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Deep Scattering Spectrum
Joakim Andén, Member, IEEE, and Stéphane Mallat, Fellow, IEEE

Abstract—A scattering transform defines a locally translation
invariant representation which is stable to time-warping deforma-
tion. It extends MFCC representations by computing modulation
spectrum coefficients of multiple orders, through cascades of
wavelet convolutions and modulus operators. Second-order scat-
tering coefficients characterize transient phenomena such as
attacks and amplitude modulation. A frequency transposition
invariant representation is obtained by applying a scattering
transform along log-frequency. State-the-of-art classification
results are obtained for musical genre and phone classification on
GTZAN and TIMIT databases, respectively.

Index Terms—Audio classification, deep neural networks,
MFCC, modulation spectrum, wavelets.

I. INTRODUCTION

A MAJOR difficulty of audio representations for classifi-
cation is the multiplicity of information at different time

scales: pitch and timbre at the scale of milliseconds, the rhythm
of speech and music at the scale of seconds, and the music pro-
gression over minutes and hours. Mel-frequency cepstral coef-
ficients (MFCCs) are efficient local descriptors at time scales up
to 25 ms. Capturing larger structures up to 500 ms is however
necessary in most applications. This paper studies the construc-
tion of stable, invariant signal representations over such larger
time scales. We concentrate on audio applications, but introduce
a generic scattering representation for classification, which ap-
plies to many signal modalities beyond audio [1].
Spectrograms compute locally time-shift invariant descrip-

tors over durations limited by a window. However, Section II
shows that high-frequency spectrogram coefficients are not
stable to variability caused by time-warping deformations,
which occur in most signals, particularly in audio. Stability
means that small signal deformations produce small modi-
fications of the representation, measured with a Euclidean
norm. This is particularly important for classification. Mel-fre-
quency spectrograms are obtained by averaging spectrogram
values over mel-frequency bands. It improves stability to
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time-warping, but it also removes information. Over time
intervals larger than 25 ms, the information loss becomes too
important, which is why mel-frequency spectrograms and
MFCCs are limited to such short time intervals. Modulation
spectrum decompositions [2]–[10] characterize the temporal
evolution of mel-frequency spectrograms over larger time
scales, with autocorrelation or Fourier coefficients. How-
ever, this modulation spectrum also suffers from instability
to time-warping deformation, which degrades classification
performance.
Section III shows that the information lost by mel-frequency

spectrograms can be recovered with multiple layers of wavelet
coefficients. In addition to being locally invariant to time-shifts,
this representation is also stable to time-warping deformation.
Known as a scattering transform [11], it is computed through a
cascade of wavelet transforms and modulus non-linearities. The
computational structure is similar to a convolutional deep neural
network [12]–[19], but involves no learning. It outputs time-
averaged coefficients, providing informative signal invariants
over potentially large time scales.
A scattering transform has striking similarities with phys-

iological models of the cochlea and of the auditory pathway
[20], [21], also used for audio processing [22]. Its energy
conservation and other mathematical properties are reviewed
in Section IV. An approximate inverse scattering transform is
introduced in Section V with numerical examples. Section VI
relates the amplitude of scattering coefficients to audio signal
properties. These coefficients provide accurate measurements
of frequency intervals between harmonics and also characterize
the amplitude modulation of voiced and unvoiced sounds. The
logarithm of scattering coefficients linearly separates audio
components related to pitch, formants and timbre.
Frequency transpositions form another important source of

audio variability, which should be kept or removed depending
upon the classification task. For example, speaker-independent
phone classification requires some frequency transposition in-
variance, while frequency localization is necessary for speaker
identification. Section VII shows that cascading a scattering
transform along log-frequency yields a transposition invariant
representation which is stable to frequency deformation.
Scattering representations have proved useful for image clas-

sification [23], [24], where spatial translation invariance is cru-
cial. In audio, the analogous time-shift invariance is also im-
portant, but scattering transforms are computed with very dif-
ferent wavelets. They have a better frequency resolution, which
is adapted to audio frequency structures. Section VIII explains
how to adapt and optimize the frequency invariance for each
signal class at the supervised learning stage. A time and fre-
quency scattering representation is used for musical genre clas-
sification over the GTZAN database, and for phone segment
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Fig. 1. (a) Spectrogram for a harmonic signal (centered
in ) followed by for (centered in
), as a function of and . The right graph plots (blue)

and (red) as a function of . Their partials do not overlap
at high frequencies. (b) Mel-frequency spectrogram fol-
lowed by . The right graph plots (blue) and

(red) as a function of . With a mel-scale frequency aver-
aging, the partials of and overlap at all frequencies.

classification over the TIMIT corpus. State-of-the-art results are
obtained with a Gaussian kernel SVM applied to scattering fea-
ture vectors. All figures and results are reproducible using a
MATLAB software package, available at http://www.di.ens.fr/
data/scattering/.

II. MEL-FREQUENCY SPECTRUM

Section II.A shows that high-frequency spectrogram coeffi-
cients are not stable to time-warping deformation. The mel-fre-
quency spectrogram stabilizes these coefficients by averaging
them along frequency, but loses information. To analyze this in-
formation loss, Section II.B relates the mel-frequency spectro-
gram to the amplitude output of a filter bank which computes a
wavelet transform.

A. Fourier Invariance and Deformation Instability

Let be the Fourier transform of .
If then . The Fourier
transform modulus is thus invariant to translation:

A spectrogram localizes this translation invariance with a
window of duration such that . It is defined
by

(1)

If then one can verify that .
However, invariance to time-shifts is often not enough. Sup-

pose that is not just translated but time-warped to give
with . A representation is said to

be stable to deformation if its Euclidean norm
is small when the deformation is small. The deformation size
is measured by . If it vanishes then it is a “pure”
translation without deformation. Stability is formally defined

as a Lipschitz continuity condition relatively to this metric. It
means that there exists such that for and all with

(2)

The constant is a measure of stability.
This Lipschitz continuity property implies that time-warping

deformations are locally linearized by . Indeed, Lipschitz
continuous operators are almost everywhere differentiable. It re-
sults that can be approximated by a linear op-
erator if is small. A family of small deformations
thus generate a linear space. In the transformed space, an in-
variant to these deformations can then be computed with a linear
projector on the orthogonal complement to this linear space. In
Section VIII we use linear discriminant classifiers to become se-
lectively invariant to small time-warping deformations.
A Fourier modulus representation is not stable to

deformation because high frequencies are severely distorted by
small deformations. For example, let us consider a small dilation

with . Since , the Lipschitz
continuity condition (2) becomes

(3)

The Fourier transform of is
. This dilation shifts a fre-

quency component at by . For a harmonic signal
, the Fourier transform is a sum of

partials

After time-warping, each partial is translated by ,
as shown in the spectrogram of Fig. 1(a). Even though is small,
at high frequencies becomes larger than the bandwidth of
. Consequently, the harmonics of do
not overlap with the harmonics of . The Euclidean
distance between and thus does not decrease propor-
tionally to if the harmonic amplitudes are sufficiently large
at high frequencies. This proves that the deformation stability
condition (3) is not satisfied for any .
The autocorrelation is also

a translation invariant representation which has the same de-
formation instability as the Fourier transform modulus. Indeed,

so .

B. Mel-Frequency Deformation Stability and Filter Banks

A mel-frequency spectrogram averages the spectrogram en-
ergy with mel-scale filters , where is the center frequency
of each :

(4)

The bandpass filters have a constant- frequency bandwidth
at high frequencies. Their frequency support is centered at
with a bandwidth of the order of . At lower frequencies,
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instead of being constant-Q, the bandwidth of remains equal
to .
The mel-frequency averaging removes deformation insta-

bility created by large displacements of high frequencies under
dilations. If then we saw that the frequency
component at is moved by , which may be large if

is large. However, the mel-scale filter covering
the frequency has a frequency bandwidth of the order of

. As a result, the relative error after averaging
by is of the order of . This is illustrated by Fig. 1(b)
on a harmonic signal . After mel-frequency averaging, the
frequency partials of and overlap at all frequencies. One
can verify that , where is
proportional to , and does not depend upon or . Unlike the
spectrogram (1), the mel-frequency spectrogram (4) satisfies
the Lipschitz deformation stability condition (2).
Mel-scale averaging provides time-warping stability but

loses information. We show that this frequency averaging is
equivalent to a time averaging of a filter bank output, which
will provide a strategy to recover the lost information. Since

in (1) is the Fourier transform of ,
applying Plancherel’s formula gives

If then is approximately constant on the support
of , so , and hence

(5)

The frequency averaging of the spectrogram is thus nearly
equal to the time averaging of . In this formulation,
the window acts as a lowpass filter, ensuring that the rep-
resentation is locally invariant to time-shifts smaller than .
Section III.A studies the properties of the constant-Q filter bank

, which defines an analytic wavelet transform.
Figs. 2(a) and (b) display and , respec-

tively, for a musical recording. The window duration is
ms. This time averaging removes fine-scale information such
as vibratos and attacks. To reduce information loss, a mel-fre-
quency spectrogram is often computed over small timewindows
of about 25 ms. As a result, it does not capture large-scale struc-
tures, which limits classification performance.
To increase without losing too much information, it is nec-

essary to capture the amplitude modulations of at
scales smaller than , which are important in audio percep-
tion. The spectrum of these modulation envelopes can be com-
puted from the spectrogram [2]–[5] of , or represented
with a short-time autocorrelation [6], [7]. However, these mod-
ulation spectra are unstable to time-warping deformation. In-
deed, a time-warping of induces a time-warping of ,

Fig. 2. (a) Scalogram for a musical signal, as a function of
and . (b): Averaged scalogram with a lowpass filter
of duration ms.

and Section II.A showed that spectrograms and autocorrela-
tions suffer from deformation instability. Constant-Q averaged
modulation spectra [9], [10] stabilize spectrogram representa-
tions with another averaging along modulation frequencies. Ac-
cording to (5), this can also be computed with a second con-
stant-Q filter bank. The scattering transform follows this latter
approach.

III. WAVELET SCATTERING TRANSFORM

A scattering transform recovers the information lost by a mel-
frequency averaging with a cascade of wavelet decompositions
and modulus operators [11]. It is locally translation invariant
and stable to time-warping deformation. Important properties
of constant-Q filter banks are first reviewed in the framework of
a wavelet transform, and the scattering transform is introduced
in Section III.B.

A. Analytic Wavelet Transform and Modulus

Constant-Q filter banks compute a wavelet transform. We re-
view the properties of complex analytic wavelet transforms and
their modulus, which are used to calculate mel-frequency spec-
tral coefficients.
A wavelet is a bandpass filter with . We con-

sider complex wavelets with quadrature phase such that
for . For any , a dilated wavelet of center fre-

quency is written

(6)

The center frequency of is normalized to 1. In the fol-
lowing, we denote by the number of wavelets per octave,
which means that for . The bandwidth of is of
the order of , to cover the whole frequency axis with these
bandpass wavelet filters. The support of is centered in
with a frequency bandwidth whereas the energy of
is concentrated around 0 in an interval of size . To guar-
antee that this interval is smaller than , we define with (6)
only for . For , the lower-frequency in-
terval is covered with about equally-spaced
filters with constant frequency bandwidth . For sim-
plicity, these lower-frequency filters are still calledwavelets.We
denote by the grid of all wavelet center frequencies .



ANDÉN AND MALLAT: DEEP SCATTERING SPECTRUM 4117

The wavelet transform of computes a convolution of with
a lowpass filter of frequency bandwidth , and convolu-
tions with all higher-frequency wavelets for :

(7)

This time index is not critically sampled as in wavelet bases
so this representation is highly redundant. The wavelet and
the lowpass filter are designed to build filters which cover the
whole frequency axis, which means that

satisfies, for all :

(8)

This condition implies that the wavelet transform is a stable
and invertible operator.Multiplying (8) by and applying
the Plancherel formula [25] gives

(9)

where and the squared norm of is the
sum of all coefficients squared:

The upper bound (9) means that is a contractive operator
and the lower bound implies that it has a stable inverse. One
can also verify that the pseudo-inverse of recovers with
the following formula

(10)

with reconstruction filters defined by

(11)

where is the complex conjugate of . If in
(8) then is said to be a tight frame operator, in which case

and .
One may define an analytic wavelet with an octave reso-

lution as and hence
where is the transfer function of a lowpass filter whose band-
width is of the order of . If then we define

, which guarantees that
. If is a Gaussian then is called a Morlet wavelet,

which is almost analytic because is small but not strictly
zero for . Fig. 3 shows Morlet wavelets with .
In this case is also chosen to be a Gaussian. For , tight
frame wavelet transforms can also be obtained by choosing
to be the analytic part of a real wavelet which generates an or-
thogonal wavelet basis, such as a cubic spline wavelet [11]. Un-
less indicated otherwise, wavelets used in this paper are Morlet
wavelets.

Fig. 3. Morlet wavelets with wavelets per octave, for different
. The low-frequency filter (in red) is a Gaussian.

Following (5), mel-frequency spectrograms can be approxi-
mated using a non-linear wavelet modulus operator which re-
moves the complex phase of all wavelet coefficients:

Taking the modulus of analytic wavelet coefficients can be
interpreted as a subband Hilbert envelope demodulation.
Demodulation is used to separate carriers and modulation
envelopes. When a carrier or pitch frequency can be detected,
then a linear coherent demodulation is efficiently implemented
by multiplying the analytic signal with the conjugate of the
detected carrier [26]–[28]. However, many signals such as
unvoiced speech are not modulated by an isolated carrier
frequency, in which case coherent demodulation is not well
defined. Non-linear Hilbert envelope demodulations apply to
any bandpass analytic signals, but if a carrier is present then
the Hilbert envelope depends both on the carrier and on the
amplitude modulation. Section VI.C explains how to isolate
amplitude modulation coefficients from Hilbert envelope mea-
surements, whether a carrier is present or not.
Although a wavelet modulus operator removes the complex

phase, it does not lose information because the temporal vari-
ation of the multiscale envelopes is kept. A signal cannot be
reconstructed from the modulus of its Fourier transform, but it
can be recovered from the modulus of its wavelet transform.
Since the time variable is not subsampled, a wavelet transform
has more coefficients than the original signal. These coefficients
are highly redundant when filters have a significant frequency
overlap. For particular families of analytic wavelets, one can
prove that is an invertible operator with a continuous in-
verse [29]. This is further studied in Section V.
The operator is contractive. Indeed, the wavelet trans-

form is contractive and the complex modulus is contractive
in the sense that for any so

If is a tight frame operator then
so preserves the signal norm.

B. Deep Scattering Network

We showed in (5) that mel-frequency spectral coefficients
are approximately equal to averaged squared wavelet

coefficients . Large wavelet coefficients are
considerably amplified by the square operator. To avoid ampli-
fying outliers, we remove the square and calculate
instead. High frequencies removed by the lowpass filter are
recovered by a new set of wavelet modulus coefficients. Cas-
cading this procedure defines a scattering transform.
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A locally translation invariant descriptor of is obtained with
a time-average , which removes all high fre-
quencies. These high frequencies are recovered by a wavelet
modulus transform

It is computed with wavelets having an octave frequency
resolution . For audio signals we set , which de-
fines wavelets having the same frequency resolution as mel-fre-
quency filters. Audio signals have little energy at low frequen-
cies so . Approximate mel-frequency spectral coef-
ficients are obtained by averaging the wavelet modulus coeffi-
cients with :

These are called first-order scattering coefficients. They are
computed with a second wavelet modulus transform
applied to each , which also provides complementary
high-frequency wavelet coefficients:

The wavelets have an octave resolution which may be
different from . It is chosen to get a sparse representation
which means concentrating the signal information over as few
wavelet coefficients as possible. These coefficients are averaged
by the lowpass filter of size , which ensures local invari-
ance to time-shifts, as with the first-order coefficients. It defines
second-order scattering coefficients:

These averages are computed by applying a third wavelet mod-
ulus transform to each . It computes their
wavelet modulus coefficients through convolutions with a new
set of wavelets having an octave resolution . Iterating
this process defines scattering coefficients at any order .
For any , iterated wavelet modulus convolutions are

written:

where th-order wavelets have an octave resolution ,
and satisfy the stability condition (8). Averaging with
gives scattering coefficients of order :

Applying on computes both and :

(12)

A scattering decomposition of maximal order is thus defined
by initializing , and recursively computing (12) for

Fig. 4. A scattering transform iterates on wavelet modulus operators to
compute a cascade of wavelet convolutions and moduli stored in , and
to output averaged scattering coefficients .

. This scattering transform is illustrated in Fig. 4.
The final scattering vector aggregates all scattering coefficients
for :

The scattering cascade of convolutions and non-linearities
can also be interpreted as a convolutional network [12], where

is the set of coefficients of the th internal network layer.
These networks have been shown to be highly effective for
audio classification [13]–[19]. However, unlike standard con-
volutional networks, each such layer has an output

, not just the last layer. In addition, all filters are pre-
defined wavelets and are not learned from training data. A scat-
tering transform, like MFCCs, provides a low-level invariant
representation of the signal without learning. It relies on prior
information concerning the types of invariants that need to be
computed, in this case relatively to time-shifts and time-warping
deformations, or in Section VII relatively to frequency transpo-
sitions. When no such information is available, or if the sources
of variability are much more complex, it is necessary to learn
them from examples, which is a task well suited for deep neural
networks. In that sense both approaches are complementary.
The wavelet octave resolutions are optimized at each layer
to produce sparse wavelet coefficients at the next layer.

This better preserves the signal information as explained in
Section V. Sparsity seems also to play an important role for
classification [30], [31]. For audio signals , choosing
wavelets per octave has been shown to provide sparse rep-
resentations of a mix of speech, music and environmental
signals [32]. It nearly corresponds to a mel-scale frequency
subdivision.
At the second order, choosing defines wavelets with

more narrow time support, which are better adapted to charac-
terize transients and attacks. Section VI shows that musical sig-
nals including modulation structures such as tremolo may how-
ever require wavelets having better frequency resolution, and
hence . At higher orders we always set ,
but we shall see that these coefficients can often be neglected.
The scattering cascade has similarities with several neuro-

physiological models of auditory processing, which incorporate
cascades of constant-Q filter banks followed by non-linearities
[20], [21]. The first filter bank with models the cochlear
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filtering, whereas the second filter bank corresponds to later pro-
cessing in the models with filters that have [20], [21].

IV. SCATTERING PROPERTIES

We briefly review important properties of scattering trans-
forms, including stability to time-warping deformation, energy
conservation, and describe a fast computational algorithm.

A. Time-Warping Stability

Stability to time-warping allows one to use linear operators
for calculating descriptors invariant to small time-warping de-
formations. The Fourier transform is unstable to deformation
because dilating a sinusoidal wave yields a new sinusoidal wave
of different frequency which is orthogonal to the original one.
Section II explains that mel-frequency spectrograms become
stable to time-warping deformation with a frequency averaging.
One can prove that a scattering representation satis-
fies the Lipschitz continuity condition (2) because wavelets are
stable to time-warping [11]. Let us write .
One can verify that there exists such that

, for all and all . This property is at the
core of the scattering stability to time-warping deformation.
The squared Euclidean norm of a scattering vector is the

sum of its coefficients squared at all orders:

We consider deformations with
and , which means that the maximum displace-
ment is small relatively to the support of . One can prove that
there exists a constant such that for all and any such [11]:

up to second-order terms. As explained for mel-spectral decom-
positions, the constant is inversely proportional to the octave
bandwidth of wavelet filters. Over multiple scattering layers, we
get . For Morlet wavelets, numerical ex-
periments on a broad range of examples give .

B. Contraction and Energy Conservation

We show that a scattering transform is contractive and can
preserve energy. We denote by the squared Euclidean
norm of a vector of coefficients , such as
or . Since is computed by cascading wavelet modulus
operators , which are all contractive, it results that is
also contractive:

A scattering transform is therefore stable to additive noise.

TABLE I
AVERAGED VALUES COMPUTED FOR SIGNALS IN THE TIMIT
SPEECH DATASET [33], AS A FUNCTION OF ORDER AND AVERAGING SCALE
. FOR IS CALCULATED BY MORLET WAVELETS WITH ,
AND FOR BY CUBIC SPLINE WAVELETS WITH

If each wavelet transform is a tight frame, that is in (8),
each preserves the signal norm. Applying this property to

yields

Summing these equations proves that

Under appropriate assumptions on the mother wavelet , one
can prove that goes to zero as increases, which im-
plies that for [11]. This property comes
from the fact that the modulus of analytic wavelet coefficients
computes a smooth envelope, and hence pushes energy towards
lower frequencies. By iterating on wavelet modulus operators,
the scattering transform progressively propagates all the energy
of towards lower frequencies, which is captured by the
lowpass filter of scattering coefficients .
One can verify numerically that converges to zero

exponentially when goes to infinity and hence that con-
verges exponentially to . Table I gives the fraction of en-
ergy absorbed by each scattering order. Since
audio signals have little energy at low frequencies, is very
small and most of the energy is absorbed by for
ms. This explains why mel-frequency spectrograms are typi-
cally sufficient at these small time scales. However, as in-
creases, a progressively larger proportion of energy is absorbed
by higher-order scattering coefficients. For s, about
47% of the signal energy is captured in . Section VI shows
that at this time scale, important amplitude modulation informa-
tion is carried by these second-order coefficients. For s,

carries 26% of the signal energy. It increases as increases,
but for audio classification applications studied in this paper,
remains below 1.5 s, so these third-order coefficients are less
important than first- and second-order coefficients. We there-
fore concentrate on second-order scattering representations:

C. Fast Scattering Computation

Subsampling scattering vectors provide a reduced represen-
tation, which leads to a faster implementation. Since the aver-
aging window has a duration of the order of , we compute
scattering vectors with half-overlapping windows at
with .
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We suppose that has samples over each frame of du-
ration , and is thus sampled at a rate . For each time
frame , the number of first-order wavelets is
about so there are about first-order coef-
ficients . We now show that the number of non-neg-
ligible second-order coefficients which needs to
be computed is about .
The wavelet transform envelope is a de-

modulated signal having approximately the same frequency
bandwidth as . Its Fourier transform is mostly supported
in the interval for , and in

for . If the support of
centered at does not intersect the frequency support of

, then

One can verify that non-negligible second-order coefficients
satisfy

For a fixed , a direct calculation then shows that there are of
the order of second-order scattering coeffi-
cients. Similar reasoning extends this result to show that there
are about non-negligible th-order
scattering coefficients.
To compute and we first calculate and

and average them with . Over a time frame of duration ,
to reduce computations while avoiding aliasing, is
subsampled at a rate which is twice its bandwidth. The family
of filters covers the whole frequency domain and
is chosen so that filter supports barely overlap. Over a time

frame where has samples, with the above subsampling
we compute approximately first-order wavelet coefficients

. Similarly, is sub-
sampled in time at a rate twice its bandwidth. Over the same
time frame, the total number of second-order wavelet coeffi-
cients for all and stays below . With a fast Fourier
transform (FFT), these first- and second-order wavelet modulus
coefficients are computed using operations. The
resulting scattering coefficients and
are also calculated with operations using FFT con-
volutions with .

V. INVERSE SCATTERING

To better understand the information carried by scattering
coefficients, this section studies a numerical inversion of
the transform. Since a scattering transform is computed by
cascading wavelet modulus operators , it can be approx-
imately inverted by inverting each for . At the
maximum depth , the algorithm begins with a deconvo-
lution, estimating at all on the sampling grid of ,
from .
Because of the subsampling, one cannot compute from
exactly. This deconvolution is thus the main source of error.

To take advantage of the fact that , the deconvolution
is computed with the Richardson-Lucy algorithm [34], which
preserves positivity if .We initialize by interpolating

linearly on the sampling grid of , which introduces
error because of aliasing. The Richardson-Lucy deconvolution
iteratively computes

with . Since it converges to the pseudo-inverse of
the convolution operator applied to , it blows up when in-
creases because of the deconvolution instability. Deconvolution
algorithms thus stop after a fixed number of iterations, which is
set to 30 in this application. The result is then our estimate of

.
Once an estimation of is calculated by deconvolution,

we compute an estimate of by inverting each for
. The wavelet transform of a signal of size

is a vector of about co-
efficients, where is the number of wavelets per octave.
These coefficients live in a subspace of dimension . To re-
cover from , we search for a
vector in whose modulus values are specified by . This
a non-convex optimization problem. Recent convex relaxation
approaches [35], [36] are able to compute exact solutions, but
they require too much computation and memory for audio ap-
plications. Since the main source of errors is introduced at the
deconvolution stage, one can use an approximate but fast inver-
sion algorithm. The inversion of is typically more stable
when is sparse because there is no phase to recover if

. This motivates using wavelets which provide
sparse representations at each order .
Griffin & Lim [37] showed that alternating projections re-

cover good-quality audio signals from spectrogram values, but
with large mean-square errors because the algorithm is trapped
in local minima. The same algorithm inverts by alternating
projections on the wavelet transform space and on the mod-
ulus constraints. An estimation of is calculated from ,
by initializing to be Gaussian white noise. For any

is then computed from by first adjusting the modulus
of its wavelet coefficients with a non-linear projector

Applying the wavelet transform pseudo-inverse (10) yields

The dual filters are defined in (11). One can verify that
is the orthogonal projection of onto . Numer-
ical experiments are performed with iterations, and we
set .
When , an approximation of is computed from

by first estimating from with
the Richardson-Lucy deconvolution algorithm. We then com-
pute from and this estimation of by approximately
inverting using the Griffin & Lim algorithm. When is
above 100 ms, the deconvolution loses too much information,
and audio reconstructions obtained from first-order coefficients
are crude. Fig. 5(a) shows the scalograms of a
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Fig. 5. (a) Scalogram for recordings of speech (top) and a
cello (bottom). (b), (c) Scalograms of reconstructions from
first-order scattering coefficients in (b), and from first- and second-order
coefficients in (c). Scattering coefficients were computed with

ms for the speech signal and ms for the cello signal.

speech and a music signal, and the scalograms of
their approximations from first-order scattering coefficients.
When , the approximation is calculated from

by applying the deconvolution algorithm to
to estimate , and then by successively

inverting and with the Griffin & Lim algorithm.
Fig. 5(c) shows for the same speech and
music signals. Amplitude modulations, vibratos and attacks are
restored with greater precision by incorporating second-order
coefficients, yielding much better audio quality compared
to first-order reconstructions. However, even with ,
reconstructions become crude for ms. Indeed, the
number of second-order scattering coefficients
is too small relatively to the number audio samples in
each audio frame, and they do not capture enough infor-
mation. Examples of audio reconstructions are available at
http://www.di.ens.fr/data/scattering/audio/.

VI. NORMALIZED SCATTERING SPECTRUM

To reduce redundancy and increase invariance, Section VI.A
normalizes scattering coefficients. Section VI.B shows that nor-
malized second-order coefficients provide high-resolution spec-
tral information through interferences. Section VI.C also proves
that they characterize amplitude modulations of audio signals.

A. Normalized Scattering Transform

Scattering coefficients are renormalized to increase their in-
variance. It also decorrelates these coefficients at different or-
ders. First-order scattering coefficients are renormalized so that
they become insensitive to multiplicative constants:

(13)

The constant is a silence detection threshold so that
when , and may be set to 0.
The lowpass filter can be wider than the one used in the

scattering transform. Specifically, if we want to retain local am-
plitude information of below a certain scale, we can nor-
malize by the average of over this scale, creating invariance
only to amplitude changes over larger intervals.
At any order , scattering coefficients are renormalized

by coefficients of the previous order:

A normalized scattering representation is defined by
. We shall mostly limit ourselves to

.
For ,

Let us show that these coefficients are nearly invariant to a fil-
tering by if is approximately constant on the support
of . This condition is satisfied if

It implies that , and hence
. It results that

Similarly, , so after
normalization

Normalized second-order coefficients are thus invariant to fil-
tering by . One can verify that this remains valid at any order

.

B. Frequency Interval Measurement From Interference

A wavelet transform has a worse frequency resolution than a
windowed Fourier transform at high frequencies. However, we
show that frequency intervals between harmonics are accurately
measured by second-order scattering coefficients.
Suppose has two frequency components in the support of
. We then have

whose modulus squared equals

We approximate with a first-order expansion of the
square root, which yields
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If has a support of size , then
, so satisfies

(14)

These normalized second-order coefficients are thus non-neg-
ligible when is of the order of the frequency interval .
This shows that although the first wavelet does not have
enough resolution to discriminate the frequencies and ,
second-order coefficients detect their presence and accurately
measure the interval . As in audio perception, scattering
coefficients can accurately measure frequency intervals but not
frequency location. The normalized second-order scattering co-
efficients (14) are large only if and have the same order
of magnitude. This also conforms to auditory perception where
a frequency interval is perceived only when the two frequency
components have a comparable amplitude.
If has more frequency compo-

nents, we verify similarly that is non-negligible
when is of the order of for some . These co-
efficients can thus measure multiple frequency intervals within
the frequency band covered by . If the frequency resolu-
tion of is not sufficient to discriminate between two fre-
quency intervals and , these intervals will
interfere and create high-amplitude third-order scattering coef-
ficients. A similar calculation shows that third-order scattering
coefficients detect the presence of two such
intervals within the support of when is close to

. They thus measure “intervals of intervals.”
Fig. 6(a) shows the scalogram of a signal

containing a chord with two notes, whose fundamental fre-
quencies are Hz and Hz, followed by
an arpeggio of the same two notes. First-order coefficients

in Fig. 6(b) are very similar for the chord and
the arpeggio because the time averaging loses time local-
ization. However they are easily differentiated in Fig. 6(c),
which displays for Hz, as a
function of . The chord creates large amplitude coefficients
for Hz, which disappear for the arpeggio
because these two frequencies are not present simultaneously.
Second-order coefficients have also a large amplitude at low
frequencies . These arise from variation of the note en-
velopes in the chord and in the arpeggio, as explained in the
next section.

C. Amplitude Modulation Spectrum

Audio signals are usually modulated in amplitude by an enve-
lope, whose variations may correspond to an attack or a tremolo.
For voiced and unvoiced sounds, we show that amplitude modu-
lations are characterized by normalized second-order scattering
coefficients.
Let be a sound resulting from an excitation filtered

by a resonance cavity of impulse response , which is mod-
ulated in amplitude by to give

Fig. 6. (a) Scalogram for a signal with two notes, of funda-
mental frequencies Hz and Hz, first played as a chord
and then as an arpeggio. (b) First-order normalized scattering coefficients

for ms. (c) Second-order normalized scattering
coefficients with as a function of and . The
chord interferences produce large coefficients for .

We shall start by taking to be a pulse train of pitch given
by

representing a voiced sound. The impulse response is typ-
ically very short compared to the minimum variation interval

of the modulation term and is smaller than
.

We consider whose time support is short relatively to
and to the averaging interval , and whose fre-

quency bandwidth is smaller than the pitch and the minimum
variation interval of . These conditions are satisfied if

(15)

After the normalization , the
Appendix shows that

(16)

where and is an integer such that
. First-order coefficients are thus proportional to the

spectral envelope if is close to a harmonic
frequency.
Similarly, for , the Appendix

shows that

(17)

Normalized second-order coefficients thus do not depend upon
and but only on the amplitude modulation provided that

is non-negligible.
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Fig. 7. (a) Scalogram for a signal with three voiced sounds
of same pitch Hz and same but different amplitude modula-
tions : first a smooth attack, then a sharp attack, then a tremolo of fre-
quency . It is followed by three unvoiced sounds created with the same
and same amplitude modulations as the first three voiced sounds. (b) First-
order scattering with ms. (c) Second-order scattering

displayed for , as a function of and .

Fig. 7(a) displays for a signal having three
voiced and three unvoiced sounds. The first three are produced
by a pulse train excitation with a pitch of Hz.
Fig. 7(b) shows that has a harmonic structure,
with an amplitude depending on . The averaging by
and the normalization remove the effect of the different mod-

ulation amplitudes of these three voiced sounds.
Fig. 7(c) displays for the fourth partial

as a function of . The modulation envelope
of the first sound has a smooth attack and thus produces large
coefficients only at low frequencies . The envelope of
the second sound has a much sharper attack and thus produces
large-amplitude coefficients for higher frequencies . The
third sound is modulated by a tremolo, which is a periodic os-
cillation . According to (17), this tremolo
creates large amplitude coefficients when , as shown in
Fig. 7(c).
Unvoiced sounds are modeled by excitations which are

realizations of Gaussian white noise. The modulation amplitude
is typically non-sparse, which means the square of the average
of on intervals of size is of the order of the average of

. The Appendix shows that

(18)

Similarly to (16), is proportional to but does
not have a harmonic structure. This is shown in Fig. 7(b) by the
last three unvoiced sounds. The fourth, fifth, and sixth sounds
have the same filter and envelope as the first, second,
and third sounds, respectively, but with a Gaussian white noise
excitation .

Similarly to (17), the Appendix also shows that

where is less than
with . For voiced and unvoiced sounds,
mainly depends on the amplitude modulation . This is il-
lustrated by Fig. 7(c), which shows that the fourth, fifth, and
sixth sounds have second-order coefficients similar to those of
the first, second, and third sounds, respectively. The stochastic
error term produced by unvoiced sounds appears as random
low-amplitude fluctuations in Fig. 7(c).

VII. FREQUENCY TRANSPOSITION INVARIANCE

Audio signals within the same class may be transposed in
frequency. For example, frequency transposition occurs when a
single word is pronounced by different speakers. It is a complex
phenomenon which affects the pitch and the spectral envelope.
The envelope is translated on a logarithmic frequency scale but
also deformed. We thus need a representation which is invariant
to frequency translation on a logarithmic scale, and which also
is stable to frequency deformation. After reviewing the mel-fre-
quency cepstral coefficient (MFCC) approach through the
discrete cosine transform (DCT), this section defines such a
representation with a scattering transform computed along
log-frequency.
MFCCs are computed from the log-mel-frequency spectro-

gram by calculating a DCT along the mel-fre-
quency index for a fixed [38]. This is linear in for low
frequencies, but is proportional to for higher frequencies.
For simplicity, we write and , although this
should be modified at low frequencies.
The frequency index of the DCT is called the “quefrency”

parameter. In MFCCs, high-quefrency coefficients are often set
to zero, which is equivalent to averaging along
and provides some frequency transposition invariance. The

more high-quefrency coefficients are set to zero, the bigger the
averaging and hence themore transposition invariance obtained,
but at the expense of losing potentially important information.
The loss of information due to averaging along can be

recovered by computing wavelet coefficients along . We
thus replace the DCT by a scattering transform along . A
frequency scattering transform is calculated by iteratively ap-
plying wavelet transforms and modulus operators. An analytic
wavelet transform of a log-frequency dependent signal is
defined as in (7), but with convolutions along the log-frequency
variable instead of time:

Each wavelet is a bandpass filter whose Fourier transform
is centered at “quefrency” and is an averaging filter.

These wavelets satisfy the condition (8), so is contractive
and invertible.
Although the scattering transform along can be computed at

any order, we restrict ourself to zero- and first-order scattering
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coefficients, as this seems to be sufficient for classification. A
first-order scattering transform of is calculated from

(19)

by averaging these coefficients along with :

(20)

These coefficients are locally invariant to log-frequency shifts,
over a domain proportional to the support of the averaging filter
. This frequency scattering is formally identical to a time

scattering transform. It has the same properties if we replace the
time by the log-frequency variable . Numerical experiments
are implemented using Morlet wavelets with .
Similarly to MFCCs, we apply a logarithm to normalized

scattering coefficients so that multiplicative components be-
come additive and can be separated by linear operators. This
was shown to improve classification performance. The loga-
rithm of a second-order normalized time scattering transform
at frequency and time is

This is a vector of signals , where depends on and .
Let us transform each by the frequency scattering opera-
tors or , defined in (19) and (20). Let
and stand for the concatenation of these trans-
formed signals for all and . The representation is
calculated by cascading a scattering in time and a scattering in
log-frequency. It is thus locally translation invariant in time and
in log-frequency, and stable to time and frequency deformation.
The interval of time-shift invariance is defined by the size of the
time averaging window , whereas its frequency-transposition
invariance depends upon the width of the log-frequency aver-
aging window .
Frequency transposition invariance is useful for certain tasks,

such as speaker-independent speech recognition or transposi-
tion-independent melody recognition, but it removes informa-
tion important to other tasks, such as speaker identification.
The frequency transposition invariance, implemented by the fre-
quency averaging filter , should thus be adapted to the classi-
fication task. Next section explains how this can be done by re-
placing by and optimizing the
linear averaging at the supervised classification stage.

VIII. CLASSIFICATION

This section compares the classification performance
of support vector machine classifiers applied to scattering
representations with standard low-level features such as
-MFCCs or more sophisticated state-of-the-art represen-

tations. Section VIII.A explains how to automatically adapt
invariance parameters, while Sections VIII.B and VIII.C
present results for musical genre classification and phone
classification, respectively.

A. Adapting Frequency Transposition Invariance

The amount of frequency-transposition invariance depends
on the classification problem, and may vary for each signal

Fig. 8. A time and frequency scattering representation is computed by applying
a normalized temporal scattering on the input signal , a logarithm, and a
scattering along log-frequency without averaging.

class. This adaptation is implemented by a supervised classifier,
applied to the time and frequency scattering transform.
Fig. 8 illustrates the computation of a time and frequency

scattering representation. The normalized scattering trans-
form of an input signal is computed along time, over
half-overlapping windows of size . The log-scattering vector
for each time window is transformed along frequencies by the
wavelet modulus operator , as explained in Section VII.
Since we do not know in advance how much transposition
invariance is needed for a particular classification task, the
final frequency averaging is adaptively computed by the super-
vised classifier, which takes as input the vector of coefficients

, for each time frame indexed by .
The supervised classification is implemented by a support

vector machine (SVM). A binary SVM classifies a feature
vector by calculating its position relative to a hyperplane,
which is optimized to maximize class separation given a set
of training samples. It thus computes the sign of an optimized
linear combination of the feature vector coefficients. With a
Gaussian kernel of variance , the SVM computes different
hyperplanes in different balls of radius in the feature space.
The coefficients of the linear combination thus vary smoothly
with the feature vector values. Applied to ,
the SVM optimizes the linear combination of coefficients along
, and can thus adjust the amount of linear averaging to create
frequency-transposition invariant descriptors which maximize
class separation. A multi-class SVM is computed from binary
classifiers using a one-versus-one approach. All numerical
experiments use the LIBSVM library [39].
The wavelet octave resolution can also be adjusted at the

supervised classification stage, by computing the time scattering
for several values of and concatenating all coefficients in a
single feature vector. A filter bank with has enough
frequency resolution to separate harmonic structures, whereas
wavelets with have a smaller time support and can
thus better localize transients in time. The linear combination
optimized by the SVM is a feature selection algorithm, which
can select the best coefficients to discriminate any two classes.
In the experiments described below, adding more values of
between 1 and 8 provides marginal improvements.

B. Musical Genre Classification

Scattering feature vectors are first applied to a musical genre
classification problem on the GTZAN dataset [40]. The dataset
consists of 1000 thirty-second clips, divided into 10 genres of
100 clips each. Given a clip, the goal is to find its genre.
Preliminary experiments have demonstrated the efficiency of

the scattering transform for music classification [41] and for en-
vironmental sounds [42]. These results are improved by letting
the supervised classifier adjust the transform parameters to the
signal classes. A set of feature vectors is computed over half-
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TABLE II
ERROR RATES (IN PERCENT) FOR MUSICAL GENRE CLASSIFICATION ON
GTZAN AND FOR PHONE CLASSIFICATION ON THE TIMIT DATABASE FOR
DIFFERENT FEATURES. TIME SCATTERING TRANSFORMS ARE COMPUTED
WITH MS FOR GTZAN AND WITH MS FOR TIMIT

overlapping frames of duration . Each frame of a clip is clas-
sified separately by a Gaussian kernel SVM, and the clip is as-
signed to the class which is most often selected by its frames. To
reduce the SVM training time, feature vectors were only com-
puted every 370 ms for the training set. The SVM slack param-
eter and the Gaussian kernel variance are determined through
cross-validation on the training data. Table II summarizes re-
sults with one run of ten-fold cross-validation. It gives the av-
erage error and its standard deviation.
Scattering classification results are first compared with results

obtained for MFCC feature vectors. A -MFCC vector aug-
ments an MFCC vector at time by estimates of its first and
second derivatives derived from vectors centered at
and .When computed for ms, the -MFCC error
is 20.2%, which is reduced to 18.0% by increasing to 740 ms.
Further increasing does not reduce the error. State-of-the-art
algorithms provide refined feature vectors to improve classifi-
cation. Combining MFCCs with stabilized modulation spectra
and performing linear discriminant analysis, [8] obtains an error
of 9.4%, the best non-scattering result so far. A deep belief
network trained on spectrograms [18], achieves 15.7% error
with an SVM classifier. A sparse representation on a constant-Q
transform [30], gives a 16.6% error with an SVM.
Table II gives classification errors for different scattering fea-

ture vectors. For , they are composed of first-order time
scattering coefficients computed with and ms.
These vectors are similar to MFCCs as shown by (5). As a re-
sult, the classification error of 19.1% is close to that of MFCCs
for the same . For , we add second-order coefficients
computed with . It reduces the error to 10.7%. This
40% error reduction shows the importance of second-order co-
efficients for relatively large . Third-order coefficients are also
computed with . For , including these coefficients
reduces the error marginally to 10.6%, at a significant computa-
tional and memory cost.We therefore restrict ourselves to .
Musical genre recognition is a task which is partly invariant

to frequency transposition. Incorporating a scattering along the
log-frequency variable for frequency transposition invariance
reduces the error by about 15%. These errors are obtained with a
first-order scattering along log-frequency. Adding second-order
coefficients only improves results marginally.
Providing adaptivity for the wavelet octave bandwidth by

computing scattering coefficients for both and
further reduces the error by almost 10%. Indeed, music signals

include both sharp transients and narrow-bandwidth frequency
components. We thus have an error rate of 8.6%, which com-
pares favorably to the non-scattering state-of-the-art of 9.4%
error [8].
Replacing the SVM with more sophisticated classifiers can

improve results. A sparse representation classifier applied to
second-order time scattering coefficients reduces the error rate
from 10.7% to 8.8%, as shown in [44]. Let us mention that the
GTZAN database suffers from some significant statistical issues
[45], which probably does not make it appropriate to evaluate
further algorithmic refinements.

C. Phone Segment Classification

The same scattering representation is tested for phone seg-
ment classification with the TIMIT corpus [33]. The dataset
contains 6300 phrases, each annotated with the identities, loca-
tions, and durations of its constituent phones. This task is sim-
pler than continuous speech recognition, but provides an evalu-
ation of scattering feature vectors for representing phone seg-
ments. Given the location and duration of a phone segment,
the goal is to determine its class according to the standard pro-
tocol [46], [47]. The 61 phone classes (excluding the glottal stop
/q/) are collapsed into 48 classes, which are used to train and
test models. To calculate the error rate, these classes are then
mapped into 39 clusters. Training is achieved on the full 3696-
phrase training set, excluding “SA” sentences. The Gaussian
kernel SVM parameters are optimized by validation on the stan-
dard 400-phrase development set [48]. The error is then calcu-
lated on the core 192-phrase test set.
An audio segment of length 192 ms centered on a phone can

be represented as an array of MFCC feature vectors with half-
overlapping time windows of duration . This array, with the
logarithm of the phone duration added, is fed to the SVM. In
many cases, hidden Markov models or fixed time dilations are
applied when matching different MFCC sequences to account
for the time-warping of the phone segment [46], [47]. Table II
shows that ms yields a 18.5% error which is much less
than the 60.5% error for ms. Indeed, many phones
have a short duration with highly transient structures and are
not well-represented by wide time windows.
A lower error of 17.1% is obtained by replacing the SVM

with a sparse representation classifier on MFCC-like spectral
features [49]. CombiningMFCCs of different window sizes and
using a committee-based hierarchical discriminative classifier,
[43] achieves an error of 16.7%, the best so far. Finally, convo-
lutional deep-belief networks cascades convolutions, similarly
to scattering, on a spectrogram using filters learned from the
training data. These, combined with MFCCs, yield an error of
19.7% [13].
Rows 4 through 6 of Table II gives the classification results

obtained by replacing MFCC vectors with a time scattering
transform computed using first-order wavelets with .
In order to retain local amplitude structure while creating
invariance to loudness changes, first-order coefficients are
renormalized in (13) using averaged over a window the
size of the whole phone segment. Second- and third-order
scattering coefficients are calculated with . The
best results are obtained with ms. For , we only
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keep first-order scattering coefficients and get a 19.0% error,
similar to that of MFCCs. The error is reduced by about 10%
with , a smaller improvement than for GTZAN because
scattering invariants are computed on smaller time interval

ms as opposed to 740 ms for music. Second-order
coefficients carry less energy when is smaller, as shown in
Table I. For the same reason, third-order coefficients provide
even less information compared to the GTZAN case, and do
not improve results.
Note that no explicit time-warping is needed in this model.

Thanks to the scattering deformation stability, supervised linear
classifiers can indeed compute time-warping invariants which
remain sufficiently informative.
For , cascading a log-frequency transposition invariance

computed with a first-order frequency scattering transform of
Section VII reduces the error by about 5%. Computing a second-
order frequency scattering transform only marginally improves
results. Allowing to adapt the wavelet frequency resolution by
computing scattering coefficients with and also
reduces the error by about 5%
Again, these results are for the problem of phone classifica-

tion, where boundaries are given. Future work will concentrate
on the task of phone recognition, where such information is ab-
sent. Since this task is more complex, performance is generally
worse, with the state-of-the-art achieved at a 17.7% error rate
[16].

IX. CONCLUSION

The success of MFCCs for audio classification can partially
be explained by their stability to time-warping deformation.
Scattering representations extend MFCCs by recovering lost
high frequencies through successive wavelet convolutions.
Over windows of ms, signals recovered from first-
and second-order scattering coefficients have good audio
quality. Normalized scattering coefficients characterizes ampli-
tude modulations, and are stable to time-warping deformation.
A frequency transposition invariant representation is obtained
by cascading a second scattering transform along frequen-
cies. Time and frequency scattering feature vectors yield
state-of-the-art classification results with a Gaussian kernel
SVM, for musical genre classification on GTZAN, and phone
segment classification on TIMIT.

APPENDIX A

Following (15), is nearly constant over the time support
of and is nearly constant over the frequency support
of . It results that

(21)

Let be a harmonic excitation. Since we supposed that
covers at most one harmonic whose frequency

is close to . It then results from (21) that

(22)

Computing gives

(23)

Let us compute

Since and are approximately constant over intervals
of size , and the support of is smaller than , one can
verify that

This approximation together with (23) verifies (16).
It also results from (22) that

which, combined with (23), yields (17).
Let us now consider a Gaussian white noise excitation .

We saw in (21) that

(24)

Let us decompose

(25)

where is a zero-mean stationary process. If is a normal-
ized Gaussian white noise then is a Gaussian random
variable of variance . It results that and
have a Rayleigh distribution, and since is a complex wavelet
with quadrature phase, one can verify that

Inserting (25) and this equation in (24) shows that

(26)

When averaging with , we get

Suppose that is not sparse, in the sense that

(27)

It means that ratios between local and norms of is of
the order of 1. We are going to show that if then

(28)

which implies

(29)
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We give the main arguments to compute the order of magnitudes
of the stochastic terms, but it is not a rigorous proof. For a de-
tailed argument, see [50]. Computations rely on the following
lemma.
Lemma 1: Let be a zero-mean stationary process of

power spectrum . For any deterministic functions
and

Proof: Let . Now
is given by

and hence

Since is the kernel of a positive symmetric operator whose
spectrum is bounded by it results that

because .
Because is normalized white noise, one can verify using a

Gaussian chaos expansion [50] that ,
where . Applying Lemma 1 to and
gives

Since has a duration , it can be written as
for some of duration 1. As a result, if

(27) holds then

(30)

The frequency support of is proportional to , so we
have . Together with (30), if
it proves (28) which yields (29).
We approximate similarly. First, we write

where is a zero-mean stationary process. Since is
normally distributed in has distribution and

which then gives

One can show that [50], so
applying Lemma 1 gives

Now (30) implies that

since is non-sparse and has a support much smaller than
so . Consequently,

which, together with (29), gives (18).
Let us now compute .

If then (29) together with (26) shows that

where

(31)

Observe that

Lemma 1 applied to and gives the following
upper bound:

(32)

One can write where sat-
isfies . Similarly to (30), if (27) holds over time
intervals of size , then

(33)

Since and when
, it results from (31), (32), (33) that

with .
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