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1 Information on the course

• Co-taught by Francis Bach (https://www.di.ens.fr/~fbach/)
and Lenäıc Chizat (https://lchizat.github.io/). Please include both of us in email correspon-
dence.

• Lecture with no practical sessions (9am to 12pm)

• Lecture with practical sessions (9am to 12.30pm). Bring your laptop with Python 3 and Jupyter
notebooks installed.
Run https://www.di.ens.fr/appstat/spring-2019/TP/TD0-prerequisites/crash_test.ipynb

as a test.

• Validation: one written in-class exam, and practical sessions to finish at home.

• Register online.

• Ask questions!

• Some exercises done in lecture.

• References: [1, 2, 3, 4].

2 Goals of the course

• Present the main theories and algorithms in machine learning, with a focus on simple and direct
arguments (few results provided without proofs).

• Through simple practical sessions on synthetic and real data, associate these main algorithms with
their practical performance.

• This is not a class on artificial intelligence.

• Mostly supervised learning, but also unsupervised.
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3 Supervised machine learning: introduction

• Main goal: given some observations (xi, yi) ∈ X×Y, i = 1, . . . , n, of inputs/outputs, features/variables
(training data), given a new x ∈ X, predict y ∈ Y (testing data).

• Many examples where X and Y can be very diverse, from many areas of science and engineering:

– X: images, sounds, videos, text, proteins, web pages, social networks, sensors from industry, etc.

– Y: binary labels Y = {0, 1}, real response Y = R, multiclass Y = {1, . . . , k}, more generally
structured outputs (e.g., graph prediction, visual scene analysis, source separation).

• Why is it difficult?

– y is not a deterministic function of x: given x ∈ X, noisy outputs y = f(x) ”+” ε, e.g., noise
due to diverging views between labellers, dependence on external unobserved quantities (that is
y = f(x, z), z random).

– f may be quite complex (highly non-linear).

– Only a few x’s are observed: need interpolation and potentially extrapolation (see below), and
overfitting is always a possibility.

– Weak link between training and testing distributions.

– What is the criterion for performance?

• Main formalization: see (xi, yi) as a realization of random variables (Xi, Yi), and the criterion is to
minimize the expectation of “performance” with respect to the distribution of the test data.

– Classical (never met in practice...) assumptions: the random variables (Xi, Yi) are independent
and identically distributed with the same distribution as the testing distribution.

– A machine learning algorithm A is a function that goes from (X×Y)n to a function from X to Y.

• Practical performance evaluation:

– Training set, validation set and testing set.

– Cross-validation to use a maximal amount of training data.

– Formally, the test set can only be used once!

– “Debugging” a machine learning implementation is an art.

4 Decision theory

Main question: what is the optimal performance, regardless of the training data?

• We consider a fixed (testing) distribution P = ρX,Y on X× Y, with marginal distribution ρX on X.

• We consider a loss function ℓ : Y× Y → R; ℓ(y, z) is the loss of predicting z while the true label is y.
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– Binary classification: Y = {0, 1} (or often Y = {−1, 1}), and ℓ(y, z) = 1y 6=z (“0-1” loss).
R(f) = P(f(X) 6= Y ). Extendable to multiclass Y = {1, . . . , k}.

– Regression: Y = R and ℓ(y, z) = (y − z)2 (square loss). R(f) = E(Y − f(X))2.

– Many other potential losses! E.g., Hamming loss for Y = {0, 1}k , loss for ranking, etc.

• Risk, or generalization performance of a prediction function f : X → Y:

R(f) = E

[

ℓ(Y, f(X))
]

.

Be careful with the randomness or lack thereof of f : f depends on the training data and not on the
testing data, and thus R(f) is typically random because of the dependence on the training data.

It depends on the distribution P on (X,Y ). We sometimes use the notation RP (f) to make it explicit.

Note that sometimes, we consider random predictions, that is for any x, we output a distribution
on y, and then the risk is taken as the expectation over the randomness of the outputs.

• Main question: what is the best prediction function f?

• Using conditional probabilities (with somewhat informal notations), we have

R(f) = Eℓ(Y, f(X)) = E
[

E(ℓ(Y, f(X))|X)
]

= Ex∼ρX

[

E(ℓ(Y, f(X))|X = x)
]

.

Given the conditional distribution given any x ∈ R
d, that is Y |X = x, we have the conditional risk

r(z|x) = E(ℓ(Y, z)|X = x),

which leads to
R(f) = E(r(f(X)|X)).

A minimizer of R(f) can be obtained by considering for any x, the function value f(x) to be equal
to a minimizer z of r(z|x) = E(ℓ(Y, z)|X = x). We can therefore consider all x as being treated
independently.

• Optimal performance:

Proposition 1 (Bayes predictor) The risk is minimized at a Bayes predictor f∗ : X → Y satisfy-
ing for all x ∈ X, f∗(x) ∈ argminz∈Y E(ℓ(Y, z)|X = x). The Bayes risk R∗ is the risk of all Bayes
predictors and is equal to

R∗ = Ex∼ρX inf
z∈Y

E(ℓ(Y, z)|X = x).

Note that (a) the Bayes predictor is not unique, but that all lead to the same Bayes risk, and (b)
that the Bayes risk is usually non zero (unless the dependence between x and y is deterministic).

Definition 1 (Excess risk) The excess risk of a function from f : X → Y is equal to R(f)−R∗ (it
is always non-negative).

• Therefore, machine learning is “trivial”: given the distribution Y |X = x for any x, the optimal
predictor is known.
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• Exercise: what is the Bayes predictor for binary classification: Y = {0, 1} and ℓ(y, z) = 1y 6=z .
Extension to multiclass Y = {1, . . . , k}? Solution: f∗(x) ∈ arg max

i∈{1,...,k}
P(Y = i|X = x).

• Exercise: what is the Bayes predictor for regression: Y = R and ℓ(y, z) = (y − z)2? Solution:
f∗(x) = E(Y |X = x). Extension to the loss ℓ(y, z) = |y − z|? Solution: f∗(x) is a median of the
distribution of Y given X = x.

• Exercise: we consider a random prediction rule where we predict from the probability distribution of
Y given X = x. When is this achieving the Bayes risk? Solution: when the Bayes risk is zero.

5 Learning from data

There are two main classes of prediction algorithms, that will be studied in this course:

(1) Local averaging (lecture 4).

(2) Empirical risk minimization (lectures 2, 3, 5, 7, 8).

5.1 Local averaging

Trying to approximate / emulate the Bayes predictor, e.g., f∗(x) = E(Y |X = x) for least-squares regression,
from empirical data. Often by explicit/implicit estimation of the conditional distribution by local averaging
(k-nearest neighbors, which is used as the main example for this lecture, Nadaraya Watson, decision trees).

• Pros: (a) no optimization or training, (b) often easy to implement, (c) can get very good performance
in low dimensions (in particular for non-linear dependences between X and Y ).

• Cons: (a) slow at query time: must pass through all training data at each testing point, (b) bad for
high-dimensional data (curse of dimensionality, more on this in lecture 4), (c) choice of local distance
function, (d) choice of “width” parameters.

• Plot of training error and testing errors as a function of k and n.

5.2 Empirical risk minimization

Consider a parameterized family of prediction functions fθ : X → Y for θ ∈ Θ and minimize the empirical
risk with respect to θ ∈ Θ:

R̂(fθ) =
1

n

n
∑

i=1

ℓ(yi, fθ(xi)).

Most classical example is linear least-squares regression, where we minimize

1

n

n
∑

i=1

(yi − w⊤Φ(xi))
2,
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where f is linear in some feature vector Φ(x) ∈ R
d (no need for X to be a vector space). The vector Φ(x)

can be quite large (or even implicit, like in kernel methods). Other examples include neural networks.

• Pros: (a) can be relatively easy to optimize (e.g., least-squares with simple derivation), many al-
gorithms available (mostly based on gradient descent), (b) can be applied in any dimension (if a
reasonable feature vector is available).

• Cons: (a) can be relatively hard to optimize (e.g., neural networks), (b) need a good feature vector
for linear methods, (c) dependence on parameters can be complex (e.g., neural networks), (d) need
some capacity control to avoid overfitting, (e) how to parameterize functions with values in {0, 1}?

• Risk decomposition in estimation error + approximation error : given any θ̂ ∈ Θ,

R(f
θ̂
)− R∗ =

{

R(f
θ̂
)− inf

θ′∈Θ
R(fθ′)

}

+
{

inf
θ′∈Θ

R(fθ′)− R∗
}

= estimation error + approximation error

When the “number” of models (e.g., number of parameters) in Θ grows, the approximation error is
deterministic and goes down, while the estimation error is random and goes up.

Examples of approximations by polynomials in one-dimensional regression.

Typical curve:

Typically, we will see in later lectures that the estimation error is often decomposed as

{

R(f
θ̂
)− R(fθ′)

}

=
{

R(f
θ̂
)− R̂(f

θ̂
)
}

+
{

R̂(f
θ̂
)− R̂(fθ′)

}

+
{

R̂(fθ′)− R(fθ′)
}

6 2 sup
θ∈Θ

∣

∣

∣
R̂(fθ)− R(fθ)

∣

∣

∣
+ empirical optimization error.

The uniform deviation grows with the “size” of Θ, and usually decays with n.

• Capacity control by reducing number of parameters: leads to constrained optimization.
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• Capacity control by regularization: minimize

R̂(fθ) + λΩ(θ) =
1

n

n
∑

i=1

ℓ(yi, fθ(xi)) + λΩ(θ),

where Ω(θ) controls the complexity of fθ. The main example is ridge regression:

min
w∈Rd

1

n

n
∑

i=1

(yi − w⊤Φ(xi))
2 + λ‖w‖22.

Often easier for optimization, but harder to analyze.

Clear difference between parameters (e.g., θ) learrned on the training data and hyperparameters
(e.g., λ) learned on the validation data.

5.3 Statistical learning theory

• The goal is to provide some guarantees of performance on unseen data. A common assumption is
that the data Dn(P ) = {(x1, y1), . . . , (xn, yn)} is obtained as independent and identically distributed
(i.i.d.) observations, from a distribution P within a class P of distributions satisfying some regularity
properties (e.g., the inputs live in a compact space, or the dependence between y and x is at most of
some complexity).

• An algorithm A is a mapping from Dn(P ) (for any n) to a function from X to Y. The risk depends
on the probability distribution P ∈ P, as RP (f). The goal is to find A such that the risk

RP (A(Dn(P )))

is small, assuming Dn(P ) is sampled from P , but without knowing which P ∈ P is considered.
Moreover, the risk is random because Dn is random. There are several ways of dealing with the
randomness to obtain a criterion.

The simplest one is to take the expectation, and we thus aim at finding an algorithm A such that

sup
P∈P

E

[

RP (A(Dn(P )))
]

is as small as possible. This is typically a function of the sample size n and of properties of X, Y and
the allowed set of problems P (e.g., dimension of X, number of parameters).

• Lower-bounding the optimal performance: in some set-ups, it is possible to show that the infimum
over all algorithms is greater than a certain quantity. Machine learners are happy when upper-bounds
and lower-bounds match.

• PAC learning: for a given δ ∈ (0, 1) and ε > 0, for any P ∈ P:

P

([

RP (A(Dn(P )))
]

6 ε
)

> 1− δ.

The crux is to find ε which is as small as possible (typically as a function of δ).
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• The analysis can be “non-asymptotic”, with an upper-bound with explicit dependence on all quan-
tities; the bound is then valid for all n, even if sometimes vacuous (e.g., a bound greater than 1 for
a loss uniformly bounded by 1).

The analysis can also be “asymptotic”, where for examples n goes to infinity and limits are taken
(alternatively, several quantities can be made to grow simultaneously).

5.4 No free lunch theorems

“Learning is not possible without assumptions.” See [2, Chapter 7] for details.

The following theorem shows that for any algorithm, for a fixed n, there is a data distribution that makes
the algorithm useless.

Theorem 1 (no free lunch - fixed n) Consider the binary classification with 0−1 loss, with X infinite.
Let P denote the set of all probability distributions on X×{0, 1}. For any n > 0 and learning algorithm A,

sup
P∈P

E

[

RP (A(Dn(P )))
]

− R∗
P > 1/2.

Proof Let k be a positive integer. Without loss of generality, we can assume that N ⊂ X.

Given r ∈ {0, 1}k , we define the distribution P such that P(X = j, Y = rj) = 1/k; that is, we choose one
of the first k elements uniformly at random, and then Y is selected deterministically as Y = RX . Thus
the Bayes risk is zero: R∗

P = 0.

Denoting f̂Dn
= A(Dn(P )), and S(r) = E

[

RP (f̂Dn
)
]

the expected risk, we want to maximize S(r) with

respect to r ∈ {0, 1}k; the maximum is greater than the expectation of S(r) for any distribution R on r,
in particular the uniform distribution (each rj an independent unbiased Bernoulli variable). Then

max
r∈{0,1}k

S(r) > Er∼RS(r)

= P(f̂Dn
(X) 6= Y ) = P(f̂Dn

(X) 6= rX)

because X is almost surely in {1, . . . , k} and Y = rX almost surely. Then

Er∼RS(r) = E

[

P
(

f̂Dn
(X) 6= rX

∣

∣X1, . . . ,Xn, rX1
, . . . , rXn

)

]

> E

[

P
(

f̂Dn
(X) 6= rX & X /∈ {X1, . . . ,Xn}

∣

∣X1, . . . ,Xn, rX1
, . . . , rXn

)

]

= E

[1

2
P
(

X /∈ {X1, . . . ,Xn}
∣

∣X1, . . . ,Xn, rX1
, . . . , rXn

)

]

,

by the law of total expectation on using monotonicity of probabilities, and because we have
P
(

f̂Dn
(X) 6= rX

∣

∣X /∈ {X1, . . . ,Xn},X1, . . . ,Xn, rX1
, . . . , rXn

)

= 1/2. Thus,

Er∼RS(r) =
1

2
P
(

X /∈ {X1, . . . ,Xn}
)

=
1

2
E

[

n
∏

i=1

P(Xi 6= X|X)
]

=
1

2

(

1− 1/k
)n
.

Given n, we can let k tend to infinity to conclude.
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A caveat is that the hard distribution may depend on n. The following theorem is given without proof
and is much stronger [2, Theorem 7.2], as it more convincingly shows that learning can be arbitrarily slow
without assumption.

Theorem 2 (no free lunch - sequence of errors) Consider the binary classification with 0 − 1 loss,
with X infinite. Let P denote the set of all probability distributions on X × {0, 1}. For any decreasing
sequence an tending to zero and such that a1 6 1/16, for any learning algorithm A, there exists P ∈ P,
such that for all n > 1:

E

[

RP (A(Dn(P )))
]

− R∗
P > an.
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