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In this class, we introduce and analyze Linear Least Squares Regression, a tool that can be traced back to
Legendre (1805) and Gauss (1809) and which remains widely used in machine learning.

1 Introduction

• We recall the goal of supervised machine learning: given some observations (xi, yi) ∈ X × Y, i =
1, . . . , n, of inputs/outputs, features/variables (training data), given a new x ∈ X, predict y ∈ Y

(testing data) with a regression function f such that y ≈ f(x).

• In today’s class, we consider empirical risk minimization with the square loss. This means that
we choose a parameterized family of prediction functions fθ : X → Y for θ ∈ Θ and minimize the
empirical risk

1

n

n∑
i=1

(yi − fθ(xi))2.

• When X ⊂ Rd, the set of affine functions is a natural default choice. To simplify notations, we assume
that the first component of the covariates xi is 1 so that it is sufficient to consider linear functions.
We thus consider minimizing

R̂(w) :=
1

n

n∑
i=1

(yi − x>i w)2.

• This expression can be rewritten in matrix notations. Let y = (y1, . . . , yn)> ∈ Rn be the vector of
outputs and X ∈ Rn×d the matrix of inputs, which rows are x>i . It is called the design matrix. Its
first column is a vector of 1 with our previous convention. In these notations, the empirical risk is

R̂(w) =
1

n
‖y −Xw‖22. (1)

• In the expressions above, it is possible to replace the input xi by any (potentially non-linear) function
Φ(xi). For instance, regression with degree 2 polynomials with d = 2 is obtained with Φ(xi) =
(1, xi,1, xi,2, x

2
i,1, x

2
i,2, xi,1xi,2).
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2 Ordinary least squares estimator

We make the assumption that X is injective (i.e. the rank of X is d). In particular, the problem is
over-determined and d ≤ n.

Definition 1 When X is injective, the minimizer of Eq. (1) is called the Ordinary least Squares (OLS)
estimator.

2.1 Closed form solution

Proposition 1 If X is injective, then the OLS estimator exists and is unique. It is given by

ŵ = (X>X)−1X>y.

With the covariance matrix Σ := 1
nX
>X, we have ŵ = 1

nΣ−1X>y.

Proof Since R̂ is coercive and continuous, it admits at least a minimizer. Moreover, it is differentiable,
so a minimizer ŵ must satisfy ∇R̂(ŵ) = 0. For all w ∈ Rd, we have

R̂(w) =
1

n

(
‖y‖22 − 2w>X>y + w>X>Xw

)
and ∇R̂(w) =

2

n

(
X>Xw −X>y

)
.

The condition ∇R̂(ŵ) = 0 gives the so-called normal equations

X>Xŵ = X>y.

Under the assumption that X is injective, the matrix X>X is invertible (Exercise: show that X>X is
positive definite). So the normal equations have a unique solution ŵ = (X>X)−1X>y. This shows the
uniqueness of the minimizer of R̂ as well as its closed form expression.

Another way to show uniqueness of the minimizer is by showing that R̂ is strongly convex since ∇2R̂(w) =
2Σ for all w ∈ Rd (convexity will be studied in the following lectures).

2.2 Geometric interpretation

Proposition 2 The vector of predictions Xŵ = X(X>X)−1X>y is the orthogonal projection of y on
im(X).

Proof Let us show that P := X(X>X)−1X> is the orthogonal projection on im(X). For any a ∈ Rd, it
holds PXa = X(X>X)−1X>Xa = Xa, so Pu = u for all u ∈ im(X). Also, since im(X)⊥ = null(X>), it
holds Pu′ = 0 for all u′ ∈ im(X)⊥. These properties characterize the orthogonal projection on im(X).

Thus we can interpret the OLS estimation as doing the following:

• compute ȳ the projection of y on the image of X,

• solve the linear system Xw = ȳ which has a unique solution.
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2.3 Numerical resolution

While the closed form ŵ = (X>X)−1X>y is convenient for analysis, inverting X>X is sometimes unstable
and has a large computational cost when d is large. The following methods are usually preferred.

QR factorization. The QR decomposition factorizes the matrix X as X = QR where Q ∈ Rn×d has
orthonormal columns and R ∈ Rd×d is upper triangular. Computing a QR decomposition is faster and
more stable than inverting a matrix. One has

(X>X)ŵ = X>y ⇔ R>Q>QRŵ = R>Q>

⇔ R>Rŵ = R>Q>y

⇔ Rŵ = Q>y.

It only remains to solve a triangular linear system which is easy.

Gradient descent. We can completely bypass the need of matrix inversion or factorization using gradient
descent. It consists in minimizing R̂ by taking an initial point w0 ∈ Rd and iteratively going towards the
minimizer by following the opposite of the gradient

wk+1 = wk − η∇R̂(wk) for k ≥ 0,

where η > 0 is the step-size. When these iterates converge, it is towards the OLS estimator since a
fixed-point w satisfies ∇R̂(w) = 0. We will study such algorithms in Lecture 6.

3 Statistical analysis of OLS

We now prove guarantees on the performance of the OLS estimator. As before, we assume that X is
injective.

3.1 Linear model and risk decomposition

Any kind of guarantee requires assumptions about how the data is generated. We assume that:

• there exists a vector w∗ ∈ Rd such that the relationship between input and output is for i ∈ [n]

Yi = x>i w
∗ + Zi.

• Zi are independent of expectation EZi = 0 and variance EZ2
i = σ2.

As before, we assume that xi,1 = 1 for all i ∈ [n]. We write Y and Z with capital letters to remind ourselves
that (from now on) they are random variables. The vector Z accounts for variabilities in the output which
are due to unobserved factors or to noise. From here, there are two settings of analysis for least squares:
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• Random design. In this setting, both the input and the output are random. This is the classical
setting of supervised machine learning, where the goal is generalization.

• Fixed design. In this setting, we assume that the input data (x1, . . . , xn) is not random and we are
interested in obtaining a small prediction error on those input points. Our goal is to minimize

RX(w) = EY

[
1

n

n∑
i=1

‖Yi − x>i w‖22

]
.

This assumption allows a complete analysis with basic linear algebra. It is justified in some settings,
e.g. when the input is a fixed grid, but is otherwise just a simplifying assumption. It can be understood
as learning the vector Xw∗ ∈ Rd of best predictions, instead of a function.

In today’s class, we consider the fixed design setting.

Proposition 3 (Risk decomposition) Under the linear model and fixed design assumptions, for any
w ∈ Rd, it holds

RX(w)− R∗ = ‖w − w∗‖2Σ
where Σ := 1

nX
>X is the input covariance and ‖w‖2Σ := w>Σw. If now w is a random variable (such as

an estimator of w∗), then

E[RX(w)]− R∗ = ‖E[w]− w∗‖2Σ︸ ︷︷ ︸
Bias

+E
[
‖w − E[w]‖2Σ

]
︸ ︷︷ ︸

Variance

.

Proof Applying the result of Lecture 1 (Section 4), the Bayes predictor f∗ for the square loss satisfies

f∗(xi) = E [Yi] = x>i w
∗ and the Bayes risk is R∗ = 1

n

∑n
i=1 E

[
(Yi − f∗(xi))2

]
= 1

n

∑n
i=1 E[Z2

i ] = σ2. Now

for any fixed w ∈ Rd, we have

RX(w) =
1

n

n∑
i=1

EYi
[
(Yi − x>i w)2

]
=

1

n

n∑
i=1

EYi
[
(Yi − x>i w∗ + x>i w

∗ − x>i w)2
]

=
1

n

n∑
i=1

(
EYi
[
(Yi − x>i w∗)2

]
+ EYi

[
(Yi − x>i w∗)(x>i w∗ − x>i w)

]
+ EYi

[
(x>i w

∗ − x>i w)2
])

=
1

n

n∑
i=1

EYi [Z
2
i ] + 0 +

1

n

n∑
i=1

(
x>i (w − w∗)

)2

= σ2 +
1

n
‖X(w − w∗)‖22 = R∗ + ‖w − w∗‖2Σ.

This shows the first claim. Now if w is random, we perform the usual bias/variance decomposition:

E[RX(w)]− R∗ = E
[
‖w − E[w] + E[w]− w∗‖2Σ

]
= E

[
‖w − E[w]‖2Σ

]
+ E

[
(w − E[w])>Σ(E[w]− w∗)

]
+ E

[
‖E[w]− w∗‖2Σ

]
= E

[
‖w − E[w]‖2Σ

]
+ ‖E[w]− w∗‖2Σ.
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• The quantity ‖w‖Σ is called the Mahalanobis distance norm (it is a “true” norm whenever Σ is
positive definite). It is the norm on the parameter space induced by the input data.

• It can be seen from the proof that the same risk decomposition holds in the random design setting,
with replacing Σ with E[xx>] the population covariance.

3.2 Statistical properties of the OLS estimator

We now analyze the properties of the OLS estimator.

Proposition 4 (Estimation properties of OLS) The OLS estimator ŵ has the following properties:

1. it is unbiased Eŵ = w∗,

2. its variance is var(ŵ) = E
[
(ŵ − w∗)(ŵ − w∗)>

]
= σ2

n Σ−1 (Σ−1 is often called the precision matrix).

Proof

1. Since EY = Xw∗, we have directly Eŵ = (X>X)−1X>Xw∗ = w∗.

2. It follows that ŵ − w∗ = (X>X)−1X>Z. Thus, using that EZZ> = σ2I, it holds

var ŵ = E
[
(X>X)−1X>ZZ>X(X>X)−1

]
= σ2(X>X)−1(X>X)(X>X)−1 = σ2(X>X)−1 =

σ2

n
Σ−1.

Proposition 5 (Risk of OLS) The excess risk of the OLS estimator is

E [RX(ŵ)]− R∗ =
σ2d

n
.

Proof

Using the risk decomposition of Proposition 3 and the fact that E[ŵ] = w∗, we have

E [RX(ŵ)]− R∗ = E‖ŵ − w∗‖2Σ.

Using the identity ŵ − w∗ = (X>X)−1X>Z, we get

E[RX(ŵ)]− R∗ = E‖(X>X)−1X>Z‖2Σ

=
1

n
E
[
Z>X(X>X)−1X>X(X>X)−1X>Z

]
=

1

n
E
[
Z>X(X>X)−1X>Z

]
=

1

n
E
[
Z>PZ

]
=

1

n
E
[
tr(PZZ>)

]
=
σ2

n
tr(P ) =

σ2d

n
.
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where we used that P = X(X>X)−1X> is the orthogonal projection on im(X), which is d dimensional.

Exercise: what is the expected empirical risk E[R̂X(ŵ)]? Solution: E[R̂X(ŵ)] = n−d
n σ2. In particular,

when n > d, an unbiased estimator of the noise variance σ2 is given by
‖Y−Xŵ‖22

n−d .

3.3 Gaussian noise model

If we make the stronger assumption that the noise is Gaussian, i.e. Zi ∼ N(0, σ2), then the least mean
square estimator of w∗ coincides with the maximum likelihood estimator. The likelihood of Y is

P (Y |w, σ2) =
n∏
i=1

1√
2πσ2

exp
(
− (Yi − x>i w)2/(2σ2)

)
.

Taking the logarithm and removing constants, the maximum likelihood estimators (w̃, σ̃2) minimize

1

2σ2

n∑
i=1

(Yi − x>i w)2 + n log(σ).

We see that w̃ = ŵ.

Exercise: what is σ̃2 the maximum likelihood of σ2? Solution: σ̃2 = 1
n

∑n
i=1(Yi − x>i ŵ)2 (using the result

of the previous exercise, observe that this estimator is biased towards 0).

4 Ridge least squares regression

• When d/n approaches 1, we are essentially memorizing the observations Yi. Also when d > n, then
X>X is not invertible and the normal equations admit a linear subspace of solutions. These behaviors
of OLS in high dimension (d large) are often undesirable.

• Several solutions exist to fix these issues. The most common is to regularize the least squares
objective, either by adding ‖w‖1 (LASSO regression, see Lecture 7) or ‖w‖22 (ridge regression, this
lecture) to the empirical risk.

Definition 2 (Ridge least-squares regression) For a regularization parameter λ > 0, we define the
ridge least squares estimator ŵλ as the minimizer of

min
w∈Rd

1

n
‖Y −Xw‖22 + λ‖w‖22.

Proposition 6 Let us define Σλ = 1
nX
>X + λI, and we recall that Σ = 1

nX
>X. It holds

ŵλ =
1

n
Σ−1
λ X>Y.
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Proof Left as an exercise (similar to the proof of Proposition 1).

As for the OLS, we can analyze the statistical properties of this estimator under the linear model and
fixed design assumptions. To simplify the derivations and without loss of generality, we assume that the
axes are aligned with the eigenvectors of Σ and we have Σ = diag(λ1, . . . , λd). In this section, we do not
assume that X is injective, so λj ≥ 0 is potentially 0 and d may be larger than n. Note that we have
Σλ = diag(λ1 + λ, . . . , λd + λ)

Proposition 7 Under the linear model assumption, the ridge least squares estimator ŵλ = 1
nΣ−1

λ X>Y
has the following excess risk

E [RX(ŵλ)]− R∗ =
∑
j≥1

(w∗j )
2 λj
(1 + λj/λ)2

+
σ2

n

∑
j≥1

λ2
j

(λj + λ)2
.

Observe how this converges to the OLS estimator (when it is defined) as λ→ 0.

Proof We use the risk decomposition of Proposition 3 into a bias B and variance V terms. Since it holds
E[ŵλ] = 1

nΣ−1
λ X>Xw∗ = Σ−1

λ Σw∗, it follows

B = ‖E[ŵλ]− w∗‖2Σ
= (w∗)>(Σ−1

λ Σ− I)Σ(Σ−1
λ Σ− I)w∗

=
∑
j≥1

(w∗j )
2

(
λj

λj + λ
− 1

)2

λj =
∑
j≥1

(w∗j )
2 λj
(1 + λj/λ)2

.

For the variance term, using the fact that ZZ> = σ2I we have

V = E
[
‖ŵλ − E[ŵλ]‖2Σ

]
= E

[ ∥∥∥∥ 1

n
Σ−1
λ X>Z

∥∥∥∥2

Σ

]
= E

[ 1

n2
tr
(
Z>XΣ−1

λ ΣΣ−1
λ X>Z

) ]
= E

[ 1

n2
tr
(
X>ZZ>XΣ−1

λ ΣΣ−1
λ

) ]
=
σ2

n
tr
(
ΣΣ−1

λ ΣΣ−1
λ

)
=
σ2

n

∑
j≥1

λ2
j

(λj + λ)2
.

The proposition follows by summing the bias and variance terms.

Choosing λ in theory. Based on this expression for the risk, we can tune the parameter λ to obtain a
potentially better bound than with the OLS (which corresponds to λ = 0).

7



Proposition 8 With the choice λ∗ =
σ
√

tr(Σ)

‖w∗‖2
√
n

, we have

E [RX(ŵλ∗)]− R∗ ≤
σ
√

2 tr(Σ)‖w∗‖2√
n

.

Proof Let us upper bound the bias and variance terms using the inequality (a + b)2 ≥ 2ab for a, b ≥ 0.
We have

B ≤
∑
j≥1

(w∗j )
2 λj
2λj/λ

=
λ‖w∗‖22

2

V ≤ σ2

n

∑
j≥1

λ2
j

2λjλ
=
σ2 tr Σ

2λn
.

Plugging in λ∗ (which was chosen to minimize the upper bound on B + V ) gives the result.

• Observe that if we write R = maxi ‖xi‖2, then we have

tr(Σ) =
∑
j≥1

Σjj =
1

n

n∑
i=1

∑
j≥1

x2
i,j =

1

n

n∑
i=1

‖xi‖22 ≤ R2.

Thus in the excess risk bound, the dimension d plays no role and it could even be infinite (given R
and ‖w∗‖2 remain finite). This type of bounds are called dimension free bounds.

• Comparing this bound with that of the OLS estimator, we see that it converges slower to 0 as a
function of n (from n−1 to n−1/2) but it has a milder dependence on the noise (from σ2 to σ).

• The value of λ∗ involves quantities which we typically do not know in practice (σ and ‖w∗‖2).

Choosing λ in practice. The regularization λ is an example of a hyper-parameter. This term refers
broadly to any quantity that influences the behavior of a machine learning algorithm and that is left to
choose by the practitioner. While theory often offers guidelines and qualitative understanding on how
to best chose the hyper-parameters, their precise numerical value depends on quantities which are often
difficult to know or even guess. In practice, we typically resort to the two following approaches, which are
attempts to estimate the test performance without using the test set:

• Validation. We divide the training data into two categories: a training set and a validation set.
Given a choice of hyper-parameters, we run the algorithm on the training set and then measure the
performance on the validation set. We repeat this process with different hyper-parameters and we
select the hyper-parameters with the best validation performance.

• Cross-validation. A similar, but slightly more elaborate method is to partition the training data
into k smaller data sets (typically k = 5). Each of these subsets plays successively the role of the
validation set while the other form the training set. This gives, for each choice of hyper-parameters,
k validation performances that can be averaged to choose the best hyper-parameter.
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