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     Conclusion to Super-Resolution

•  Sparse super-resolution is sometime possible but...
don’t be fooled.

• It requires a signal that is sufficiently sparse and a 
transformed dictionary sufficiently incoherent.

•Does not work “as is” in many inverse-problems, such 
as image interpolation. 

•More structured representations are needed, which 
incorporate more prior information on the signal. 



Representation from Linear Sampling

•Linear sampling: an analog signal          is projected on 
a basis                of  an approximation space        , which 
specifies a linear approximation: 

•Uniform sampling:

•Sparse representation of the discrete signal

in a basis                with the M largest coefficients

f̄(x)
{φ̄n}n<N

PUf̄(x) =
∑

n<N

〈f̄ , φ̄n〉 ˜̄φn

φ̄n(x) = φ̄(x− Tn)

f [n] = 〈f̄ , φ̄n〉 ∈ RN

VN

{gp}p∈Γ

{〈f, gp〉}p∈Λ with |Λ| = M .



  Compressive Sensing

•Sparse random analog measurements

where           are realizations of a random process.

•Discretization: if                       then 

where                        and                   is a random vector.

• If  f  is sparse in                can we recover  f  from  Y ?

Y [q] = Ū f̄ [q] + W [q] = 〈f̄ , ūq〉 + W [q]

ūq(x)

ūq(x) ∈ VN

uq[n] ∈ RNf [n] = 〈f̄ , φ̄n〉

{gp}p∈Γ

Y [q] = Uf [q] + W [q] = 〈f, uq〉 + W [q]



  Compressive Sensing Recovery

•From measurements with a random operator

sparse super-resolution estimation:

where                                    computed with a sparse 
decomposition of  Y  in                           by minimizing: 

or with an orthogonal matching pursuit. 

Y [q] = Uf [q] + W [q]

F̃ =
∑

p∈Λ̃

ã[p] gp

1
2
‖

∑

p∈Γ

a[p]Ugp − Y ‖2 + T
∑

p∈Γ

|a[p]|

ã[p] has a support Λ̃
DU = {Ugp}p∈Γ



  Restricted Isometry and Incoherence

•Riesz basis condition for recovery stability

•Restricted isometry condition:

any such family                   is “nearly” orthogonal.

•Relation to incoherence:

(1− δΛ)
∑

p∈Γ

|a[p]|2 ≤
∥∥∥

∑

p∈Λ

a[p]Ugp

∥∥∥
2
≤ (1 + δΛ)

∑

p∈Γ

|a[p]|2 .

(1− δM )
∑

p∈Γ

|a[p]|2 ≤
∥∥∥

∑

p∈Λ

a[p]Ugp

∥∥∥
2
≤ (1 + δM )

∑

p∈Γ

|a[p]|2 .

δΛ ≤ δM (DU ) < 1 if |Λ| ≤M

δM (DU ) ≤ (M − 1) µ(DU ) with µ(DU ) = max
p!=q

〈Ugp, Ugq〉.

{Ugp}p∈Λ



     Exact Recovery

•Theorem: 

•Sparse signals are exactly recovered. 

If f =
∑

p∈Λ

a[p] gp with |Λ| = M and δ3M < 1/3

then a = arg min
b

1
2
‖

∑

p∈Γ

b[p]Ugp − Y ‖2 + T ‖b‖1



   Gaussian Random Matrices

•We want to have                  nearly uniformly distributed 
over the unit sphere of        so that                    is as 
orthogonal as possible even for     not small.

•The distribution of a Gaussian white noise of variance 1 
is a uniform measure in the neighborhood of the unit 
sphere of       .

•  If               is an orthonormal basis of        and if U is a 
matrix of Q by N values taken by independant Gaussian 
random variables (white noise) then                are values 
taken by Q independant Gaussian random variables.    

{Ugp}p∈Γ

RQ {Ugp}p∈Λ

Λ

RQ

{gp}p∈Γ RN

{Ugp}p∈Γ



  RIP Stability for Gaussian Matrices

•Theorem: If  U  is a Gaussian random matrix then for 
any             there exists            such that

•Valid for random Bernouilli matrices (random 1 and -1).

•We need                                 measurements to recover 
M  values and  M  unknown indices among  N .

•Coding would require of the order of                       bits.  

δ < 1 β > 0

δM (DU ) ≤ δ if M ≤ β Q

log(N/Q)
.

M log(N/M)

Q ∼ C M l o g (N/M )



   Perfect Recovery Constants

•Monte-Carlo experiments for recovering signals with M 
non-zero coefficients out of N with Q random Gaussian 
measurements:  
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    Other Random Operators

•Storing a random Gaussian matrix  U  and computing  
Uh requires             memory and calculations, too much.

•  RIP theorem valid for Bernouilli matrices (random 1 
and -1). Still too much memory and computations.

•Similar RIP theorem valid for a random projector in an 
orthonormal basis             which is highly incoherent 
with the sparsity basis           .  May require only O(N)  
memory and  O(N log N)  computations.

{g′
m}m

{gp}p

O(N2)



   Random Sparse Spike Inversion

•Measurements

•Random wavelet makes a random sampling of the 
Fourier coefficients of  f  :         is the indicator of 
random set of frequencies.

•Fourier and Dirac bases have a low coherence.

Y = u ∗ f + W with f [n] =
∑

p∈Λ

a[p] δ[n− p] .

û[k]
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   Random Sparse Spike Inversion
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  Non-Linear Approximation Error

•                    sorted with decreasing amplitude

•Non-linear approximation in an orthonormal basis:

and

{〈f, gmk〉}k

|〈f, gmk+1〉| ≤ |〈f, gmk〉|.

fM =
M∑

k=1

〈f, gmk〉 gmk

‖f − fM‖2 =
N∑

k=M+1

|〈f, gmk〉|2 .

If |〈f, gmk〉| = O(k−α) then ‖f − fM‖2 = O(M1−2α) .



     Stability and Recovery Error

•Theorem:

then

and if 

 
•Requires                                      random measurements.

ã = arg min
b

1
2
‖Y −

∑

p∈Γ

b[p]Ugp‖2 + T ‖b‖1

There exists C such that if δ3M < 1/3 and

‖f −
∑

p∈Γ

ã[p] gp‖2 ≤ C√
M

N−1∑

k=M

|〈f, gmk〉| + C ‖W‖

Q ∼ C ′ M log(N/M)

|〈f, gmk〉| = O(k−s) with s > 1 and ‖W‖ = 0

‖f −
∑

p∈Γ

ã[p] gp‖2 = O(M−2s+1) .



    Approximation Constants

• For Q random measurements,  M is the number basis coefficients 
defining an approximation having the same error. The ratio Q/M 
is computed with a Monte-Carlo experiment for different decay 
exponents s for N=1024.

150 200 250 300

10

12

14

16

18

Q/M

Q



      Recovery Efficiency
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Compressive sensing efficiency
in random Gaussian and Fourier
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         Image Compressive Sampling

•Wavelet coefficients of images often have the decay 
exponent s = 1 of bounded variation images. 

•Q measurements with a linear uniform sampling satisfy 
Q/M < 5, relatively to a non-linear approximation with 
M coefficients.

•Direct compressive is worst with typically Q/M > 7.

• Improvements by using some prior information on 
coefficients. Grouping wavelet coefficients scale by 
scale improves image approximations.



 Compressive Sensing Applications
• Robustness: compressive sensing is a “democratic” acquisition 

process where all samples are equally important. A missing 
sample introduce an error that is diluted across the signal. 

• Analog to Digital Converters: for signals that have a sparse 
Fourier transform, with a random time sampling. For utrawide 
band signals having a Nyquist rate which is too large.

• Single pixel camera: random Bernouilli (1 or -1) mesurements 
of images with a single pixel at very high sampling rate.

• Medical Resonance Imaging: randomize as much as possible 
the Fourier sampling of images obtained with MRI, and use their 
wavelet sparsity to improve their resolution.



Conclusion to Compressive Sensing

•  Sparse super-resolution becomes stable with 
randomized measurements. Large potential applications.

•  Asymptotic performance equivalent to a non-linear 
approximation with a known signal.

•The devil is in the constants, compared to a linear 
uniform sampling. 

•Technological difficulties for the signal recovery: large 
amount of memory and computations are required.


