices (random 1 and -1).

- We need $Q \sim C M \mid O / O / O$ measurements to recover M values and M unknown indices among N.
- Coding would require of the order of $M \log(N/M)$ bits.

Perfect Recovery Constants

• Monte-Carlo experiments for recovering signals with M non-zero coefficients out of N with Q random Gaussian measurements: $Q \sim CM \mid O/M$

Other Random Operators

- Storing a random Gaussian matrix U and computing Uh requires $O(N^2)$ memory and calculations, too much.
- RIP theorem valid for Bernouilli matrices (random 1 and -1). Still too much memory and computations.
- Similar RIP theorem valid for a random projector in an orthonormal basis $\{g'_m\}_m$ which is highly incoherent with the sparsity basis $\{g_p\}_p$. May require only O(N) memory and $O(N \log N)$ computations.

Random Sparse Spike Inversion

• Measurements

$$Y = u * f + W$$
 with $f[n] = \sum_{p \in \Lambda} a[p] \delta[n-p]$.

- Random wavelet makes a random sampling of the Fourier coefficients of $f : \hat{u}[k]$ is the indicator of random set of frequencies.
- Fourier and Dirac bases have a low coherence.

Stability and Recovery Error

• **Theorem:** There exists C such that if $\delta_{3M} < 1/3$ and

$$\tilde{a} = \arg\min_{b} \frac{1}{2} \|Y - \sum_{p \in \Gamma} b[p] Ug_p\|^2 + T \|b\|_1$$

then

$$\|f - \sum_{p \in \Gamma} \tilde{a}[p] g_p \|^2 \le \frac{C}{\sqrt{M}} \sum_{k=M}^{N-1} |\langle f, g_{m_k} \rangle| + C \|W\|$$

and if $|\langle f, g_{m_k} \rangle| = O(k^{-s})$ with s > 1 and ||W|| = 0

$$||f - \sum_{p \in \Gamma} \tilde{a}[p] g_p||^2 = O(M^{-2s+1})$$

• Requires $Q \sim C' M \log(N/M)$ random measurements.

Approximation Constants

• For *Q* random measurements, *M* is the number basis coefficients defining an approximation having the same error. The ratio *Q/M* is computed with a Monte-Carlo experiment for different decay exponents *s* for *N*=1024.

Recovery Efficiency

Compressive sensing efficiency in random Gaussian and Fourier dictionaries. Comparison of Basis Pursuit, Matching Pursuit and Orthogonal Matching Pursuits.

Image Compressive Sampling

- Wavelet coefficients of images often have the decay exponent s = 1 of bounded variation images.
- *Q* measurements with a linear uniform sampling satisfy Q/M < 5, relatively to a non-linear approximation with *M* coefficients.
- Direct compressive is worst with typically Q/M > 7.
- Improvements by using some prior information on coefficients. Grouping wavelet coefficients scale by scale improves image approximations.

Compressive Sensing Applications

- **Robustness:** compressive sensing is a "democratic" acquisition process where all samples are equally important. A missing sample introduce an error that is diluted across the signal.
- Analog to Digital Converters: for signals that have a sparse Fourier transform, with a random time sampling. For utrawide band signals having a Nyquist rate which is too large.
- Single pixel camera: random Bernouilli (1 or -1) mesurements of images with a single pixel at very high sampling rate.
- Medical Resonance Imaging: randomize as much as possible the Fourier sampling of images obtained with MRI, and use their wavelet sparsity to improve their resolution.

Conclusion to Compressive Sensing

- Sparse super-resolution becomes stable with randomized measurements. Large potential applications.
- Asymptotic performance equivalent to a non-linear approximation with a known signal.
- The devil is in the constants, compared to a linear uniform sampling.
- Technological difficulties for the signal recovery: large amount of memory and computations are required.