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m;;‘_gompressed Sensing ;,*.

e Acquire few measurements and reconstruct a high
resolution signal, 1f the signal has a sparse
representation in a dictionary.

e A super-resolution problem, where the measurement
operator can be chosen.

e Key idea: use random measurement operators to
construct incoherent transformed dictionaries.




yresentation from Linear Sampling=¢

e Linear sampling: an analog signal f(z) is projected on
a basis {¢,},<n of an approximation space V  , which
specifies a linear approximation:

Puf(z) =Y (f,én)on

n<N
o Uniform sampling: ¢, (z) = ¢(x — Tn)

e Sparse representation of the discrete signal

fln] = (,6,) € RY

in a basis {gp}per with the M largest coefficients

{{f,90) }pen with |[A] =M .




mmpressive Sensing .

e Sparse random analog measurements

Yig) =Uflg] +Wlg] = (f,uq) + Wqg

where u,(x) are realizations of a random process.
e Discretization: if u,(z) € VN then
Yig =Ufla] + Wla] = (f,uq) + Wldl

where f[n] = (f,¢,) and uy[n] € R" is a random vector.

o If f is sparsein {gp}per can we recover f from Y ?




. Compressive Sensing Recovery _ -

e From measurements with a random operator

Yi{g] =Ufla] + Wlal
sparse super-resolution estimation:

b= Z alp] gp
pG]\
where a[p] has a support A computed with a sparse
decomposition of Y in Dy = {Ug,}per by minimizing:

1
5| > alplUgy =Y P +T ) lalp]]
pel pel’
or with an orthogonal matching pursuit.




L

Restricted Isometry and Incoherence-y

 Riesz basis condition for recovery stability
2
(1=38x) D lalpl? < | D alpUgy|” < (14+3x) D lalp]?
pel’ peEA pel

 Restricted 1sometry condition: 6, < 6,/(Dy) < 1if [A] < M

(1= 8u) Y lalpl® < || - alp] Ug,

2
< (1+0dm) Z lalp]? .
pel peEA pel’

any such family {Ugp}pen 1S “nearly” orthogonal.

e Relation to incoherence:

opm(Du) < (M —1) p(Dy) with pu(Dy) = r]glg;<<ng7qu>-




e Theorem:

If f=) alplgy with [A]=M and 65 < 1/3
peEA

! 2
then a:argmbm§“z€;b[p] Ugp, —Y||* +T b1
p

 Sparse signals are exactly recovered.

Exact Recovery =y




e We want to have {Ug,}per nearly uniformly distributed
over the unit sphere of R¥ so that {Ug,},ca is as
orthogonal as possible even for A not small.

e The distribution of a Gaussian white noise of variance 1
1s a uniform measure 1n the neighborhood of the unit
sphere of R

o If {g,}per is an orthonormal basis of RVand if U is a
matrix of O by N values taken by independant Gaussian
random variables (white noise) then{Ug, }per are values
taken by O independant Gaussian random variables.

EE'E-E Gaussian Random Matrices =

L




. RIP Stability for Gaussian Matrices=¢

e Theorem: If U 1s a Gaussian random matrix then for
any § <1 there exists 5 > 0 such that

. paQ

e Valid for random Bernouilli matrices (random 1 and -1).

eWeneed Q ~CM B &/f] measurements to recover
M values and M unknown indices among N .

e Coding would require of the order of M log(N/M) bits.




Merfect Recove ry Constants ___u_;il

e Monte-Carlo experiments for recovering signals with M

non-zero coefficients out of N with O random Gaussian
measurements: Q ~CM B &/§)

Ratio of recovered signals with O = 100
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e Storing a random Gaussian matrix U and computing

Uh requires O(N?) memory and calculations, too much.

e RIP theorem valid for Bernouilli matrices (random 1
and -1). Still too much memory and computations.

e Similar RIP theorem valid for a random projector in an
orthonormal basis {g;, }» which is highly incoherent
with the sparsity basis {gp}» . May require only O(N)
memory and O(N log N) computations.

. Other Random Operators =

L




E&-“Bandom Sparse Spike Inversio

L

L T

e Measurements
Y =uxf+W with fln] =) alp]d[n—p].

peEA

e Random wavelet makes a random sampling of the
Fourier coefficients of f : a[k] 1s the indicator of
random set of frequencies.

e Fourier and Dirac bases have a low coherence.




Seismic wavelet wu|n]

Incoherence wu * @|p]

Random Sparse Spike Inversion _ =g
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E@-‘_&N_oniinear Approximation Error n'f

o {{f,gm.)}r sorted with decreasing amplitude
s g )] < IS i) |-

» Non-linear approximation in an orthonormal basis:

M

far = {fs Gmi) G,
k=1
and N

k=M+1

If [(f,gm.)| =O(k™®) then [If— ful]*=0(M ).




E@-‘_H_Stabi lity and Recovery Error _ -

e Theorem: There exists C such that if sy < 1/3 and

. 1 9
a = argmin _ [V — ;b[p] Ugpll® + T ||b]|1
p

then
1f = alp) gpll” < \/— Z (s gmi )| + C [[W]

pel’

and if [(f,gm,)| = O(k™°) with s>1 and |[|[W]| =0

If = _alplgl* = 01+ .

pel’

e Requires Q ~ C' M log(N/M) random measurements.




mpproximation Constants -

e For O random measurements, M is the number basis coefficients
defining an approximation having the same error. The ratio O/M
1s computed with a Monte-Carlo experiment for different decay
exponents s for N=1024.
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Recovery Efficiency -

Compressive sensing efficiency  Comparison of Basis Pursuit,
in random Gaussian and Fourier = Matching Pursuit and

dictionaries. Orthogonal Matching Pursuits.
Mao. M
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7.50 -©- Fourier 7.580 --6-- MP

150 200 250 300 350 400




Image Compressive Sampling _ =&

» Wavelet coefficients of images often have the decay
exponent s = 1 of bounded variation images.

e ) measurements with a linear uniform sampling satisfy
O/M < 35, relatively to a non-linear approximation with
M coefficients.

e Direct compressive 1s worst with typically Q/M > 7.

e Improvements by using some prior information on
coefficients. Grouping wavelet coefficients scale by
scale improves image approximations.




K—\I?_ggmpressive Sensing Applications =
e Robustness: compressive sensing 1s a “democratic’ acquisition

process where all samples are equally important. A missing
sample introduce an error that is diluted across the signal.

e Analog to Digital Converters: for signals that have a sparse
Fourier transform, with a random time sampling. For utrawide
band signals having a Nyquist rate which 1s too large.

e Single pixel camera: random Bernouilli (1 or -1) mesurements
of images with a single pixel at very high sampling rate.

e Medical Resonance Imaging: randomize as much as possible
the Fourier sampling of images obtained with MRI, and use their
wavelet sparsity to improve their resolution.




%2 A EiConclusion to Compressive Sensing =z

e Sparse super-resolution becomes stable with
randomized measurements. Large potential applications.

e Asymptotic performance equivalent to a non-linear
approximation with a known signal.

e The devil 1s 1n the constants, compared to a linear
uniform sampling.

e Technological difficulties for the signal recovery: large
amount of memory and computations are required.




