
Machine learning - Master ICFP 2019-2020

Statistical Learning Theory

Francis Bach

January 24, 2020

1 Announcements

• Don’t forget to register online (if not done so already).

• Send outcomes of practical sessions to lenaicfrancisml@gmail.com (all other emails to our own
email addresses).

• Not all results are proved in class.

2 Introduction - review

• Training set: observations (xi, yi) ∈ X × Y, i = 1, . . . , n, of inputs/outputs, features/variables are
independent and identically distributed (i.i.d.) random variables with common distribution P .

• X can de diverse, Y is typically {0, 1} (binary classification) or R (regression).

• A machine learning algorithm A is a function that goes from
⋃

n>0(X× Y)n to a function f̂n from X

to Y, called an “estimator”. We will use the notation f̂n = A(Dn), and often only f̂n.

• We consider a fixed (testing) distribution P on X×Y and a loss function ℓ : Y×Y → R; ℓ(y, z) is the
loss of predicting z while the true label is y. We assume that the testing distribution is the
same as the training distribution.

• Risk, or generalization performance of a prediction function f : X → Y:

R(f) = E

[

ℓ(Y, f(X))
]

.

Be careful with the randomness or lack thereof of f : f̂n depends on the training data and not on the
testing data, and thus R(f̂n) is random because of the dependence on the training data Dn.

The function R depends on the distribution P on (X,Y ). We sometimes use the notation RP (f) to
make it explicit.
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– Binary classification: Y = {0, 1} (or often Y = {−1, 1}), and ℓ(y, z) = 1y 6=z (“0-1” loss).
Then R(f) = P(f(X) 6= Y ).

– Regression: Y = R and ℓ(y, z) = (y − z)2 (square loss). Then R(f) = E(Y − f(X))2.

• Target function = Bayes predictor f∗ ∈ argminR(f) = E

[

ℓ(Y, f(X))
]

.

Proposition 1 (Bayes predictor) The risk is minimized at a Bayes predictor f∗ : X → Y satisfy-
ing for all x ∈ X, f∗(x) ∈ argminz∈Y E(ℓ(Y, z)|X = x). The Bayes risk R∗ is the risk of all Bayes
predictors and is equal to

R∗ = Ex∼PX
inf
z∈Y

E(ℓ(Y, z)|X = x).

Note that (a) the Bayes predictor is not unique, but that all lead to the same Bayes risk, and (b)
that the Bayes risk is usually non zero (unless the dependence between x and y is deterministic).

– For binary classification: Y = {0, 1} and ℓ(y, z) = 1y 6=z , the Bayes predictor is f∗(x) ∈
arg max

i∈{1,...,k}
P(Y = i|X = x).

– For regression: Y = R and ℓ(y, z) = (y − z)2, the Bayes predictor is f∗(x) = E(Y |X = x).

• Goal of supervised machine learning: estimate f∗, knowing only the data Dn and the loss ℓ.

Definition 1 (Excess risk) The excess risk of a function from f : X → Y is equal to R(f)−R∗ (it
is always non-negative).

3 Statistical learning theory

3.1 Consistency and learning rates

• One aim of learning theory is to prove “consistency’ of learning algorithms. Essentially, we want
R(f̂n) − R∗ = R(A(Dn)) − R∗ to go to zero when the number of observations are i.i.d. Since
R(A(Dn))−R∗ is a random variable (due to the randomness of the data) whose distribution depends
on P , several criteria exist (in expectation, almost surely, in probability)

Definition 2 (Consistency) An algorithm A is said “consistent” is for a probability distribution P
generating the i.i.d. data Dn, if

lim
n→+∞

E
[

R(A(Dn))− R∗
]

= 0.

It is said “strongly consistent” if limn→+∞

[

R(A(Dn))−R∗
]

= 0 almost surely (i.e., with probability
one).

The algorithm is said “probably approximately correct” (PAC), if for any ε > 0, lim
n→+∞

P
[

R(A(Dn))−
R∗
]

> ε
]

= 0. This corresponds to convergence in probability.
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• Consistency is the first requirement we can expect from a learning algorithm. However, the speed of
convergence is also important, and we call these “learning rates”.

Definition 3 (Learning rates) The sequence (εn) is learning rate in expectation for an algorithm
A and for the probability distribution P generating the i.i.d. data Dn, if

∀n > 0, E
[

R(A(Dn))− R∗
]

6 εn.

High probabiity learning rates can also be defined.

3.2 No free lunch theorems

“Learning is not possible without assumptions.” See [1, Chapter 7] for details.

The following theorem shows that for any algorithm, for a fixed n, there is a data distribution that makes
the algorithm useless.

Theorem 1 (no free lunch - fixed n) Consider the binary classification with 0−1 loss, with X infinite.
Let P denote the set of all probability distributions on X×{0, 1}. For any n > 0 and learning algorithm A,

sup
P∈P

E

[

RP (A(Dn(P )))
]

− R∗
P > 1/2.

Proof Let k be a positive integer. Without loss of generality, we can assume that N ⊂ X.

Given r ∈ {0, 1}k , we define the distribution P such that P(X = j, Y = rj) = 1/k; that is, we choose one
of the first k elements uniformly at random, and then Y is selected deterministically as Y = RX . Thus
the Bayes risk is zero: R∗

P = 0.

Denoting f̂Dn
= A(Dn(P )), and S(r) = E

[

RP (f̂Dn
)
]

the expected risk, we want to maximize S(r) with

respect to r ∈ {0, 1}k; the maximum is greater than the expectation of S(r) for any distribution R on r,
in particular the uniform distribution (each rj an independent unbiased Bernoulli variable). Then

max
r∈{0,1}k

S(r) > Er∼RS(r)

= P(f̂Dn
(X) 6= Y ) = P(f̂Dn

(X) 6= rX)

because X is almost surely in {1, . . . , k} and Y = rX almost surely. Then

Er∼RS(r) = E

[

P
(

f̂Dn
(X) 6= rX

∣

∣X1, . . . ,Xn, rX1
, . . . , rXn

)

]

> E

[

P
(

f̂Dn
(X) 6= rX & X /∈ {X1, . . . ,Xn}

∣

∣X1, . . . ,Xn, rX1
, . . . , rXn

)

]

= E

[1

2
P
(

X /∈ {X1, . . . ,Xn}
∣

∣X1, . . . ,Xn, rX1
, . . . , rXn

)

]

,

by the law of total expectation on using monotonicity of probabilities, and because we have
P
(

f̂Dn
(X) 6= rX

∣

∣X /∈ {X1, . . . ,Xn},X1, . . . ,Xn, rX1
, . . . , rXn

)

= 1/2. Thus,

Er∼RS(r) =
1

2
P
(

X /∈ {X1, . . . ,Xn}
)

=
1

2
E

[

n
∏

i=1

P(Xi 6= X|X)
]

=
1

2

(

1− 1/k
)n
.
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Given n, we can let k tend to infinity to conclude.

A caveat is that the hard distribution may depend on n. The following theorem is given without proof
and is much stronger [1, Theorem 7.2], as it more convincingly shows that learning can be arbitrarily slow
without assumption.

Theorem 2 (no free lunch - sequence of errors) Consider the binary classification with 0 − 1 loss,
with X infinite. Let P denote the set of all probability distributions on X × {0, 1}. For any decreasing
sequence an tending to zero and such that a1 6 1/16, for any learning algorithm A, there exists P ∈ P,
such that for all n > 1:

E

[

RP (A(Dn(P )))
]

− R∗
P > an.

Therefore, we need to impose some restrictions on the learning problem to reach non-trivial rates.

3.3 Classes of learning problems

• The goal is to provide some guarantees of performance on unseen data. A common assumption is
that the data Dn(P ) = {(x1, y1), . . . , (xn, yn)} is obtained as independent and identically distributed
(i.i.d.) observations, from a distribution P within a class P of distributions satisfying some
regularity properties (e.g., the inputs live in a compact space, or the dependence between y and
x is at most of some complexity).

• An algorithm A is a mapping from Dn(P ) (for any n) to a function from X to Y. The risk depends
on the probability distribution P ∈ P, as RP (f). The goal is to find A such that the risk

RP (A(Dn(P )))

is small, assuming Dn(P ) is sampled from P , but without knowing which P ∈ P is considered.
Moreover, the risk is random because Dn is random. There are several ways of dealing with the
randomness to obtain a criterion.

The simplest one is to take the expectation, and we thus aim at finding an algorithm A such that

sup
P∈P

E

[

RP (A(Dn(P )))
]

is as small as possible (note the supremum with respect to P ∈ P). This is typically a function of
the sample size n and of properties of X, Y and the allowed set of problems P (e.g., dimension of X,
number of parameters). The algorithm is said consistent over P if the quantity above goes to zero
when n tends to infinity.

• Lower-bounding the optimal performance: in some set-ups, it is possible to show that the infimum
over all algorithms is greater than a certain quantity. Machine learners are happy when upper-bounds
and lower-bounds match.

• PAC learning: for a given δ ∈ (0, 1) and ε > 0, for any P ∈ P:

P

([

RP (A(Dn(P )))
]

6 ε
)

> 1− δ.
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The crux is to find ε which is as small as possible (typically as a function of δ and n).

• The analysis can be “non-asymptotic”, with an upper-bound with explicit dependence on all quan-
tities; the bound is then valid for all n, even if sometimes vacuous (e.g., a bound greater than 1 for
a loss uniformly bounded by 1).

The analysis can also be “asymptotic”, where for examples n goes to infinity and limits are taken
(alternatively, several quantities can be made to grow simultaneously).

4 Empirical risk minimization

Consider a family F of prediction functions f : X → Y. Empirical risk minimization aims at finding

f̂n ∈ argmin
f∈F

R̂(f) =
1

n

n
∑

i=1

ℓ(yi, f(xi)).

The most classical example is linear least-squares regression, where we minimize

1

n

n
∑

i=1

(yi − w⊤Φ(xi))
2,

where f is linear in some feature vector Φ(x) ∈ R
d (no need for X to be a vector space). The vector Φ(x)

can be quite large (or even implicit, like in kernel methods). Other examples include neural networks.

• Risk decomposition in estimation error + approximation error : given any f̂ ∈ F,

R(f̂)− R∗ =
{

R(f̂)− inf
f∈F

R(f)
}

+
{

inf
f∈F

R(f)− R∗
}

= estimation error + approximation error

When the “number” of models in F grows, the approximation error is deterministic and goes down,
while the estimation error is random and goes up.

Examples of approximations by polynomials in one-dimensional regression.

Typical curve:
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5 Approximation error

• This means bounding inf
f∈F

R(f)− R∗ and requires assumptions on the target function f∗ to achieve

non-trivial learning rates.

• The simplest example is regression on X = [0, 1], which can be generalized “semi-easily” to multiple
dimensions and other losses.

• We consider only the uniform distribution on [0, 1], we can then represent functions by their Fourier
series

f(x) =
∑

k∈Z

ck(f)e
i2kπx.

The functions
(

x 7→ ei2kπx
)

k∈Z
form an orthonormal basis of L2([0, 1]), and we are going to consider

classes of functions Fα,C defined as

Fα,C =
{

f ∈ L2([0, 1]),
∑

k∈Z

|ck(f)|2(1 + k2α) 6 C2
}

.

These are functions for which

∫ 1

0
|f(x)|2 + 1

(2kπ)2α

∫ 1

0
|f (α)(x)|2dx 6 c2. This is the usual Sobolev

space (it happens to be a Hilbert space, see lecture on kernel methods).

• Given our assumptions: R(f)− R∗ =

∫ 1

0
|f(x)− f∗(x)|2dx =

∑

k∈Z

|ck(f)− ck(f
∗)|2, and we are thus

looking at approximations in ℓ2.

• No assumptions on f∗: the Sobolev spaces are known to be dense in L2([0, 1]), therefore

inf
f∈Fα,C

R(f)− R∗

tends to zero when C tends to infinity, but no explicit rates can be given.

• Well-specified assumption: if f∗ ∈ Fα∗,C∗, then, if we choose the correct α = α∗:

inf
f∈Fα∗,C

R(f)− R∗

is equal to zero for C > C∗ (but this requires to know α∗ in advance).

• As an example of Poincaré inequalities,
∑

k∈Z |ck(f)|2(1+ k2α) is increasing in α, thus if f∗ ∈ Fα∗,C∗

then f∗ ∈ Fα,C∗ for α 6 α∗. Thus, for approximation purposes, choosing a small α for a class a
function is advantageous. However, since estimation error will grow with the size of the space, and
thus decrease with α, we can also choose larger α, which could then be larger than α∗. Then we have
an approximation error as follows:

sup
f∗∈Fα∗,C∗

inf
f∗∈Fα,C

R(f)− R∗

= sup
∑

k∈Z
|ck(f∗)|2(1+k2α∗ )6(C∗)2

inf∑
k∈Z

|ck(f)|2(1+k2α)6C2

∑

k∈Z

|ck(f)− cf (f
∗)|2.
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We can now upper bound this quantity. For example, we can consider ck(f) = ck(f∗) for |k| 6 K
and 0 otherwise, for which we have, for α > α∗:

∑

k∈Z

|ck(f)− cf (f
∗)|2 =

∑

|k|>K

cf (f
∗)|2

6
∑

|k|>K

|cf (f∗)|2 1 + k2α
∗

1 +K2α∗
6

(C∗)2

K2α∗

∑

k∈Z

|ck(f)|2(1 + k2α) =
∑

|k|6K

|ck(f∗)|2(1 + k2α)

6
∑

|k|6K

|ck(f∗)|2(1 + k2α
∗

)K2α−2α∗

6 (C∗)2K2α−2α∗

.

Thus, for K = (C/C∗)1/(2α−2α∗), we get an approximation error of

(C∗)2

K2α∗
= (C∗)2(C∗/C)α

∗/(α−α∗) =
(C∗)2+α∗/(α−α∗)

Cα∗/(α−α∗)
.

which is decreasing in C and increasing in C∗.

6 Estimation error

• The estimation error is often decomposed as, using g ∈ argming∈F R(g):

R(f̂)− inf
f∈F

R(f) = R(f̂)− R(g) =
{

R(f̂)− R̂(f̂)
}

+
{

R̂(f̂)− R̂(g)
}

+
{

R̂(g) −R(g)
}

6 2 sup
f∈F

∣

∣

∣
R̂(f)−R(f)

∣

∣

∣
+ empirical optimization error.

The uniform deviation grows with the “size” of F, and usually decays with n.

6.1 Preliminaries on probabilities

• Union bound: given events indexed by f ∈ F (which can have an infinite number of elements), we
have:

P

(

⋃

f∈F

Af

)

6
∑

f∈F

P(Af ).

• Supremum of random variables (proof: direct application of the union bound):

P

(

sup
f∈F

Zf > t

)

6
∑

f∈F

P(Zf > t)

7



• Hoeffding’s inequality: if Z1, . . . , Zn are independent random variables such that Zi ∈ [0, 1] almost
surely, then, for any t > 0,

P

( 1

n

n
∑

i=1

Zi −
1

n

n
∑

i=1

E[Zi] > t
)

6 exp(−2nt2).

– Corollary (by just applying to Zi’s and 1− Zi’s and using the union bound):

P

(
∣

∣

∣

1

n

n
∑

i=1

Zi −
1

n

n
∑

i=1

E[Zi]
∣

∣

∣
> t
)

6 2 exp(−2nt2).

Note the differencee with the central limit theorem, which is more precise (as it involves the variance
of Zi’s, but is asymptotic). Bernstein inequalities are in between.

• Proof of Hoeffding inequality:

(a) If Z ∈ [0, 1] almost surely, then E
[

exp(s(Z − E[Z]))
]

6 exp(s2/8).
Proof: Proof: compute the first two derivative of s 7→ log(E

[

exp(s(Z − E[Z]))
]

). We have

ϕ′(s) =
E

(

(Z − E[Z])es(Z−E[Z])
)

E

(

es(Z−E[Z])
)

ϕ′′(s) =
E

(

(Z − E[Z])2es(Z−E[Z])
)

E

(

es(Z−E[Z])
) −

[

E

(

(Z − E[Z])es(Z−E[Z])
)

E

(

es(Z−E[Z])
)

]2

.

We have that ϕ′(0) = 0 and ϕ′′(s) is the variance of some Z̃ ∈ [0, 1], with distribution propor-
tional to es(z−E[Z])dµ(z) where dµ(z) is the distribution of Z.

We have var(Z̃) = infµ∈[0,1] E(Z̃ − µ)2 6 E(Z̃ − 1/2)2 = 1
4E(2Z̃ − 1)2 6

1
4 . Thus, by Taylor’s

formula, ϕ(s) 6 s2

8 .

(b) By Markov inequality, for any t > 0, and denoting Z̄ = 1
n

∑n
i=1 Zi:

P

(

Z̄ − E[Z̄] > t
)

= P

(

exp(s(Z̄ − E[Z̄])) > exp(st))
)

6 exp(−st)E
[

exp(s(Z̄ − E[Z̄]))
]

6 exp(−st)
n
∏

i=1

E
[

exp(
s

n
(X̄i − E[Xi]))

]

by independence

6 exp(−st)

n
∏

i=1

exp(
s2

n2
/8) = exp(−st+

s2

8n
)

which is minimized for s = 4nt, to get to the result.

• Expectation of the maximum: if Z1, . . . , Zn are (potentially dependent) random variables such that
Zi ∈ [0, 1] almost surely, then

E[max{Z1 − E[Z1], . . . , Zn − E[Zn]}] 6
√
2 log n

2
.
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Proof:

E[max{Z1 − E[Z1], . . . , Zn − E[Zn]}] 6
1

t
logE[etmax{Z1−E[Z1],...,Zn−E[Zn]}] by Jensen’s inequality,

=
1

t
logE[max{etZ1−E[Z1], . . . , etZn−E[Zn]}]

6
1

t
logE[etZ1−E[Z1] + · · · + etZn−E[Zn]]

6
1

t
log(net

2/8) =
log n

t
+

t

8
=

√
2 log n

2
with t = 2

√

2 log n,

using the step (a) in Hoeffding inequality proof.

6.2 Finite number of models

We have, if the loss functions are bounded between 0 and 1:

P

(

R(f̂)− inf
f∈F

R(f) > t
)

6 P

(

2 sup
f∈F

∣

∣

∣
R̂(f)− R(f)

∣

∣

∣
> t
)

6
∑

f∈F

P

(

2
∣

∣

∣
R̂(f)−R(f)

∣

∣

∣
> t
)

.

We have, for f ∈ F fixed, R̂(f) = 1
n

∑n
i=1 ℓ(Yi, f(Xi)), and we can apply Hoeffding’s inequality, leading to

P

(

2|R(f̂)− R(f)| > t
)

6
∑

f∈F

2 exp(−nt2/2) = 2|F| exp(−nt2/2).

Thus, with probability greater than 1− δ,

R(f̂)− R(f) 6
2√
n

√

log
2|F|
δ

.

• Exercise: in terms of expectation, we get (using the proof of the max of random variables above):

E
[

R(f̂)− inf
f∈F

R(f)
]

6 2E
[

sup
f∈F

∣

∣

∣
R̂(f)− R(f)

∣

∣

∣

]

6

√

2 log(2|F|)
n

.

WARNING: the order of E and sup matters a lot!

Thus, according to the bound, when the logarithm of the umber of models is small compared to n, learning
is possible. Note that this is only an upper-bound and learning is possible with infinitely many models
(which is the most classical scenario). See below.

6.3 Beyond finite number models

• Covering numbers: assume that the risks R and R̂ are r-Lipschitz-continuous with respect to some
distance d on F, and that there exists m = m(ε) elements f1, . . . , fm such that for any f ∈ F,
∃i ∈ {1, . . . , n} such that d(f, fi) 6 ε. The number m(ε) is the covering number of F at precision ε.
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• Typically, m(ε) grows with ε as a power ε−d when ε → 0+, where d is the underlying dimension
(example of cubes for the ℓ∞ distance. For some sets (e.g, all Lipschitz-continuous functions in d
dimensions) logm(ε) grows as ε−d. For Sobolev functions in one-dimension, it grows as (C/ε)1/α.

• Then, for all f ∈ F, and fi the associated cover elements,

∣

∣

∣
R̂(f)− R(f)

∣

∣

∣
6

∣

∣

∣
R̂(f)− R̂(fi)

∣

∣

∣
+
∣

∣

∣
R̂(fi)− R(fi)

∣

∣

∣
+
∣

∣

∣
R(fi)− R(f)

∣

∣

∣

6 2rε+ sup
i∈{1,...,m}

∣

∣

∣
R̂(fi)− R(fi)

∣

∣

∣
.

• This implies that

E

[

sup
f∈F

∣

∣

∣
R̂(f)− R(f)

∣

∣

∣

]

6 2rε+ E

[

sup
i∈{1,...,m}

∣

∣

∣
R̂(fi)− R(fi)

∣

∣

∣

]

6 2rε+
1

2

√

2 log(2m(ε)))

n
.

Therefore, if m(ε) ∼ ε−d, we need to balance ε +
√

d log(1/ε)/n, which leads to
√

(d/n) log(n/d), a
rate essentially proportional to 1/

√
n.

Alternatively, if logm(ε) ∼ (C/ε)1/α, we need to balance ε+
√

(C/ε)2/α/n, which leads to a slower
power of n which is of the form Cβ′

/nβ′′

.

• Another very powerful tool is Rademacher complexity [2]

• Putting things together: If the approximation error goes down with C as C−β and the estimation
error goes up with C as Cβ′

/nβ′′

, for some positive powers β, β′, β′′, then we have some balance. [3]
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