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In this lecture, we present optimization algorithms based on gradient descent and analyze their performance
on convex functions. References [1, 2].

1 Optimization in machine learning

• In supervised machine learning, we are given n i.i.d. samples (xi, yi)
n
i=1 of a couple of random variables

(X,Y ) on X× Y and the goal is to find a predictor f : X→ Y with a small risk

R(f) := E[`(y, f(x))]

where ` : Y× Y→ R is a loss function.

• In the empirical risk minimization approach, we choose the predictor by minimizing the empirical
risk over a parameterized set of predictors, potentially with regularization. For a parameterization
{fw}w∈Rp and a regularizer Ω : Rp → R (e.g. Ω(w) = ‖w‖22 or Ω(w) = ‖w‖1), this requires to minimize

F (w) :=
1

n

n∑
i=1

`(yi, fw(xi)) + Ω(w).

In optimization, the function F : Rp → R is called the objective.

• In general, the minimizer has no closed form. Even when it has one (e.g. linear predictor and square
loss), it could be expensive to compute for large problems. We thus resort to iterative algorithms.

• Solving optimization problems to high accuracy is computationally expensive. Which accuracy is
satisfying in machine learning? If the algorithm returns ŵ and w∗ ∈ arg minw R(fw), we have the
risk decomposition

R(fŵ)− inf
w∈Rp

R(fw) =
{
R(fŵ)− R̂(fŵ)

}
︸ ︷︷ ︸
≤ Estimation error

+
{
R̂(fŵ)− R̂(fw∗)

}
︸ ︷︷ ︸
≤ Optimization error

+
{
R(fw∗)− R̂(fw∗)

}
︸ ︷︷ ︸
≤ Estimation error

.

It is thus sufficient to reach an optimization accuracy of the order of the estimation error (usually of
the order O(1/

√
n) or O(1/n), see Lectures 2 and 3).
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2 First order optimization algorithms

Suppose we want to solve, for a function F : Rp → R, the optimization problem

min
w∈Rp

F (w).

In today’s class, we analyze the following two algorithms, which are often the methods of choice in machine
learning.

Algorithm 1 (Gradient descent (GD)) Choose step-size sequence (ηt)t≥0, pick w0 ∈ Rp and for t ≥ 0,
let

wt+1 = wt − ηt∇F (wt).

At each iteration, this algorithm requires to compute a “full” gradient ∇F (wt) which could be costly. An
alternative is to instead only compute unbiased stochastic estimations of the gradient gt(wt), i.e. such that
E[gt(wt)|wt] = ∇F (wt), which could be much faster to compute. This leads to the following algorithm.

Algorithm 2 (Stochastic gradient descent (SDG)) Choose step-size sequence (ηt)t≥0, pick w0 ∈ Rp
and for t ≥ 0, let

wt+1 = wt − ηtgt(wt).

SGD in machine learning. There are two ways to use SGD for supervised machine learning:

• (empirical risk minimization) If F (w) = 1
n

∑n
i=1 `(yi, fw(xi)) then at iteration t we can choose uni-

formly at random it ∈ {1, . . . , n} and define gt(w) = ∇w[`(yit , fw(xit))]. There exists “mini-batch”
variants where at each iteration, the gradient is averaged over a random subset of the indices.

• (population risk minimization) If F (w) = E[`(Y, fw(X))] then at iteration t we can take a fresh
sample (xt, yt) and define gt(w) = ∇w[`(yt, fw(xt))]. Here, we directly minimize the (generalization)
risk. The counterpart is that if we only have n samples, then we can only run n SGD iterations.

3 Analysis of GD for Ordinary Least Squares

We start with a case where the analysis is explicit: ordinary least squares. Let X ∈ Rn×d be the design
matrix, assumed injective, and y ∈ Rn the observations. The least squares estimator w∗ minimizes

1

2n
‖Xw − y‖22.

Using results from Lecture 2, the excess risk is, using Σ = 1
nX
>X:

F (w) =
1

2
(w − w∗)Σ(w − w∗).
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Decrease of objective. Then gradient descent iterates with fixed step-size ηt = η are:

wt+1 = wt − η∇F (wt) = wt − ηΣ(wk − w∗).

We diagonalize Σ = PDP> with D = diag(λ1, . . . , λd), we define vk = P>(wk − w∗) which evolves as

vk+1 = (Id− ηD)vk ⇒ vk[j] = (1− ηλj)tv0[j].

In terms of excess risk, we have

F (wk) = v>k Dvk =
d∑
j=1

λj |1− ηλj |2tv0[j]2 ≤
(

max
j
|1− ηλj |

)2t
F (w0).

Choice of step-size. If we want the fastest asymptotic rate, we need to choose η that minimizes the
contraction ratio. Writing α = min{λj} and β = max{λj} and the condition number κ = β/α, we obtain

min
η

max
j
|1− ηλj | = min

η
max{ηβ − 1, 1− ηα} =

β − α
β + α

=
κ− 1

κ+ 1

with the minimizer η = 2/(β + α). In practice, we do not know α, but we can upper bound β =
sup‖u‖2≤1 u

>Σu by β̃ := 1
n

∑n
i=1 ‖xi‖22, and we still get an exponential convergence in O(|1− α/β̃|2t).

To go further You can play with the interactive graphs in this article https://distill.pub/2017/

momentum/ (paragraph “First Steps: Gradient Descent”) [3]. For an introductory analysis of SGD on
quadratic functions, see https://francisbach.com/the-sum-of-a-geometric-series-is-all-you-need/.

4 Convex functions

We now wish to analyze GD (and later SGD) in a broader setting. We will always assume convexity,
although these algorithms are also used (and can sometimes also be analyzed) when this assumption does
not hold. In what follows, except for the examples, f denotes the objective and x or y its variables (they
do not stand anymore for a predictor or training variables).

Definition 1 (Convex function) A differentiable function f : Rp → R is said convex iff

f(y) ≥ f(x) +∇f(x)>(y − x), ∀x, y ∈ Rp. (1)

If f is twice-differentiable, this is equivalent to requiring ∇2f(x) � 0, ∀x ∈ Rp (here � denotes the
semidefinite partial ordering – also called Loewner order – characterized by A � B ⇔ A − B is positive
semidefinite). A more general definition of convexity is that ∀x, y ∈ Rp and α ∈ [0, 1],

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y).

Exercise: show that if f is differentiable, this is equivalent to our definition. The following inequality
appears frequently in the proofs involving convexity.

3



Proposition 1 (Jensen’s inequality) If f : Rp → R is convex and µ is a probability measure on Rp,
then

f
(∫

xdµ(x)
)
≤
∫
f(x)dµ(x).

In words: “the image of the average is smaller than the average of the images”.

Proof Let x∗ =
∫
xdµ(x). By the definition of convexity we have f(x) ≥ f(x∗) + ∇f(x∗)>(x − x∗)

∀x ∈ Rp. Jensen’s inequality follows by integrating, and remarking that
∫
∇f(x∗)>(x− x∗)dµ(x) = 0.

The class of convex functions satisfies the following stability properties (exercise):

• If (fj)j∈[m] are convex and (αj)j∈[m] are nonnegative, then
∑m

j=1 αjfj is convex.

• If f : Rp → R is convex and A : Rp′ → Rp is linear then f ◦A : Rp′ → R is convex.

Example. Problems of the form Eq. (1) are convex if the loss ` is convex in the second variable, fw(x)
is linear in w, and Ω is convex.

It is also worth emphasizing on the following property (immediate from the definition).

Proposition 2 Assume that f : Rp → R is convex and differentiable. Then x∗ ∈ Rp is a global minimizer
of f iff

∇f(x∗) = 0.

5 Analysis of GD for strongly convex and smooth functions

Definition 2 (Strong convexity) A differentiable function f is said α-strongly convex, with α > 0, iff

f(y) ≥ f(x) +∇f(x)>(y − x) +
α

2
‖x− y‖22, ∀x, y ∈ Rp

For twice differentiable functions, this is equivalent to ∇2f � αId (see [1]). This property implies that f
admits a unique minimizer x∗, which is characterized by ∇f(x∗) = 0. Moreover, this guarantees that the
gradient is large when a point is far from optimality:

Lemma 1 If f is differentiable and α-strongly convex with minimizer x∗, then it holds

‖∇f(x)‖22 ≥ 2α(f(x)− f(x∗)), ∀x ∈ Rp.

Proof The right-hand side in Definition 2 is strongly convex in y and minimized with ỹ = x − 1
α∇f(x).

Plugging this value into the bound and taking y = x∗ in the left-hand side we get

f(x∗) ≥ f(x)− 1

α
‖∇f(x)‖22 +

1

2α
‖∇f(x)‖22 = f(x)− 1

2α
‖∇f(x)‖22.

The conclusion follows by rearranging.
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Definition 3 (Smoothness) A differentiable function f is said β-smooth iff

|f(y)− f(x)−∇f(x)>(y − x)| ≤ β

2
‖x− y‖2, ∀x, y ∈ Rp

This is equivalent to f having a β-Lipschitz gradient, i.e. ‖∇f(x)−∇f(y)‖22 ≤ ‖x− y‖22, ∀x, y ∈ Rp. For
twice differentiable functions, this is equivalent to −βId � ∇2f � βId (see [1]).

In the next theorem, we show that gradient descent converges exponentially1 for such problems.

Theorem 1 Assume that f is β-smooth and α-strongly convex. Choosing ηt = 1/β, the iterates (xt)t≥0 of
GD on f satisfy

f(xt)− f(x∗) ≤ exp(−tβ/α)(f(x0)− f(x∗)).

Proof By smoothness, we have the following descent property, with ηt = 1/β,

f(xt+1) = f(xt −∇f(xt)/β) ≤ f(xt)− ‖∇f(xt)‖22/β +
1

2β
‖∇f(xt)‖22.

Rearranging, we get

f(xt+1)− f(x∗) ≤ (f(xt)− f(x∗))− 1

2β
‖∇f(xt)‖22.

Using Lemma 1, it follows

f(xt+1)− f(x∗) ≤ (1− α/β)(f(xt)− f(x∗)) ≤ exp(−α/β)(f(xt)− f(x∗)).

We conclude by a recursion.

• We necessarily have α ≤ β. The ratio κ := β/α is called the condition number.

• If we only assume that the function is smooth and convex (not strongly convex), then GD with
constant step-size η = 1/β also converges when a minimizer exists, but at a slower rate in O(1/t).

• Choosing the step-size only requires an upper bound β on the smoothness constant (in case it is
over-estimated, the convergence rate only degrades slightly).

Example: regularized logistic regression Consider a classification task with y ∈ {−1,+1}, the
logistic loss `(y, z) = log(1 + e−yz), a linear model fw(x) = x>w and regularization λ‖w‖22. The objective
of empirical risk minimization is

F (w) =
1

n

n∑
i=1

log(1 + e−yix
>
i w) + λ‖w‖22.

This function is convex and differentiable. It is at least 2λ-strongly convex thanks to the regularization
term. Its gradient is

∇F (w) =
1

n

n∑
i=1

−yixi
1 + eyix

>
i w

+ 2λw

1It is also sometimes called geometric convergence, or linear convergence (because it is linear in a “semilogy” plot).
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and its Hessian ∇2F (w) = (∂ijF (w))di,j=1 is

∇2F (w) =
1

n
xix
>
i

eyix
>
i w

(1 + eyix
>
i w)2

+ 2λ.

Thus F is β-smooth with β = (1/n)
∑n

i=1 ‖xi‖22 + 2λ. The condition number, which determines the
convergence speed, is thus κ = β/α = 1 + (1/(2λn))

∑n
i=1 ‖xi‖22. The regularization, originally introduced

to reduce the estimation error, turns out to also help optimization.

6 Analysis of gradient methods on non-smooth problems

We now relax our assumptions and only require Lipschitz continuity, in addition to convexity.

Definition 4 (Lipschitz function) A function f : Rp → R is said L-Lipschitz continuous iff

|f(y)− f(x)| ≤ L‖y − x‖22, ∀x, y ∈ Rp.

Exercise: show that if f is differentiable, this is equivalent to the assumption ‖∇f(x)‖2 ≤ L, ∀x ∈ Rp.
Without additional assumptions, this setting is usually referred to as non-smooth optimization.

6.1 Convergence rate of GD

Theorem 2 Assume that f is convex, L-Lipschitz and admits a minimizer x∗ that satisfies ‖x∗−x0‖2 ≤ R.
By chosing ηt = R

L
√
t+1

then the iterates (xt)t≥0 of GD on f satisfy

min
0≤s≤t−1

f(xs)− f(x∗) ≤ RL 2 + log(t)

4(
√
t+ 1− 1)

.

Proof We look at how xt approaches x∗. It holds

‖xt+1 − x∗‖2 = ‖xt − ηt∇f(xt)− x∗‖2 = ‖xt − x∗‖2 − 2ηt∇f(xt)
>(xt − x∗) + η2t ‖∇f(xt)‖2.

Combining this with the convexity inequality f(xt)− f(x∗) ≤ ∇f(xt)
>(xt − x∗), it follows

ηt(f(xt)− f(x∗)) ≤ 1

2

(
‖xt − x∗‖2 − ‖xt+1 − x∗‖2

)
+

1

2
η2t ‖∇f(xt)‖2. (2)

It is sufficient to sum these inequalities and to use convexity to get, for any x∗ ∈ Rp,

1∑t−1
s=0 ηs

s−1∑
s=0

ηs (f(xs)− f(x∗)) ≤ ‖x0 − x
∗‖22

2
∑t−1

s=0 ηs
+ L2

∑t−1
s=0 η

2
s

2
∑t−1

s=0 ηs
.

The left-hand side is larger than min0≤s≤t−1(f(xs) − f(x∗)) (trivially) and than f(x̄t) − f(x∗) where
x̄t = (

∑t−1
s=0 ηsxs)/(

∑t−1
s=0 ηs) by Jensen’s inequality.

6



The upper bound goes to 0 if
∑t−1

s=0 ηs goes to∞ (to forget the initial condition, the “bias”) and ηt → 0 (to
decrease the “variance” term). Let us choose ηs = τ/

√
s+ 1 for some τ > 0. By using the series-integral

comparisons below, we get the bound

min
0≤s≤t−1

(f(xs)− f(x∗)) ≤ 1

4(
√
t+ 1− 1)

(
R2/τ + τL2(1 + log(t))

)
.

We choose τ = R/L (which is suggested by optimizing the previous bound when log(t) = 0) which leads
to the result.

In the proof, we used the following series-integral comparisons for decreasing functions:

t−1∑
s=0

1√
s+ 1

≥
∫ t

0

ds√
s+ 1

=
[
2
√
s+ 1

]t
0

= 2
√
t+ 1− 2

and
t−1∑
s=0

1

s+ 1
≤ 1 +

t∑
s=2

1

s
≤ 1 +

∫ t

0

ds

s
= 1 + log(t).

• The previous proof scheme is very flexible. It can be extended to:

– constrained minimization over a convex set (we then insert a projection step at each iteration);

– non-differentiable convex and Lipschitz objective functions (using sub-gradients, i.e. any vector
satisfying Eq. (1) in place of ∇f(xt));

– non-euclidean geometry (for instance multiplicative instead of additive updates);

– stochastic gradients, as seen below.

Example: logistic regression with `1-regularization. Consider the previous example but with `1
regularization, giving the objective

F (w) =
1

n

n∑
i=1

log(1 + e−yix
>
i w) + λ‖w‖1.

This function convex2. We have F (0) = log(2)/n so any minimizer w∗ (which exists by coercivity) must
satisfy ‖w∗‖1 ≤ log(2)/(nλ). Since ‖ · ‖2 ≤ ‖ · ‖1, it follows that ‖w∗‖2 ≤ log(2)/(nλ) =: R. Using our
previous computations, we also have

‖∇F (w)‖2 =
∥∥∥ 1

n

n∑
i=1

−yixi
1 + eyix

>
i w

+ λ sign(w)
∥∥∥
2
≤ 1

n

n∑
i=1

‖xi‖2 + λ
√
d =: L.

From these bounds we get explicit step-sizes and convergence guarantees.

2It is not differentiable, but the theory above could be adapted to deal with this cases
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6.2 Convergence rate of SGD

Under the same assumptions on the objective, we now study SGD. We assume the following:

• (H1) unbiased gradient: E[gt(x)|x] = ∇f(x), ∀t, x

• (H2) bounded variance: E[‖gt(x)−∇f(x)‖22|x] ≤ σ2, ∀t, x

Theorem 3 Assume that f is convex, L-Lipschitz and admits a minimizer x∗ that satisfies ‖x∗−x0‖2 ≤ R.
Assume that the stochastic gradient g satisfies (H1-2). Then, choosing ηt = (R/

√
L2 + σ2)/

√
t+ 1, the

iterates (xt)t≥0 of SGD on f satisfy

E
[
f(x̄s)− f(x∗)

]
≤ R

√
G2 + σ2

2 + log(t)

4(
√
t+ 1− 1)

.

where x̄s = (
∑t−1

s=0 ηsxs)/(
∑t−1

s=0 xs).

Proof We follow essentially the same proof as in the deterministic case.

E
[
‖xt+1 − x∗‖22

]
= E

[
‖xt − ηtgt(xt)− x∗‖22

]
= E

[
‖xt − x∗‖22

]
− 2ηtE

[
gt(xt)

>(xt − x∗)
]

+ η2tE
[
‖gt(xt)‖22

]
= E

[
‖xt − x∗‖22

]
− 2ηtE

[
∇f(xt)

>(xt − x∗)
]

+ η2t

(
E
[
‖∇f(xt)‖22

]
+ E

[
‖gt(xt)−∇f(xt)‖22

])
≤ E

[
‖xt − x∗‖22

]
− 2ηtE

[
∇f(xt)

>(xt − x∗)
]

+ η2t (G
2 + σ2).

and thus, combining with the convexity inequality f(xt)− f(x∗) ≤ ∇f(xt)
>(xt − x∗) it follows

ηtE[f(xt)− f(x∗)] ≤ 1

2

(
E‖xt − x∗‖2 − E‖xt+1 − x∗‖2

)
+

1

2
η2t (G

2 + σ2). (3)

Except for the expectations, this is the same bound that Eq. (2) so we can conclude as in the proof of
Theorem 2, mutatis mutandis. We state our bound in terms of the average iterates because the cost of
finding the best iterate could be high in comparison to that of evaluating a stochastic gradient.
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