
Machine learning - Master ICFP 2019-2020

Local averaging methods

Francis Bach

January 31, 2020

These notes are based on notes from Alessandro Rudi and Pierre Gaillard.

1 Introduction - review

• Training set: observations (xi, yi) ∈ X × Y, i = 1, . . . , n, of inputs/outputs, features/variables are
independent and identically distributed (i.i.d.) random variables with common distribution P .

• X can de diverse, Y is typically {0, 1} (binary classification) or R (regression).

• We consider a fixed (testing) distribution P on X×Y and a loss function ` : Y×Y→ R; `(y, z) is the
loss of predicting z while the true label is y. We assume that the testing distribution is the
same as the training distribution.

• Risk, or generalization performance of a prediction function f : X→ Y:

R(f) = E
[
`(Y, f(X))

]
.

Be careful with the randomness or lack thereof of f : f̂n depends on the training data and not on the
testing data, and thus R(f̂n) is random because of the dependence on the training data Dn.

The function R depends on the distribution P on (X,Y). We sometimes use the notation RP (f) to
make it explicit.

– Binary classification: Y = {0, 1} (or often Y = {−1, 1}), and `(y, z) = 1y 6=z (“0-1” loss).
Then R(f) = P(f(X) 6= Y).

– Regression: Y = R and `(y, z) = (y − z)2 (square loss). Then R(f) = E(Y − f(X))2.

• Target function = Bayes predictor f∗ ∈ arg minR(f) = E
[
`(Y, f(X))

]
.

Proposition 1 (Bayes predictor) The risk is minimized at a Bayes predictor f∗ : X→ Y satisfy-
ing for all x ∈ X, f∗(x) ∈ arg minz∈Y E(`(Y, z)|X = x). The Bayes risk R∗ is the risk of all Bayes
predictors and is equal to

R∗ = Ex∼PX
inf
z∈Y

E(`(Y, z)|X = x).

1

Note that (a) the Bayes predictor is not unique, but that all lead to the same Bayes risk, and (b)
that the Bayes risk is usually non zero (unless the dependence between x and y is deterministic).

– For binary classification: Y = {0, 1} and `(y, z) = 1y 6=z, the Bayes predictor is f∗(x) ∈
arg max

i∈{1,...,k}
P(Y = i|X = x).

– For regression: Y = R and `(y, z) = (y − z)2, the Bayes predictor is f∗(x) = E(Y |X = x).

• Goal of supervised machine learning: estimate f∗, knowing only the data Dn and the loss `.

Definition 1 (Excess risk) The excess risk of a function from f : X→ Y is equal to R(f)−R∗ (it
is always non-negative).

2 Local averaging methods

• In local averaging methods, we aim at approximating the target function directly without any form of
optimization. This will be done by approximating the conditional distribution P (y|X = x) = P (y|x).

• We then replace f∗(x) ∈ arg min
z∈Y

∫
Y

`(y, z)dP (y|x) by f̂(x) ∈ arg min
z∈Y

∫
Y

`(y, z)dP̂ (y|x).

To study the excess risk for this estimator we perform the following analysis. Denote by M(x, z) the

function M(x, z) =
∫
`(y, z)dP (y|x), that is, the true conditional loss of predicting z at x, and by M̂(x, z)

the function M̂(x, z) =
∫
`(y, z)dP̂ (y|x), its approximation, then

R(f̂)− R(f∗) = Ex
[
M(x, f̂(x))−M(x, f∗(x))

]
= Ex

[
M(x, f̂(x))− M̂(x, f̂(x))

]
+ Ex

[
M̂(x, f̂(x))−M(x, f∗(x))

]
.

Now note that

Ex
[
M(f̂(x), x)− M̂(f̂(x), x)

]
≤ Ex

[
sup
z∈Y
|M(x, z)− M̂(x, z)|

]
.

Moreover, since M̂(x, f̂(x)) = infz∈Y M̂(x, z) and M(x, f∗(x)) = infz∈Y M(x, z), then

Ex
[
M̂(x, f̂(x))−M(x, f∗(x))

]
= Ex

[
inf
z∈Y

M̂(x, z)− inf
z∈Y

M(z, z)

]
≤ Ex

[
sup
z∈Y
|M(x, z)− M̂(x, z)|

]
.

So finally

R(f̂)− R(f∗) ≤ 2Ex
[
sup
z∈Y
|M(x, z)− M̂(x, z)|

]
.

Note the similarity with the estimation error in the previous lecture. We have:

M(x, z)− M̂(x, z) =

∫
`(y, z)(dP (y|x)− dP̂ (y|x)).

So we need to show that dP (y|x)− dP̂ (y|x) is small.

We are going to see two main types of estimators of P (y|x):

2

• Nadaraya-Watson estimators

• Nearest-neighbors estimators

3 Kernel estimation

Assume here to have X ⊆ Rd, that Y ⊂ R and that P (y|x), P (y, x), P (x) are probability densities. We
characterize P (y|x) as

P (y|x) =
P (y, x)

P (x)
.

Usually estimators for the conditional probability have the following form

P̂ (y|x) =
P̂ (y, x)

P̂ (x)
,

where P̂ (y, x) and P̂ (x) are estimators for P (y, x) and P (x). Now we introduce some methods to estimate
probability densities.

3.1 Density estimation

A classical way to estimate probability density is to approximate it via convolutions of the empirical
distribution. Let q be a probability density (i.e., q(x) = 1

(2π)d/2
e−‖x‖

2/2) and qτ (x) = τ−dq(x/τ), for τ > 0,

a scaled version. We will typically choose τ tending to zero.

Let moreover x1, . . . , xn be sampled i.i.d. from P . We define the estimator as

P̂ (x) =
1

n

n∑
i=1

qτ (x− xi).

By denoting by P̂n the probability measure P̂n = 1
n

∑n
i=1 δxi (where δ is the Dirac’s delta) and by ? the

convolution operator (i.e., (f ? g)(x) =
∫
f(y)g(x− y)dy) we have

P ≈ P ? qτ ≈ P̂ ? qτ = P̂n,

which we now make precise. In particular

Lemma 1 (Bias) Assume |P (x)− P (x′)| ≤ C‖x− x′‖ for any x, x′, then

|P (x)− (P ? qτ)(x)| ≤ CTτ,

where T :=
∫
‖z‖q(z)dz (the integrals are assumed to be on Rd).

Proof Since
∫
qτ (x− x′)dx′ =

∫
qτ (x′)dx′ = 1, we have

|P (x)− (P ? qτ)(x)| = |τ−d
∫

(P (x)− P (x′))q((x− x′)/τ)dx′| ≤ τ−d
∫
|P (x)− P (x′)|q((x− x′)/τ)dx′

≤ Cτ−d+1

∫
‖x− x′‖/τ q((x− x′)/τ)dx′ = Cτ−d+1

∫
‖u/τ‖q(u/τ)du = Cτ

∫
‖z‖q(z)dz,

3

where the last step is due to the change of variable u/τ ∈ Rd 7→ z ∈ Rd.

Lemma 2 (Variance) For any v ∈ X, we have

E|(P ? qτ)(v)− 1

n

n∑
i=1

qτ (v − xi)|2 ≤ ‖P‖∞
Qτ−d

n
,

where Q = maxt q(t).

Proof Define the random variable z = qτ (v − x), with x distributed according to P . Now note that

Ez =

∫
qτ (v − x)dP (x) =

∫
qτ (v − x)P (x)dx = P ? qτ (v).

Let z1, . . . , zn defined as zi = qτ (v − xi); since x1, . . . , xn are independently and identically distributed
according to P , then z1, . . . , zn are independent copies of z and

E| 1
n

n∑
i=1

(zi − Ez)|2 =
1

n
E(z1 − Ez)2.

Now

E(z − Ez)2 ≤ Ez2 =

∫
qτ (v − x)2P (x)dx ≤ (max

t
qτ (t))‖P‖∞

∫
qτ (v − x)dx = ‖P‖∞max

t
qτ (t),

which is equal to τ−d‖P‖∞maxt q(t).

Finally, we can combine the two elements to get:

Theorem 1 Let P such that |P (x)− P (x′)| ≤ C‖x− x′‖, then for any v ∈ XE

∣∣∣∣∣P (v)− 1

n

n∑
i=1

qτ (v − xi)

∣∣∣∣∣
2
1/2

≤ CT τ +

√
‖P‖∞

Qτ−d

n
.

Proof The result is obtained combining the two lemmas above.

Thus, in order to balance the two terms, we need τ2 ∼ τ−d/n, thus τ ∼ n−1/(d+2), with an overall
convergence rate less than n−1/(d+2). We thus see the curse of dimensionality.

Note that this is only a bound for a single v, and that extra work is needed to get uniform guarantees.

The estimator for P (x, y) can be derived in the same way, using (x1, y1), . . . , (xn, yn) ∈ Rd′ with d′ = d+ p
where d is the dimension of the Euclidian space containing X and p the dimension of the space containing Y.
We now give examples where Y ⊂ R.

3.2 Nadaraya-Watson estimator

We consider the Gaussian kernel q(x) = 1
(2π)d/2

e−‖x‖
2/2, where we use the fact it is non-negative pointwise

(as opposed to positive-definiteness in later lectures, see https://francisbach.com/cursed-kernels/).

4

Regression. We have

P̂n(x) =
1

n

n∑
i=1

qτ (x− xi) =
1

n

n∑
i=1

1

(2π)d/2τd
exp(−‖x− xi‖

2

2τ2
),

and, for Y = R, with q1τ (y − y′) = 1√
2πτ

e−(y−y
′)2/2 a kernel on R:

P̂n(x, y) =
1

n

n∑
i=1

qτ (x− xi)q1τ (y − yi) =
1

n

n∑
i=1

1

(2π)d/2τd
exp(−‖x− xi‖

2

2τ2
)

1

(2π)1/2τ
exp(−(y − yi)2

2τ2
).

Thus

P̂n(y|x) =
n∑
i=1

wi(x)
1

(2π)1/2τ
exp(−(y − yi)2

2τ2
)

with

wi(x) =
exp(−‖x−xi‖

2

2τ2
)∑n

j=1 exp(−‖x−xj‖
2

2τ2
)
.

This is a mixture model and f̂(x) is the conditional expectation, equal to
∑n

i=1wi(x)yi .

Classification. We can define the estimator accordingly, and we get f̂(x) = 1 if
∑n

i=1wi(x)yi > 1/2,
which is often referred to as the “plug-in” estimator.

4 k-Nearest Neighbours

The k-nearest neighbor classifier works as follows. Given a new input x ∈ Rd, it looks at the k nearest
points xi in the data set Dn = (xi, yi) and predicts a majority vote among them (for classification) or
simply the averaged response (for regression). The k-nearest neighbor classifier is quite popular because it
is simple to code and to understand; it has nice theoretical guarantees as soon as k is appropriately chosen
and performs reasonably well in low dimensional spaces. several questions are typically investigated:

• consistency: does k-NN has the smallest possible probability of error when the number of data grows?

• how to choose k?

There are plenty of other possible interesting questions. How should we choose the metric (invariance
properties,. . .)? Can we get improved performance by using different weights between neighbors (see
Kernel methods)? Is it possible to improve the computational complexity (by reducing the data size or
keeping some data in memory,...). These questions are however beyond the scope of these lecture notes
and we refer the interested reader to the book [1].

5

K = 3

Figure 1: k-nearest neighbors with two classes (orange and blue) and k = 3. The new input (i.e., the black
point) is classified as blue which corresponds to the majority class among its three nearest neighbors.

5 The k-nearest neighbors classifier (kNN)

The kNN classifier classifies a new input x with the majority class among its k-nearest neighbors (see
Figure 1). More formally, we denote by X(i)(x) the i-th nearest neighbor of x ∈ Rd (using the Euclidean

distance) among the inputs Xi, 1 ≤ i ≤ n. We have for all x ∈ Rd∥∥x−X(1)(x)
∥∥ ≤ ∥∥x−X(2)(x)

∥∥ ≤ · · · ≤ ∥∥x−X(n)(x)
∥∥,

and X(i)(x) ∈ {X1, . . . , Xn} for all 1 ≤ i ≤ n. We denote by Yi(x) the class associated with Xi(x). We can
then define

η̂kn(x) =
1

k

k∑
i=1

Y(i)(x) =
1

k

n∑
i=1

Y(i)1Xi∈{X(1)(x),...,X(k)k(x)}

and ĝkn the kNN classifier is the corresponding plugin estimator defined by ĝkn(x) = 1 if ηkn(x) > 1/2, and
zero otherwise.

This applies to regression as well.

5.1 Consistent nearest neighbors making k →∞

Theorem 2 (Stone 1964) If k(n)→∞ and k(n)
n → 0 then the k(n)-NN classifier is universally consis-

tent: for all distribution ν, we have
lim
n→∞

R(f̂k(n)NN) := R∗ .

Historically, this is the first universally consistent algorithm. The proof is not trivial and comes from a
more general result (Stone’s Theorem) on “Weighted Average Plug-in” classifiers (WAP).

Definition 2 (Weighted Average Plug-in classifier (WAP)) Let Dn = {(X1, Y1), . . . , (Xn, Yn)}, a
WAP classifier is a plug-in estimator ĝn associated to an estimator of the form

η̂n(x) =
n∑
i=1

wn,i(x)Yi

where the weights wn,i(x) = wn,i(x,X1, . . . , Xn) are non negative and sum to one.

6

This is the case of the k-NN classifier which satisfies

wn,i(x) =

{
1
k if Xi is a kNN of x
0 otherwise

.

Theorem 3 (Stone 1977) Let (gn)n≥0 a WAP such that for all distribution ν the weights wn,i satisfy

1. it exists c > 0 s.t. for all non-negative measurable function f with E[f(X)] <∞,

E

[
n∑
i=1

wn,i(X)f(Xi)

]
≤ cE

[
f(X)

]
;

2. for all a > 0, E
[∑n

i=1wn,i(X)1‖Xi−X‖>a
]
−→

n→+∞
0

3. E
[

max1≤i≤nwn,i(X)
]
−→

n→+∞
0

Let us make some remarks about the conditions:

1. is a technical condition

2. says that the weights of points outside of a ball around X should vanish to zero. Only the Xi in a
smaller and smaller neighborhood of X should contribute.

3. says that no point should have a too important weight. The number of points in the local neighbor-
hood of X should increase to ∞.

Conclusion

The k-nearest neighbors are universally consistent if k → ∞ and k/n → 0. Stone’s theorem is actually
more general and applies to other rules such as histograms or Nadaraya-Watson estimators.

References

[1] Luc Devroye, László Györfi, and Gábor Lugosi. A probabilistic Theory of Pattern Recognition, vol-
ume 31. Springer Science & Business Media, 1996.

[2] Thomas Cover and Peter Hart. Nearest neighbor pattern classification. IEEE transactions on infor-
mation theory, 13(1):21–27, 1967.

[3] Charles J Stone. Consistent nonparametric regression. The annals of statistics, pages 595–620, 1977.

7

