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Abstract. We show how to find sufficiently small integer solutions to a polynomial

in a single variable moduld!, and to a polynomial in two variables over the integers.
The methods sometimes extend to more variables. As applications: RSA encryption
with exponent 3 is vulnerable if the opponent knows two-thirds of the message, or if
two messages agree over eight-ninths of their length; and we can find the factors of
N = P Qif we are given the high orde} log, N bits of P.
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1. Introduction

It is easy to compute the integer roots of a polynomial in a single variable over the
integers

p(x) = 0.
But two related problems can be hard:

(1) finding integer roots of emodularpolynomial in one variable:
p(x) = 0(modN);
(2) finding integer roots of a polynomial Beveralvariables:
p(x,y) =0.

In this paper we restrict these problems to the case where there exists a solution small
enough (with respect tN or to the coefficients op), and we can solve the problems in
these special cases, using lattice basis reduction techniques.

Let N be a large composite integer of unknown factorization. Let

POX) = X + Ps_1X> T+ -+ pox® + piX + Po
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be a monic integer polynomial of degréen a single variablex. Suppose there is an
integer solutiornxg to

P(X0) = 0(modN)
satisfying
IXo| < N/,

We will show how to find such a solutiax, in time polynomial in(log N, 2°%).
Suppose next that

PO, Y) =) pyX'y!
ij

is an irreducible integer polynomial in two variables over the integers (not mddulo
this time), with degreé in each variable separately. L¥tandY be upper bounds on
the desired integer solutiamg, Yo), and set

W = max p;j | XY
i

We will find an integer solution(Xo, Yo) satisfying p(xg, Yo) = O if one exists with
[Xo] < X, |Yol <Y, provided

XY < W@

The techniques used in the two cases are similar. We use the coefficients of the
polynomial p to build a matrixM, whose rows give the basis of an integer lattice.
We will consider a row vectar whose entries are powers of the desired solutigfer
XbYs- The vectors = rM will be a relatively short lattice element. Using lattice basis
reduction techniques such as those due tasa\f9] to analyzé, we find a hyperplane
containing all the short lattice elements. The equation of this hyperplane translates to
a linear relation on the elements mfand then to a polynomial equati@xy) = O or
c(Xo, Yo) = O overZ. In the univariate modular case we sob(&g) = 0 directly forxo.

In the bivariate integer case we combir(&g, Yo) with p(xo, Yo) and solve.

An important application of the univariate modular case is to RSA encryption [12]
with small exponent, when most of the message is fixed or “stereotyped.” Suppose the
plaintextm consists of two pieces, a known pieB@and an unknown piece m = B+Xx.
Supposem is RSA-encrypted with an exponent of 3, so the cipherteig given by
c=m? = (B + x)% (modN). If we know B, ¢, andN, we can apply the present results
to the modular polynomial equation

p(x) = (B + %)% — ¢ = 0(modN),

and recovexk as long agx| < N¥3, that is,x has fewer than one-third of the bits of the
message, and these bits are consecutive.

A second application of the univariate modular case to RSA encryption with small
exponent concerns random padding. Suppose a messég@added with a random
valuer; before encrypting with exponent 3, giving the ciphertext

¢1 = (M+rq)% (modN).
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Supposean is encrypted again with different random padding:
Co = (M+r2)% (ModN).

We will show how to recovem from ¢;, c;, N, as long as the random paddings less

than one-ninth of the bits dl. This is completely different from Hastad’s [7] attack

on low-exponent RSA; he used encryptions under several different moduli, and we use
only one modulus.

The bivariate integer case can be applied to the problem of factoring an integer when
we know its high-order bits. If we knoM = P Q and we know the high-ordérlog2 N
bits of P, then by solving the equatiai®y + x)(Qo + y) — N over a suitable range of
andy we can find the factorization dfi. By comparison, Rivest and Shamir [13] need
about% log, N bits of P, and a recent work of the present author [4] requiﬁgehi)g2 N
bits. This has applications to some RSA-based cryptographic schemes; see, for example,
Vanstone and Zuccherato [15].

The rest of the paper is organized as follows. In Section 2 we recall the necessary facts
about lattice basis reduction. In Section 3 we present a heuristic approach, which does
not quite work, but whose ideas will be refined in the present work. For the univariate
modular case, we show in Section 4 how to build the matfixthe rows of which
generate our lattice. In Section 5 we analyze the determinant of this matrix, and compare
to the length of the relevant vector. We complete the solution of the modular univariate
polynomial in Section 6. Applications to RSA encryption with low exponent and partial
information are given in Section 7 (where most of a message is known beforehand)
and Section 8 (where two messages agree over most of their length). In Section 10 we
develop the bivariate integer case, and apply it in Section 11 to the problem of factoring
integers with partial information. Section 12 investigates the extension of these results
to two or more variables moduld or three or more variables over the integers. We give
concluding remarks and an open problem in Section 13.

This paper, containing material from the author’s papers [2] and [3], grew out of the
joint work with Franklin, Patarin, and Reiter [5], which in turn was inspired Franklin
and Reiter’s Crypto 95 rump session talk [6].

2. Lattice Basis Reduction

We recall here some basic facts about lattice basis reduction. The reader is referred to
[9] for further information.
SupposeM is a squar@ x n matrix with rational entries and with full rank. The rows
of M generate ¢attice L, a collection of vectors closed under addition and subtraction;
in fact the rows form doasisof L.
From [9] we learn how to computeraducedbasis(by, by, . . ., by) for L. The matrix
B with rowsb; is related toM by a series of elementary row operations; equivalently,
B = KM whereK is an invertible matrix, and botk andK ~* have integer entries. The
computation oB is done in time polynomial in and in logmax{|n;; |, |dij [}), wheren;;
andd;; are the numerator and denominator of the matrix elergntin lowest terms.
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Remark Lattice reduction works more efficiently with integer entries, but our lattice
is easier to describe with rational entries. Converting between the two is not difficult.

The basis elements are relatively short. The Euclidean nothi | is within a mul-
tiplicative factor of 2"~9/2 of the norm of the smallest nonzero lattice element, and
similar estimates hold for the othby. SettingD = | det(M)| = | det(B)|, we have

D < []bil <2"™"/D.

The first inequality is Hadamard’s inequality. The second is a property of the reduced
basis; see [9, equation (1.8)].
Let b denote the component &f orthogonal to the span dfy, by, ..., bj_;. We

know that
D= 1‘[ b?|.
From the discussion in [9] we know that the last basis elerhgshtisfies

b¥| > DY/no—(n-1)/4

(Note the direction of the inequality.) This follows froth;|> < 2|bi,;|? andD =
[TIb71.

Each lattice elemers can be expressed as= )_sb;, where thes are integers.
Further,|s| > |s;| x |b|. So ifssatisfiegs| < |b;|, thens, must be 0, and must lie in
the hyperplane spanned by, by, ..., b,_;. Thus we have proved:

Lemma 1. If alattice elemens satisfiegs| < DY"2-("-1D/4 thenslies in the hyper-
plane spanned by, by, ..., by_1.

In our applications, we are not necessarily looking for the shortest nonzero vector
in the lattice, but for a relatively short vector, and Lemma 1 serves to confine all such
short vectors to a hyperplane. Lemma 2 generalizes this concept from a hyperplane to a
subspace of smaller dimension.

Lemma 2. If alattice elemenssatisfieds| < |bf| foralli =k+1,...,n,thenslies
in the space spanned lby, by, .. ., by.

Lemma 2 will be useful when we wish to develop more than one equation. This will
be necessary when solving a modular polynomial with more than one variable, or an
integer polynomial with more than two variables. See Section 12.

3. Motivation

Lattice reduction techniques seem inherently linear. It is not immediately obvious how
to apply these techniques to the nonlinear problem of solving polynomial equations.

To motivate the present work, we start with a heuristic approach to solving a modular
polynomial equation by lattice basis reduction techniques. This approach does not quite
work, but it gives ideas upon which we can build the algorithms which do work.
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Given a monic univariate modular polynomial equation
PX) = X° + Ps_1X’ "t + -+ + Pox® + P1X + po = 0(ModN)

to which we wish to find a small roog, we could proceed as follows:

Establish a suitable upper bouixdon the size of the desired rogg. Build a (§ +
2) x (8 + 2) matrix M, with diagonal elements given by X~1, X2, ..., X% N, and
with right-hand colummpo, p1, P2, - .-, Ps—1, Ps = 1, N; all other entries are 0.

1 0 0 -~ 0 po
0oX* 0 -~ 0 pm
0 0 X2 ... 0 p
M= . . . . .
0 0 0 - X3 p
0o 0 0 -~ 0 N |

Supposep(Xg) = YoN for unknown integersg andyp with |xg| < X. Consider the
row vectorr consisting of powers ofy andyyp:

2 5—-1 8
r=(17X07X07"'7X0 7X09_y0)'

Consider the row vector

- (3G () ()

Its last element ip(Xg) — YoN = 0. The vectosis an element of the lattice spanned by
the rows ofM. Its Euclidean norm is bounded kys + 1 since each entrgxy/ X)' is
bounded by 1. I6is among the shorter vectors of this lattice, we might find it by lattice
basis reduction techniques.

From the discussion in Section 2, we need to compsire thes + 2 root of the
determinant of the matriM. If

sl < |det(M)[/@+2)]

thenswill be among the shorter vectors, and the lattice basis reduction techniques might
find it. (For the present discussion we ignore factors lik&2Y/4 dependent only on
the size of the matrix. We will take account of them later.)

We can easily evaluate &) becauseM is upper triangular:

detM) = (D)X H(X?) ... (X )N = NX06+D/2,

Ignoring factors like 2"~Y/4 ands + 1, we require roughly that dg¥1) > 1, and so
we require roughly that

X2 +8)/2 _ N,

X < N 2/(8%48)
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quite a small bound oiX, especially for moderately large valuessoBy contrast, the
present paper will develop a more reasonable bound of (roughly)

X < N8,

One problem with this heuristic approach is that, although the emtradghe vector
r are supposed to represent powersxgf there is no way (within the lattice struc-
ture) to enforce that relationship, for example, to enforce the requiremant; =
SREVASE

A second, related, problem is that we have many unknayaad only one relation
P(Xo) = YoN. Each unknowm; contributes a factoX ' to de{ M), and the lone relation
p(Xo) = YoN contributes a factoN. The resulting imbalance, and the requirement
det'M) > 1, lead to the stringent requiremext®+1/2 < N.

In the new approach we will work with several relations: for exam}z)qua(xo)j =
0(modN1). This allows us to reuse the unknowmsnd amortize their “cost” over the
several relations. Each relation, meanwhile, contributes a fachor tuf de{ M ). Because
det(M) now contains several powers Nf, the requirement dé) > 1 translates to a
much looser requirement ox.

The fact that the equationgp(xo)) = 0(modN/) hold modN/ (rather than just
mod N) improves this situation, by contributing larger powershoto de{M). Using
only equations of the form' p(x) = 0 (modN), we could find solutiong up to about
X' = NY@-D With the additional equationg p(x)! = 0(modN!), we are able to
improve this bound toX = N4,

Notice that the; satisfy several equations that differ only by shifts in the powers of
Xo. If p(x) = x®+ Ax?+ Bx+ C, then two equations derived fropixo) = 0 (modN)
andxop(Xg) = 0(modN) are

rs+ Aro + Bry +Crg = 0(modN),
rqs+ Arz+ Bro +Cr; = 0(modN).

The present approach allows us to recapture the flavor of the requirement that the various
ri should be related by (for example)/r, = r4/r3, since the roles played by andr,

in the first equation are the same as the roles played agdr s in the second equation.

This is offered only as an intuitive explanation for the success of the present approach;
it will not be used in the technical discussions that follow.

The use of Lemma 1 allows a qualitative innovation in the application of lattice
basis reduction techniques, which may be of interest in its own right. We can state
with certainty that the present algorithm will find all sufficiently small solutions, in all
cases; by contrast, many applications of lattice basis reduction techniques can only be
guaranteed to work in a large proportion of problem instances. By looking at the last
element of the reduced basis (rather than the first), we can calfisefficiently short
lattice elements to a hyperplane whose equation we compute. In particular, the rela-
tively short vectors, corresponding to the desired solution, lies in this hyperplane. The
equation of that hyperplane, together with the interpretatjon- x{, gives a poly-
nomial equation whichxp is guaranteed to satisfy. This guarantee is a new aspect of
the present work.
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4. Building the Matrix: Univariate Modular Case

In this section we show how to build the appropriate lattice for the case of a univariate
modular polynomialN is a large composite integer of unknown factorization. We are
given the polynomial

PX) = X* + ps_1x* 7 4 - 4 poax® 4 pix + po = 0(modN),

which we assume to be monic, that 5,= 1.
Suppose there is an integey satisfying

p(Xo) = 0(modN)

with
N (1/8)—¢
2

[Xo| <

for somees > 0. We wish to findxg.
Begin by selecting an integer

§—14¢68 7
h > max| ———, -
£62 8

The first condition ensures that

h-1 1
8

w_1-35 ©

The second condition ensures that> 7.
For each pair of integers j satisfying 0< i < 8,1 < j < h, we define the
polynomial

Gij (X) = X' p(x)!.
For the desired solutioxy we know thatp(xg) = yoN for some integey, so that
Gij (Xo) = 0(modN!).

We will build a rational matrixM of size(2hs — 8) x (2hs — §), using the coefficients
of the polynomials; (x), in such a way that an integer linear combination of the rows of
M corresponding to powers @fandy will give a vector with relatively small Euclidean
norm. Multiplying by least common denominator will produce an integer matrix on
which lattice basis reduction can be applied.

The matrixM is broken into blocks. The upper right block, of sidg) x (hs — 9),
has rows indexed by the integgmwith 0 < g < hé, and columns indexed by(, j) =
h§+i+(j —DswithO<i <dand1l<j < h,sothaths < y(i, j) < 2hs —§. The
entry at(g, y (@, j)) is the coefficient ok9 in the polynomial; (x).

The lower right(hs — 8) x (hs — 8) block is a diagonal matrix, with the valu! in
each columry (i, j).
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The upper lefths) x (hs) block is a diagonal matrix, whose value in rgws a rational
approximation toX~9/+/hs, whereX = N®%~¢ is an upper bound to the solutions
|X| of interest.

The lower left(hs — §) x (hé8) block is zero.

We illustrate the matrit in the casér = 3,8 = 2. Assume thap(x) = x> +ax+b
andp(x)? = x* 4+ cx3 4+ dx? 4+ ex+ f. For simplicity we writer instead of ¥+/hs.

r 0 0 0 0 0 b o0 f O
0oxx! 0o ©0 0 0 a b e f
0 0 X2 0 0 0 1a d e
0o 0 0 Xx* 0 0 0 1 ¢ d
M_|0 0 0 0 x* 0 00 1 c
“lo o o 0 0 x® o0 0 0 1
o 0o 0 0 0 0 NO 0 O
o 0o 0o O0 0 0 ON 0 0
o 0o o0 0 0 0 0 0N O

0o o0 0 0 0 0 0 0 0 N2

The rows ofM span a lattice. Of interest to us is one vecor that lattice, related to
the unknown solutioxg. Consider a row vectar whose left-hand elements are powers
of Xo:

— x93
I‘g—XO,

and whose right-hand elements are the negatives of powegssanid yy:

M) = —%oYo-
r=(L X0 X3 X" = Yo, —XoYo. - .- —X§ Vo. — V&, —Xo¥g. ... =X Vo).
The product = r M is a row vector with left-hand elements given by
5 = (Xo/ X)®
+/hé

and right-hand elements by
S,i.i) = Gij (X0) — XbygN! = 0.

The Euclidean norm cfis estimated by

[z [x ] -

Because the right-hand elemehts— § of the desired vecta are 0, we can restrict
our attention to the sublatticl of M consisting of points with right-hand elements
0, namelyM N (RM x {0}"=%). To do this computationally, we take advantage of the
fact thatp(x) and hencey; (x) are monic polynomials, so that certdid — § rows of
the upper right block oM form an upper triangular matrix with 1 on the diagonal.
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This implies that we can do elementary row operationd/oto produce a block matrix
M whose lower-righths — 8) x (hs — 8) block is the identity and whose upper-right
(hé) x (hé — §) block is zero.

The upper-left(ths) x (hs) block M of M represents the desired sublattice:rdn
dimensional lattice, of whickis one relatively short element.

5. Analysis of the Determinant

M is an upper triangular matrix, so its determinant is just the product of the diagonal
elements:

1 )
det(M) = —_— N/
- Tl
NBh(h=1/2 % —(hs)(hs—1)/2

mhé‘

_ [N(h—l)/ZX—(ha—l)/2(h5)—1/2]ha.

By construction,
detM) = det(M) = detM) x det(l) = det(M).

We will be invoking Lemma 1 on the smaller matiix, whose dimension is = hs.
Since we know
sl <1,
the required condition is
1< |det(|\’/‘|)|l/h82—(h8—l)/4.

Since

de[(|\7|) — (N(h—l)/2X—(hs-l)/z(hg)_l/z)ha’
this holds if

1< N(h_l)/ZX_(h’s_l)/z(hﬁ)_1/22—(*‘5—1)/47
that is, if

X < N(h—l)/(ha—l)(hs)—l/(ha—l)z—l/z.
So the hypothesis of Lemma 1 will hold if
X < N(hfl)/(hafl)(h6)7l/(h571)271/2.
By our choice ot we havehs > 7, so that (by a computation)
(ha)—l/(h(S—l) - 2712

Also by our choice ofh we know

h-1 1
8
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So if we select
X < %N(l/ﬁ)*s7
we will have
Is| < 1 < detM)Y/n2-("-D/4
as required.

6. Finishing the Solution

Now we can tie the pieces together. A
Apply a lattice basis reduction routine to the row basis of the mafrjproducing a
basisbi, by, ..., by, satisfying

[by| = det(M)*/"2- 174,

where, as beforey = hs = dim(M).
By the calculation in the previous section, we have

Ibj| > 1.

By Lemma 1, any vector in the lattice generated by the row! afith length less
than 1 must lie in the hyperplane spannedbyb,, ..., by_;.

In terms of the larger matrisM and the vectors, swith rM = s, there is arhs-
dimensional space of vectarsuch that M = shas 0’s in its right-hantis — § entries.
By Lemma 1, those integer vectarsvhich additionally satisfys| < 1 must lie in a
space of dimension one smaller, namely dimen$idr- 1. This gives rise to a linear
equation on the entrigg, 0 < g < hs. That is, we compute coefficientg, not all zero,
such that:

For any integer vector = (rg, r,,j)) such thats = r M has right-hand entrie® and
|s| < 1, we must have
> cyrg=0.

This holds for all short vectorsin the lattice with right-hand side 0. In particular, it
holds for the vector obtained fromwhere

— 9 A i\l
fg = Xo> Myi.j) = —XoYo-

Thus we have computed coefficiertg of a polynomialC(x) such that the small
solutionxg satisfies

C(xo) = ) _Cgx§ =0.

This is a polynomial equation holding i, not just moduloN. We can solve this
polynomial for xq easily, using known techniques for solving univariate polynomial
equations oveEZ. (The Sturm sequence [14] will suffice.) Thus we have produced the
desired solutiorxg.
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Remark If there are several short solutiorg, this procedure will find all of them
simultaneously. All will be roots of the polynomial

C(Xo) = chxg =0.
We have proved:

Theorem 1. Let p(x) be a polynomial of degreg¢in one variable modulo an integer
N of unknown factorizatiarLet X be the bound on the desired solutignik

1pn1/6—¢
X < 2N ,

then in time polynomial inlog N, 8, 1/¢), we can find all integers xwith p(xp) =
0(modN) and|xg| < X.

Proof. The lattice basis reduction step operated on a matrix oftéize O(5/¢), and
the matrix entries are not too large. By [9] this step is done in polynomial time. The rest
of the algorithm is also polynomial time. O

Corollary 1.  With the hypothesis of Theoreimexcept that
X < Nl/(S’

then in time polynomial irflog N, 2%), we can find all integersxsuch that [ixg) =
0(modN) and|xg| < X.

Proof. Cover the interval £ N¥¢, N*/%] by four intervalsl; of length 3N/, each
centered at some integer. For each valug, apply Theorem 1 witlk = 1/log N to the
polynomialp; (X) = p(x + x;) to find all solutionsxg = x + x; within the intervall;, in
time polynomial in(log N, 2%). O

7. Application: Stereotyped Messages

An important application of the univariate modular case is to RSA encryption [12] with
small exponent, when most of the message is fixed or “stereotyped.” Suppose the plaintext
m consists of two pieces:

(1) Aknown pieceB = 2*b, such as the ASCII representation of “October 19, 1995.
The secret key for the day is.”

(2) An unknown piece, such as “Squeamish Ossifrage,” whose length is less than
one-third the length oN.

Suppose this is RSA-encrypted with an exponent of 3, so the ciphertexdiven by
c=m? = (B + x)3(modN). If we know B, c andN, we can apply the present results
to the polynomialp(x) = (B + x)® — ¢, and recovek, satisfying

P(Xo) = (B + X0)® — ¢ = 0(modN)
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as long as such af exists with|xg| < N3, that s, the length ofy is less than one-third
of the length ofN.

This is obvious wherB = 0: if the plaintext is jusky < N/3, thenxd < N, and the
ciphertext isc = xg as integers, so that we could recoxge= c/2 by taking the integer
cube root. But the present paper makes it possible for norgaowell.

Remark The boundX on recoverable valueg depends on the modulé. If xo has

250 bits andN has 512 bits, and an RSA exponent of 3 is used, the present techniques
fail to recoverxy because, > NY/3. But if we upgrade to a 1024-bit modulus

while keeping the unknowry at 250 bits, thesk, are now vulnerable to attack because

Xo < Nl/3.

The attack works equally well if the unknow lies in the most significant bits of the
messagen rather than the least significant bits—we are just multiplyirgy a known
constant 5.

An interesting variant occurs when the unknowis split between two blocks:

“TODAY’S KEY IS swordfish AND THE PASSWORD IS joe.”

We can view this as two unknowns:= “swordfish” andy = “joe,” and one known
pieceB = “TODAY’'S KEY IS AND THE PASSWORD IS —,” presuming that
we know (or correctly guess) the lengthsxofndy. The plaintext message is

m=B+2x+vy,

the ciphertext is
¢ =m®(modN),
and the polynomial which we wish to solve is
P(X,y) = ¢ — (B + 2 + y)® = 0(modN),
with a solution(x, Yp) suitably bounded.

We defer consideration of this case until Section 12.

8. Application to RSA with Random Padding: Two Messages

To introduce the second application (which was actually the starting point of the present
investigation), we recall the recent result of Franklin and Reiter [6].
Suppose two messagesandm’ satisfy aknownaffine relation, say

m=m+r

with r known. Suppose we know the RSA-encryptions of the two messages with an
exponent of 3:

¢ = m®(modN),
¢ = (M3 =m®+3m’ +3mr? +r3(modN).
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Then we can recoven fromc, ¢/, r, andN:

. rc'+2c—r%  r(@Emd+3m’r +3mr?)

= modN).
¢ —c+2r3 3m2r 4+ 3mr2 + 3r3 ( )

What if we do not know the exact relation betwaarmandm’, but we do know that
is small, say

/

m = m-+r,
Il < NY2.

Can we still findm?

One can imagine a protocol in which messaljesire subjected to random padding
before being RSA-encrypted with an exponent of 3. Periys left-shifted byk bits,
and a randonk-bit quantity R is added, to form a plaintexn; the ciphertext is then
the cube oim (modN):

c=m’= (2*M + R)® (modN).

Now suppose the same unknown messllgis encrypted twice, but with a different
random pad each time. Let the second random paB'be R +r so that the second
plaintext ism’ = m + r. Then we see the two ciphertexts

c = m®=(2*M + R)® (modN),
¢ = (M)%=2*M + R)® = (m+r)%(modN).

Can we recover andm, given knowledge ot, ¢/, andN?
We can eliminaten from the two equations above by taking their resultant:

Resultant,(m® — ¢, (m+r1)° — ¢)
=1+ (3c—3c)r® + (3c? + 21cc + 3(c))r3 + (c — ¢)® = 0 (modN).

This is a univariate polynomial in of degree 9 (mod\). If its solutionr satisfies
Ir| < N9, we can apply the present work to recoveWe can then apply Franklin and
Reiter’s result to recoven, and strip off the padding to géd.

As before, this works just as well if the padding goes in the high-order bits, or in the
middle; just divide each plaintext by the appropriate power of 2 to move the random bits
to the low-order bits.

The warning is clear: If the message is subject to random padding of length less than
one-ninth the length dfl, and then encrypted with an exponent of 3, multiple encryptions
of the same message will reveal the message.

Notice that for a 1024-bit RSA key, this attack tolerates 100 bits of padding fairly
easily.

Some possible steps to avoid this attack.

(1) Randomize the message in other ways; for example, by the methods of Bellare
and Rogaway [1]. This spreads the randomization throughout the message in a nonlinear
manner, and completely blocks the present attack.
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(2) Spread the random padding into several blocks (not one contiguous block). Then
the present attack needs to be modified. The padding could be two small blankis
s, positioned so that the encryptionds= (2'r + 2m + s)3 (modN). Two encryptions
of the same message would yield a resultant which is a single equation in two small
integer variables ands. The generalized attack of Section 12 might work, provided that
Ir| and|s| are subject to bound® and Swith RS < N¥/°. The computation is more
complicated and results are not guaranteed.

(3) Spread the padding throughout the message: two bits out of each eight-bit byte,
for example. This seems to be a much more effective defense against the present attack.

(4) Increase the amount of padding. This decreases efficiency; also if the padding is
less than one-sixth the length bff, an alternate solution shown in Appendix 1 might
still recover the message if multiple encryptions have been done.

(5) Make the “random” padding depend on the message deterministically. For example,
we could subject the message to a hashing function, and append that hash value as the
random padding. Then two encryptions would be identical, because the random padding
would be identical. A possible weakness still exists: suppose a time-stamp is included
in each message, and this time-stamp occupies the low-order bits, next to the padding.
Then two plaintexts for the same message (with different time stamps) will differ in the
time-stamp and the pad; just ketombine these two fields and proceed as before.

(6) Use larger exponents for RSA encryption. If the exponestiie attack apparently
tolerates random padding of length up y@itimes the length oK. So already foe = 7
the attack is useless: on a 1024-bit RSA key veith 7, the attack would tolerate only
21 bits of padding, and this would be better treated by exhaustion.

9. RSA Signatures

The present work does not not show any weaknesses in the RSA signature scheme
with a small validating exponent. For example, using the expoeeat3, and using
several related messagas= mg+i,i =0, 1, 2, ..., 100, the knowledge of signatures

m’3 (modN) for mg, my, . ..., mgg does not help us deduce the signaturenfigs.

A crude analogy might illustrate the situation. Knowledge of the real cube roots
10v/3, 113 12%3, 133 does not help us to compute1% since the five quantities are
linearly independent over the rationals; in fact/#4s notinQ(10Y3, 11%/3, 123, 131/3),

But given the real cubes 30113, 128, 13®, we can easily compute 14rom

10 —-4x 18 +6x 12 -4x133+148=0.

10. Bivariate Integer Case

We consider next the case of a single polynomial equation in two variables over the
integers (not modN):

px.y)= > pixyl =0

0<i,j<s8

for which we wish to find small integer solutiorig, yo). We assume thad(x, y) has
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maximum degreé in each variable separately, and tlpdgk, y) is irreducible over the
integers. In particular, its coefficients are relatively prime as a set.

The basic outline is the same as before.

We create several polynomials

aij (X, y) = X'y p(x, y)

satisfied by the desired solutigxy, Yo), and build from these a matriM representing a
lattice. There will be a sublattice, represented by a smaller mitrigorresponding to
vectors with right-hand side equal to 0. One vectarith entriesrgn = xJy5 will give

rise to a short vectas = r M in the sublattice. By lattice basis reduction techniques we
confine all such short vectors to a hyperplane, whose equation,

Z Cghrgh = 07

for our special vector, translates to a polynomial equation xyandyo:

C(Xo. Yo) = Y _ CgnXgyp = 0.

We will see thalC(x, y) is not a multiple ofp(x, y), so that sincep is irreducible, the
resultant ofC and p gives us enough information to firdo, yo).

There are some technical differences between this bivariate integer case and the earlier
univariate modular case.

In the modular case, we expressed the boMnid terms of the modulu®\ and the
degree ofp. Here, instead olN, we express bounds andY in terms of the coefficients
of p. Define a polynomiaP(x, y) = p(x X, yY), so thatf; = p;j X'Y). Definew =
max; | Bij | as the largest possible termfifx, y) in the region of interest. Then we will
find a solution(x, Yo) bounded in absolute values I6¥, Y) (if one exists) provided
that

XY < WiZ/E=e,

The matricedvl; andM are rectangular rather than square, so that we are dealing with
ak-dimensional lattice iZ" with k < n. The lattice basis reduction routines handle this
easily enough, but the quantity analogous ta Mgtis harder to analyze in this case.

A minor difference is that we use polynomiaig (X, y) = X'yl p(x, y) rather than
Gijk (X, y) = X'yl p(x, y)¥ to build our matrixM. It turns out that using powers qgf
would not help us, because we no longer gain the advantage that came from introducing
moduli N/ instead ofN.

We begin by selecting an integler> 2/(3e).

For all pairs of integersi, j) with0 <i < kand 0< j < k, form the polynomial
gij (X, y) = X'y p(x, y). Obviouslyg; (Xo, Yo) = 0.

Form a matrixM; with (k + 8)2 rows, indexed by (g, h) = (k + §)g + h with
0 < g h < k+8. M has(k + 8)? + k? columns, the left-hand columns indexed
by y (g, h) and the right-hand columns indexed B, j) = (k + 8)® + ki + j with
0 <1, j < k. The left-hand block is a diagonal matrix whas€g, h), y (g, h)) entry is
given byX—-9Y~". The(y (g, h), B(, j)) entry of the right-hand block is the coefficient
of x9y" in the polynomialy; (X, y).
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Perform elementary row operations bh to produce a matri®, whose right-hand
block has the&? x k? identity matrix on the bottom and th&ks + §2) x k? zero matrix
on the top. We can do this because the greatest common divisor of the coefficipnts of
is 1 (p being irreducible). The lattice formed by these t@gS + §2) rows of M, is the
sublattice of the original lattice obtained by setting to O all the right-hand columns.
Now do lattice basis reduction on the tdgs2- 52 rows of My; let the resulting RS + 62
rows form a new matrivs.
Consider thek + §)2-long row vector whosey (g, h) entry isxJy3. The row vector
sof length(k + 8)2 + k2 given bys = r M; satisfies

_ (% I v\"
- (2
|%/(g»h)| = la

Sgi.j) = Gij (Xo, Yo) =0,
s < k+3.

Because its right-hand side is9is one of the vectors in the row lattice spanned by
Ms. We will show that it is a “relatively short” vector in the lattice. To do this, we need
to estimate the sizes of the other vectord/in

To that end, letM,4 be the matrix obtained frorivl; by multiplying they (g, h) row
by X9Y" and multiplying thes(, j) column byX—'Y~=i. SoM, = A;M1A, where
A1 andA, are diagonal matrices. The left-hand block\df is the (k 4 §)2 x (K + §)?
identity matrix. Each column in the right-hand block represents the coefficients of the
polynomialx'yl p(x X, yY) = x'yl p(x, y): If g =i +aandh = j + b, then

(M1)yg.h.8G.j) = Pabs

(Ma), g pi. ) = PabXOY"XTY ™) = papX3YP = Py,

The right-hand columns are all shifted versions of one fixed column veatepresenting
the coefficients of the polynomigd(x, y), namely

b ~
Uy@ab) = pabxaY = Pab.

The largest element of each has absolute vefudhese columns are selected columns
of a Toeplitz matrix.

A lemma, whose proof is given in Appendix 2, says that these columns are nearly
orthogonal.

Lemma 3. Thereis a B x k? submatrix of M with determinant at least

sz 275k28272k2

(in absolute valug If the largest coefficient o is one offigo, Pos, Pso, OF Pss, then the
bound is W.

The lemma finds &2 x k? matrix of the right-hand block df1, with large determinant.
Select X5 + 62 columns of the left-hand block d¥l, (the identity matrix) to extend
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this to an(k + 8)? x (k + 8)? submatrix ofM, with the same determinant. L&t be
the (k + 8)%2 + k?) x (k + 8)? permutation matrix selecting the approprigker §)? =
(2k8 + 82) + (k?) columns. So we have

|det A1 M ALT)| > WK 2-6K%8* -2

Now A,T = T Az whereAgs is a diagonal matrix differing froni, by the deletion
of K 1's on the diagonal, so that

det( AL M T Ag)| > WK 2 0K~
We compute the determinants &f:

det(A;) = l_[ X9yh = ()(Y)(k+5)2(k+5—1)/2’
det(Az) det(A3) = l_[ X—iy-i = (XY)—kZ(k—l)/z'

Remark Much cancellation goes on between(@et) and detA»): all the factorsx' Y
with0 < i < kand 0< j < k are cancelled, leaving only those facto¢&Y" with
(g,h) € {0,...,k+8 —1}2— {0, ...,k — 1})% Thus the shape of tHeoundaryof the
region of applicablgg, h) is important, and must be considered when designing the
algorithm.

Multiplying the two determinants, we get

det(Al) de(Az) — (XY)[(k+5)2(k+571)7k2(k71)]/2
— (XY)[3k25+k(352—25)+<53—52)]/2
and since
k29— Bk252—2Kk?
detMT)| > ————,
1AeMIDI = Geay) detay)
we obtain

|detM;T)| > Wk22—6k262—2k2(XY)—[3k26+k(362—25)+(53—62)]/2'
Let this lower bound be calleE. M3T is obtained fromM;T by elementary row
operations, so
|det(M3T)| = |detM1T)| > E.

The rowsT in M3T obtained fronsby deleting columns has Euclidean length bounded
by that ofs:

IsT| < |8 < k+34.

MsT has a block lower triangular structure, with%x k? identity matrix in the lower
right. LetM denote the upper-left block ®fl3T, with dimension &S + 62 on each side.
We have

|detM)| = |detM3T)| > E.
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We wish to apply Lemma 1 tM andsT, with n = 2k$ + §2. If we can guarantee
k468 < EYn2-(-D/4,
then from

IST| < k+36,
E < detM),

we will have
|ST| < det(M)Y/"2- (=174

as required by Lemma 1.
This requirement translates to

(k+ 8" < E x 27 "=D/4,
Recalling

2ks + 82,
— Wk2276k25272k2(XY)7[3k28+k(352725)+(53752)] /2

m =
Il

and omitting some tedious computations, we translate the requirement to

X Y < W2/35—8’2—(145/3)—0(5)

where

The rest of the construction proceeds as before. AssKiviesatisfies this bound.
Then from Lemma 1, applying lattice basis reductiorvtowill produce a hyperplane
containing all lattice vectors as short g6. The equation of this hyperplane, and the
construction of, yield the polynomial equation

C(Xo, Yo) = chhxgyg =0.

Further,C(x, y) is not a multiple ofp(x, y), since all the multiples op(x, y) of suf-
ficiently low degree were already used to define the sublaficeSince p(x, y) is
irreducible,

Q(x) = Resultanf(C(x, y), p(x, ¥))

gives a nontrivial integer polynomial. We can easily compute its roots, which include
Xo. Finally, givenxo, we can easily find thosg solving p(Xp, y) = O.
Tying this all together, we have:

Theorem 2. Let p(x, y) be an irreducible polynomial in two variables ovar, of
maximum degreé in each variable separately_et X, Y be bounds on the desired
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solutions ¥, Yo. Definep(x, y) = p(xX, yY) and let W be the absolute value of the
largest coefficient op. If

XY < W{Z/(38)}7£27145/3

then in time polynomial irflogW, §, 1/¢), we can find all integer pairgxo, Yo) with
P(Xo, Yo) = 0, [Xo| < X, and|yo| <Y.

Proof. The lattice basis reduction step operated on a matrix of dider2s?, where
k = O(1/¢). By [9] this step is done in polynomial time. The rest of the algorithm is
also polynomial time. O

Corollary 2.  With the hypothesis of Theore2nexcept that
XY < WZ/(35),

then in time polynomial inlogW, 2°), we can find all integer pairgxo, Yo) with
P(Xo, Yo) = 0, [%o] = X, and|yo| < Y.

Proof. Sete = 1/logW, and do exhaustive search on the high-or@¢8) unknown
bits of x. The running time is still polynomial, but of higher degre€liog W). O

Remark Theorem 2 was developed for the case whehad degreé independently in
eachvariable. If the set of indices of nonzero coefficients(tifiat is, its Newton polygon)

has a different shape, it is useful to select the indices of the polynomijgis y) and
monomialsx9y" in a different manner. The shape of the region of allowable monomials
(g, h), and in particular its boundary, interacts with the shape of the Newton polygon of
p in determining the efficiency of the algorithm.

Theorem 3. With the hypothesis of Theorenexcept that p has total degréethe
appropriate bound is

XY < WYim13/2,
Proof (Sketch). We use polynomialg;j = X'yl p(x, y) wherei + j < k (rather than

i <kandj < kindependently as before). The set of indi¢ieg ) now forms a triangle
rather than a square. The relevant determinant is now

Wk(k+l)/2(xY)7{(k+5+1)(k+8)(k+871)7(k+l)k(k71)}/6273(282)((1/2)k2)7(k5)2/470(k2)
— Wk(k+1)/2(xY)—{3k26+3k62+53—6}/62—352k2—(k6)2/4—0(k2)
Solve forXY to get
XY < W(l/S)—82—138/2

wheree = O(1/k). As in Corollary 2, set = 1/logW and exhaust on high-order bits
while maintaining polynomial time. O
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Remark This shows how the shape of the region of indiggsh) of monomials, and
particularly the boundary of that shape, affects the outcome. Theorem 3 is better than
Theorem 2 ifp is a general polynomial of total degréebut Theorem 2 is better ib
has degreé in each variable independently.

As another example, ip(x, y) has degre& in x andH in y (independently), then
for any positive parameter we can tolerate ranges andY satisfying

W >> XG+(0¢H/2)YH+(G/(211))

by allowing 0<i < ka and 0< j <Kk.

11. Factoring with High Bits Known

We can apply the present techniques to the problem of factoring an integer when we
know the high-order bits of one of the factors.
Suppose we knowN = P Q and we know the high-orde} log, N bits of P. By

division we know the high—ordei log, N bits of Q as well.
We write

P = Po+Xo,
Q = Qo+ Yo,

wherePy and Qg are known, whileP, Q, X, andyp are unknown. Define the bounds
andY on the unknownsg andyg by

IXo| < PoN~Y4 =X,
IYol < QoN~Y4 =Y.

Define the polynomial
P(X,y) = (Po+x)(Qo+Yy) —N
= (PoQo — N) + Qox + Poy + Xy,

wherex andy are dummy variables. One integer solutiompdk, y) = 0 is given by the
desired(Xg, Yo), hamely,

P(Xo, Yo) = PQ—N=0.
We haves = 1, and the quantityV is given by
W = max(|p;j|X'Y))
ij
= max(|PoQo — N|, QoX, PoY, XY)
— N3/4.
An easy computation gives
XY = PyQoN~Y2 ~ NY/?
— W2/(35)’

so that the hypothesis of Corollary 2 is satisfied. Thus we have:
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Theorem 4. In polynomial time we can find the factorization of=NP Q if we know
the high-order(5 log, N) bits of P.

By comparison, Rivest and Shamir [13] need at@uog2 N) bits of P, and a recent
paper by the present author [4] used a lattice-based method (less efficient than that of
this paper) to factoN using(% log, N) bits of P.

Theorem 4 has applications to some RSA-based cryptographic schemes. For example,
Vanstone and Zuccherato [15] design an ID-based RSA encryption scheme, where a
person’s identity is encoded in his RSA moduNis= P Q. In one variant of the scheme
(Section 3.1 of [15]), a 1024-biN is created by specifying (in a public manner) the
high-order 512- 248 = 264 bits of P and hence of). By the present techniques, this
is enough information to allow the attacker to fachor

If we know the low-order bits oP instead of the high-order bits, we get the same
results, but a twist in the proof is worth noticing.

Theorem 5. In polynomial time we can find the factorization of NP Q if we know
the low-order(; log, N) bits of P.

Letk = |} log, N], so that

2K~ N4,
Write
P = 2+ Py,
Q = 2y + Qo

wherePy and Qg are known, whileP, Q, Xg, andyp are unknown. Iterate over possible
values of

€ = Tlogy(P)1,

and define boundX andY by

IXo| < X = 207K~ PN~Y4,

Yol <Y = N2k~ QNV4,
Define the polynomial

P, y) = [+ Po)(2y + Qo) — N]/2¢

= 2y + QoX + Poy + [(PoQo — N)/2,

so that(xo, Yo) is a root of the equation

PQ—-N
2k

The term(PyQo — N)/2 is an integer by construction. We needed to defite, y)
as above, rather than the apparent choice

P'(X, Y) = (2% + Po)(2y + Qo) — N,

P(Xo, Yo) = =0.
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because the coefficients pfall have the common factok 2o thatp’ would be reducible
overZ, namely,p’ = 2¢ x p, violating the hypothesis of Theorem 2. In particular, the
construction in Section 10 would fail when we tried to create matixdrom M.

The rest of the proof continues as before, WtN = O(N/?) andW = ©(N¥4).
(The fact thatX Y differs fromW?/3 by a constant multiple merely means that we have
to do some trial and error.)

12. Extension to More Variables

Suppose we have a polynomipltX, vy, z) in three variables over the integers. (The
following remarks, suitably adapted, will also apply to a polynonpé, y) in two
variables moduldN.)

We could try to mimic the present approach. If the range¥, Z are small enough,
we will end up with a polynomial relatio€(x, y, z), not a multiple ofp, which is
satisfied by(Xo, Yo, Zo). Then the resultant gb(x, y, z) andC(x, vy, z) with respect ta
will give a polynomialr (x, y) in two variables. We can then try to solvéx, y) = 0 by
the current methods. But the degree ¢f, y) will be quite high, so that the rangeé
andY which can be tolerated will be quite small.

A much more promising approach, which works often but not always, is as follows. If
the ranges, Y, Z are small enough, we are guaranteed to find a space of codimension 1
(a hyperplane) containing all the short vectors of the lafiiceBut we might easily find
a space of larger codimension. (There is a good possibility that for many basis vectors
b; the orthogonal componeits’| exceeds our known upper bound|sf) and each one
increases the codimension of the space containing all the short vectors.) We develop
several polynomial equatiorG (X, y, z) satisfyingC; (Xo, Yo, Zo) = 0; the number of
such equations is equal to the codimension of this space. We can then take resultants and
g.c.d.s of the variou€; (x, y, z) andp(X, Yy, z) and hope to produce a single polynomial
equation in a single variablgx) = 0, which we solve over the reals.

Thisis only a heuristic approach, which might or might not work for a given polynomial
p. One potential obstacle is that we might not obtain enough equaiigrsy, z) = 0.

A related concern is that the equations we obtain might be redundant: for example, we
might haveC; (X, y, z) = XxCy(X, Y, ). We see no way to guarantee that we will gather
enough independent equations to enable a solution.

Indeed, certain counterexamples show that this procedure must fail for some polynomi-
als. Inthecase(x, y) = 0(modN), we adaptan example of Manders and Adleman [10].
Letn = 102 . . . gm be the product of the firsh odd primes. Then log ~ mlogm. Also
the modular equatior? = 1 (modn) has 2" solutions. LetN = n" for a sufficiently
large integeh. Look for solutions to

p(x,y) = x> —yn—1=0(modN),
IX| < n=X,
lyl < n=Y.

There are at least™?! pairs (Xo, yo) satisfying these equations. We cannot hope to
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produce them all in time polynomial in Idg§. And yet we can arrange that any criterion
XY < N°

such as the hypothesis of Theorem 1 can be satisfied by proper chdice 2f¢.
If faced with this problem, our algorithm will probably return the equation

pX,y) =x*—yn—-1=0

(moving it from a modular equation to an integer equation), but then be unable to proceed
further (if we maintainX = n) because the appropriate bourXl¥ < W€ or X < n°®
are not satisfied. If we alloiX = n'/2 it may still be able to proceed, but we will not
have exponentially many solutions in this case.

However, we need not overemphasize the negative. The extended algorithm will often
work, even in cases when it is not guaranteed.

An important application of the extended algorithm was alluded to in Section 7.
Suppose a plaintext messaige consists of two unknown blocks of bits and a known
piece, is subjected to RSA encryption with exponent 3. The message may be:

m = “TODAY'S KEY IS swordfish AND THE PASSWORD IS joe.”

We can view this as two unknowns:= “swordfish” andy = “joe,” and one known
piece,

B =“TODAY’'S KEY IS —— AND THE PASSWORD IS —

We presume that we know the lengthsxoéndy, or can iterate over their possible
values.
The plaintext message is

m=B+2x+y,
the ciphertext is
c = m° (modN),
and the polynomial which we wish to solve is
p(X, y) = € — (B + 2x + y)® = 0(modN),

with a solution(xg, Yo) suitably bounded, and with k, B, N known andx, y unknown.

The polynomialp(x, y) has total degree 3. We select a bouh@® the degree of the
monomials in our algorithm, so that we have monomidlg" with g + h < 3t. We
introduce polynomial equations

Gijk (X, ¥) = X'y) p(x, y)¥ = 0(modN®),

with j <2,k > 1, andi + j + 3k < 3t.
The determinant of the related matrix has powerdldbtaling

4 7 3t—2\  3ti(t-1
o) tlg)t (T )=
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The powers of 1X come to

()@@ (3)-(37) -5

as do the powers of/Y. So our requirement becomes

(XY)27I371 < N9t379[2
(XY) < N3¢,

with ¢ ~ 1/(3t).

If this requirement is met we will get at least one equafiam, y) = 0.

We tried an experiment on a scaled-down version of this. Rather than a cubic equation,
we used a quadratic equation of the form

(Bo + 2x + y)? = c (modN).

We had variablesy, yo bounded by 2, and a moduludN ~ 2%, We used monomials

of total degree bounded by 5, so that there were 21 monomials and ten polynomial
equations. The resulting requiremefX,Y)3> < N13 was met handily: $10 < 21950,

The matrix was represented as integers, and was scaled in such a way that the desired
solutions had Euclidean length about 30 We ran basis reduction on the resulting

21 x 21 matrix. The results were much better than expected: Forieach 3, ..., 21

we had|b| ~ 10** > |s|, while |bs| = |s| ~ 10%, so that instead of confining the
short vectors to a hyperplane the algorithm actually confined them to a one-dimensional
subspace—we could just read off the anssvdihe computation time was disappointing
though: the lattice basis reduction required 45 hours. Clearly much experimentation
needs to be done yet with more optimized lattice basis reduction algorithms.

13. Conclusion and Open Problem

We have shown algorithms for finding solutions to univariate modular polynomial equa-
tions p(x) = 0(modN), and bivariate integer polynomial equatiop&, y) = 0, as

long as the solutions are suitably bounded with respebt tw to the coefficients op,
respectively.

We used the coefficients @fto build a lattice containing a short vector based on the
unknown solution(xg, Yo); this need not be the shortest vector. We then used a novel
application of lattice basis reduction methods: rather than search for the shortest vector,
we confine all relatively short vectors to a hyperplane. The equation of this hyperplane,
when applied to our special short vector, gives a polynomial over the integers satisfied
by (Xo, Vo), from which the solution follows.

We showed several applications to RSA with small encryption exponent, and to integer
factorization with partial knowledge. We believe that other applications will arise. For
example, Patarin [11] pointed out that the method of padding a message by repetition:
(“Attack at dawn. .. Attack at dawn ..”) amounts to multiplying a short message (
= “Attack at dawn. ..”) by 2 + 1. If the message is short enough, and RSA with small
exponent is used, the present techniques can derive the message again.
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Joye and Quisquater [8] give many other cryptographic applications of the techniques
presented here.

The present paper shows several potential exposures concerning RSA with small
exponent. Specific implementations of RSA should be examined with regard to these
exposures.

Conventional wisdom states that RSA should not be applied directly to messages,
but rather that the messages should be randomized in some way prior to encryption, for
example, by the methods of Bellare and Rogaway [1]. The results of the present paper
give particular reinforcement to this wisdom in the case of small encrypting exponent.

The paper does not show any weaknesses in the RSA signature scheme with a small
validating exponent.
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Appendix 1. Another Solution for Multiple Encryptions

This material is related to the application in Section 8, but only tangentially to the main
paper.

In Section 8 we had two encryptions of the same message with different random pads.
If instead of two encryptions we have several, kayl, then we can mount other attacks
which might tolerate larger fields of random padding. We sketch here an attack which
(heuristically) seems to tolerate random padding up tiones the length oN where

k-2 1
< — —.
““6k-3"6
Let the ciphertexts be
Ao = m°(modN),
A = (m+r1p)® (ModN),
G =A — Ay = 3m?r +3mr? +r2 (modN),

so that we knowAg, A;, ¢, andN, but notm orr;. We assume the padding is small:
Iri| < N¢.

Forindicesi < j < pdefined;; = rirj(rj —rj) andejp = —rirjrp(ri —rp; —
rp)(rp —ri). TheC(k, 2) = (;) linearly independent quantitiel each satisfyd;;| <
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N3, and theC (k, 3) linearly independent quantitieg, each satisfye;j,| < N®. One
can check the following identity:

diij + diji - dipCj = Gjp (modN).

This suggests lattice basis reduction on the row basis of the following mitrig.a
square upper triangular integer matrix of dimensi@rk, 2) + C(k, 3)). Its upper-left
C(k, 2) x C(k, 2) block is the identity times an integer approximatiorN# . Its lower-
left C(k, 3) x C(k, 2) block is 0. Its lower-righC (k, 3) x C(k, 3) block isN times the
identity. Its upper-righC(k, 2) x C(k, 3) block has rows indexed by pairs of indices
@, ]).i < j, and columns indexed by triples of indicésj, p),i < j < p. Column
@i, j, p) has three nonzero entrigg:at row(, j), ¢ atrow(j, p), and—c; atrow(, p).

Consider the integer row vectorwhose firstC(k, 2) entries arel;j, and whose last
C(k, 3) entries are the intege(sijp — (dij Cp + djpC — dipCj))/N. The product M = s
has left-hand elements; N3 and right-hand elements;,; all its entries are bounded
by N® . We hope that lattice basis reduction will find this row.

The determinant of1 is N3Ck2+Ck3 Thjsis larger thaiN&*)C*k2+Ck3 phecause
of our choice ofx. Sosis among the shorter elements of the lattice generated by the
rows of M.

Contrary to the rest of this paper, we actually want to indot just confine it to a
hyperplane. The difficulty in finding depends on its rank among the short elements. If
Iri| are much smaller thaN*, then we can hope thatis the shortest lattice element,
and that lattice basis reduction methods can recover it efficiently. We do not here supply
efficiency estimates or probabilities of success; we treat this as a heuristic attack.

Assuming that we can actually firsgdwe will be able to recover the valugshy taking
g.c.d. of elements af = sM~1:

g.c.df{dip, dis, ..., dik} = g.cdfrira(ry —ra), rara(fs —ra), ..., rare(rs —re)}
= r1 x g.Cdfra(ry —r2),ra(ry —ra), ..., re(ry — r)},

and hopefully the latter g.c.d. will be small enough to discover by exhaustive search.
Having foundr;, we can recovem by Franklin and Reiter’s technique.

If we have 14 encryptions of the same messdge-(13), then we can tolerate a
random padding of about 150 bits in a 1024-bit RSA message.

Appendix 2. Nearly Orthogonal Toeplitz Columns

In this Appendix we give a proof of the technical result needed in Section 10: that several
columns of the matridM, are “nearly orthogonal.” A modification of this proof would
apply to any Toeplitz matrix.

Proof of Lemma 3. LetW = |v, | = |Pabl be the largest coefficient gi. Select
indices(c, d) to maximize the quantity
8OO iy,
Select the rows
y(c+i,d+j), 0<i,j <k,
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of My to create the desired submatiik. Define an index functiom(i, ) =Kki+]j.
Then the matrix elemen¥, g n) . j) is the coefficient ofx“T9y4M in x'yJ p(x, y),
namely

My(g.hy. i, i) = Pg—i+ch—j+d-

Multiply the (g, h) row of M by 82c-®9+2d-bh and multiply they (i, j) column
by §-2¢-i-2d-bj g create a new matrikl’ with the same determinant. Its typical
elementis

~ 2(c—a) (g—i)+2(d—b)(h—]
M ) = Pyitoh_j+g82C @ DTGB

/
w(g,h), ud,
From maximality of(c, d) we find

~ —it+c—ay+(h—j+d—-b? _ | —a)2+(d—b)?
|Pg—ichj+a|897 TOTTHNTIHATDT < 5y @O THEDT,

from which

~ 2(g—i)(c—a)+2(h—j)(d—b 5 1a—(g—i)?—(h—)?
|pg—i+c,h—j+d|8 (g—i)(c—a)+2(h—j)( )f | Beal8 (@-D*=(h—p)*

Thus each diagonal entry df’ is peq, and each off-diagonal entry is bounded by
| Beq|8~@~° (=D This implies thatM’ is diagonally dominant, because the absolute
values of the off-diagonal entries in it(i, j) row sum to at most

| Beal % Z 8—(g—i)2—(h—J)2
(g.m#G, )

~ _a2_Rp2
=[Peal x Y 8P
(@,b)#(0,0)

= | Peal [—1+ 3 86‘“’2}

(a,by
2
= |Pedl x | =1+ <Z8_a2) < %|pcd|
a

Each eigenvalue df1’ is within %| Ped| Of Peg, @and so exceedﬁ Peq| in absolute value.
By choice of(c, d) we know

—a)2+(d-b)?| x
8(C a)“+( )|pcd|

\%

80| f)abl = Wa
|Peal = 872°W,
det(M/) > (18—252W)k2 _ Wk22—6k282—2k2
— \2 = .

For the second claim of the lemma: If the largest coefficienft &f eitherpgg or Pss,
set(c, d) = (a, b) and notice thaM is a triangular matrix whose diagonal entries have
absolute valuaw. If the largest coefficient is eithdlips or Pso, redefine the indexing
function asu(, j) = ki + (k — 1 — j) so that agairM is a triangular matrix whose
diagonal entries have absolute valle Similar results hold ifa, b) is any corner of the
Newton polygon associated wifh O
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