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Sparsity in Redundant Dictionaries

•Bases are minimum set to decompose signals.
•Natural languages use redundant dictionaries.
•Use of larger dictionaries incorporating more patterns to 

represent complex signals 

•How to construct sparse representations in      ?
•What is the impact of redundancy on the mathematics 

and applications ?

f ∈ RN

D = {φp}p∈Γ with ‖φp‖ = 1 and |Γ| = P > N.

D



• Let                               be a redundant dictionary of  P  vectors.

• The best approximation of  f  from a sub-family                   is its 
orthogonal projection in

• Stability:                  must be a Riez basis of         :  

      Dictionary Approximation
D = {φp}p∈Γ

{φp}p∈Λ

VΛ = Vect{φp}p∈Λ

fΛ =
∑

p∈Λ

a[p]φp

{φp}p∈Λ VΛ

there exists 0 < AΛ ≤ BΛ such that

∀a[p] ∈ RΛ , AΛ

∑

p∈Λ

|a[p]|2 ≤ ‖
∑

p∈Λ

a[p]φp‖2 ≤ BΛ

∑

p∈Λ

|a[p]|2 .



   Best M-Term Approximation

• The best M-term approximation support

•  A best  M-term approximation minimizes a Lagrangian:

• If       is an orthonormal basis then

• In general, finding      is an NP-hard problem.

Λ

minimizes ‖f − fΛ‖ with |Λ| = M .

L0 = ‖f − fΛ‖2 + T 2 |Λ| .

D Λ = {p : |〈f, φp〉| ≥ T}

Λ



    Compression Applications

•Compute a best M-term approximation

•Compression with uniform quantization

•Total bit budget:

• Increasing P reduces                         but increases  R.

f̃Λ =
∑

p∈Λ

Q(a[p])φp

fΛ =
∑

p∈Λ

a[p]φp with |Λ| = M .

R = log2

(
P

M

)
+ µ M

R ∼ M log2(P/M)

D = ‖f − f̃Λ‖
If ‖f − fΛ‖2 = O(M−α) then D(R) = R−α | log(P/R)|−α .



  Wavelets for Cartoon Images

• Theorem: If  f  is uniformly        then an M-term wavelet 
approximation gives

•  Theorem: If  f  is piecewise        with finite length contours then 

• Result valid for all bounded variation functions.

Cα

‖f − fM‖2 = O(M−α)

Cα

‖f − fM‖2 = O(M−1) so D(R) = R−1 | log(N/R)|

f ∗ hf
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Bandlets for Geometric Regularity

f ∗ hf
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QuadtreeWavelet Transform
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Wavelet coefficients
inherit the geometric 
regularity

1. Segmentation of
wavelet coefficients.

2. Geometric flow
in edge squares
along the direction 
of regularity.

3. 1D wavelet 
transform along
the flow = 
bandlet transform



     Bandlet Approximations

• A bandlet dictionary is a union of orthonormal bases. 

• The best bandlet approximation (best geometry) which minimizes

can be computed with                         operations.

•Theorem  If  f  is piecewise         with piecewise        contours 

O(N log N)

Cα Cα

‖f − fM‖2 = O(M−α) so D(R) = R−α | log(P/R)|α

L0 = ‖f − fM‖2 + T 2 M



Application of Photo ID Compression



just nice...



      Xlets Beyond Wavelets

• Xlets take advantage of the image geometric regularity: bandlets, 
curvelets, contourlets, edglets, wedglets...

• “Failure” to improve wavelet approximations for natural images. 

• Can wavelet approximations be asymptotically improved ?             
I don’t think so for static natural images.



Denoising in Redundant Dictionaries

•Measure a signal plus a Gaussian white noise:

•Orthogonal projection estimator in                               
selected in a dictionary:

•Risk:
• If      is fixed then                               . 
•Oracle choice: find     which minimizes   

X[n] = f [n] + W [n] for 0 ≤ n < N .

XΛ =
∑

p∈Λ

a[p]φp .

VΛ = Vect{φp}p∈Λ

E{‖f −XΛ‖2} = ‖f − fΛ‖2 + E{‖WΛ‖2} .

Λ E{‖WΛ‖2} = σ2 |Λ|

E{‖f −XΛ‖2} = ‖f − fΛ‖2 + σ2 |Λ|
Λ



  Penalized Estimation

•Choosing     is a model selection problem.

•Theorem: For 

satisfies

                               

Λ

T > σ
√

2 loge P

Λ̃ = arg min
Λ⊂Γ

(
‖X −XΛ‖2 + T 2 |Λ|

)

E{‖f −XΛ̃‖
2} = 4 min

Λ⊂Γ

(
‖f − fΛ‖2 + T 2 |Λ| + σ2

)

PSNR = 22db PSNR = 25.3db PSNR = 26.4db

Noisy image Wavelet thresholding Bandlet thresholding



    Greedy Matching Pursuits

•  Let                            be a dictionary of P > N vectors.
• A best  M-term approximation minimizes the Lagrangian:

• Finding      is in general an NP complete problem. 

• Greedy choice of the approximation vectors.
• The approximation of  f  over                 yields

• To minimize the residual error we choose

D = {φp}p∈Γ

φp0 ∈ D

f = 〈f, φp0〉 + Rf

‖f‖2 = |〈f, φp0〉|2 + ‖Rf‖2

φp0 = arg max
φp∈D

|〈f, φp〉|

L0 = ‖f − fΛ‖2 + T 2 |Λ|
Λ



   Matching Pursuit Iterations

• Initialize 
•For each

• It results: 

R0f = f

m > 0

φpm = arg max
φp∈D

|〈Rmf, φp〉|

f =
M−1∑

m=0

〈Rmf, φpm〉 + RMf

‖f‖2 =
M−1∑

m=0

|〈Rmf, φpm〉|2 + ‖RMf‖2

Rmf = 〈Rmf, φpm〉 + Rm+1f

‖Rmf‖2 = |〈Rmf, φpm〉|2 + ‖Rm+1f‖2



  Time-Frequency Decompositions

•Dictionary of time-frequency atoms:

• It includes Dirac and Fourier bases, wavelets and 
window Fourier atoms.

D =
{

φp(t) =
1√
2j

w(
t− u

2j
) eiξt

}

(j,u,ξ)∈Γ
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Time Frequency Matching Pursuits
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      Speech Signals
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Applications: denoising, compression (video),
                        pattern recognition, but instabilities.



   Orthogonal Matching Pursuit

• Initialize 
•For each              orthogonalize the projections:

•After N  iterations, it gives decomposition in an 
orthogonal basis: 

R0f = f

m > 0

φpm = arg max
φp∈D

|〈Rmf, φp〉|

um = φpm −
m−1∑

l=0

〈φpm , ul〉
‖ul‖2

ul .

Rm+1f =
〈Rmf, um〉

‖um‖2
+ Rm+1f

f =
N−1∑

m=0

〈Rmf, um〉
‖um‖2

.



    Matching versus Basis Pursuit

•Greediness is not optimal. 
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     Matching Pursuit

Orthogonal Matching Pursuit
     Basis Pursuit



q = 1q = 0 q = 2q = 1 5.q = 0 5. q = 1q = 0 q = 2q = 1 5.q = 0 5. q = 1q = 0 q = 2q = 1 5.q = 0 5.

       Basis Pursuit

l0 norm : number of non-zero a[n]

l1 norm : ‖a‖1 =
∑

n∈Γ

|a[n]| .

Not convex for q < 1.

Find a sparse representation f =
∑

p∈Γ

a[p]φp

lq balls

by minimizing an lq norm : ‖a‖q =

(
∑

n∈Γ

|a[n]|q
)1/q

.



    Basis Pursuit Approximation

•A basis pursuit computes a sparse approximation

solution of a convex optimization problem:

•Lagrangian formulation: find     which minimizesã

f̃ =
∑

p∈Γ

ã[p]φp

L1(a) =
1
2
‖f −

∑

p∈Γ

a[p]φp‖2 + T ‖a‖1

ã = arg min
a∈RP

‖a‖1 subject to ‖f −
∑

p∈Γ

a[p]φp‖ ≤ ε.



    Basis Pursuit Denoising

Noisy
Image

Original
Image

Wavelet
Thresh.

Basis
Pursuit
with
Wavelet
Cosine
Diction.



 Computation of l1 Minimization

•Many iterative algorithms to minimize

•Simplest one: iterative thresholding. 

L1(a) =
1
2
‖f −

∑

p∈Γ

a[p]φp‖2 + T ‖a‖1

Initialisation b = Φf = {〈f, φp〉}p∈Γ and a0 = 0 .

Gradient step: ãk = ak + γ(b− Φ Φ∗ak)

For k > 0

Soft thresholding: ak+1 = ãk max
(
1− γT

|ãk| , 0
)
.



           Exact Recovery

•Suppose that the signal is sparse

can we recover      with pursuit algorithms ?
•With matching pursuits, need that

•Exact Recovery Criteria

Λ

C(Rmf,Λc) =
maxq∈Λc |〈Rmf, φq〉|
maxp∈Λ |〈Rmf, φp〉|

< 1 .

ERC(Λ) = sup
h∈VΛ

C(h, Λc) = max
q∈Λc

∑

p∈Λ

|〈φ̃p, φq〉| .

f =
∑

p∈Λ

a[p]φp =
∑

p∈Λ

〈f, φp〉 φ̃p ∈ VΛ.



     ERC Recovery

•Theorem:  The approximation support     of               is 
exactly recovered by an orthogonal matching pursuit or 
a basis pursuit if

•Theorem (stability): If f is not exactly sparse, an 
orthogonal matching pursuit      with                iterations 
satisfies:

•Similar result for a basis pursuit.

Λ f ∈ VΛ

M = |Λ|f̃M

‖f − f̃M‖ ≤
(
1 +

|Λ|
AΛ (1− ERC(Λ))2

)
‖f − fΛ‖ .

ERC(Λ) < 1.



     Dictionary Coherence

•Dictionary mutual coherence

•Dirac-Fourier dictionary: 

•Theorem:

•Exact recovery is possible for sufficiently sparse signals 
in incoherent dictionaries.

µ(D) = sup
(p,q)∈Γ2

|〈φp, φq〉|

ERC(Λ) < 1 if |Λ| <
1
2

(
1 +

1
µ(D)

)

µ(D) = N−1/2.



     2nd. Conclusion

•Redundant dictionaries can improve approximation, 
compression, denoising.

•Finding optimal approximation is NP complete but can 
be approximated with matching or basis pursuits.

•  May be used for pattern recognition but problems of 
instabilities.

•The stability depends upon the dictionary coherence.

•Major applications to inverse problems, super-
resolution and compress sensing.


