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Class summary

- Implicit regularization of gradient descent
- Double descent
- Global convergence of gradient descent for two-layer neural networks

In this lecture, we will cover three recent topics within learning theory, all partially related to high-
dimensional models (such as neural networks) in the “over-parameterized” regime, where the number of
parameters is larger than the number of observations.

△! The number of parameters is not what characterizes in general the generalization capabilities
of regularized learning methods.

1 Implicit bias of gradient descent

Given an optimization problem whose aim is to minimize some function F (θ) over some θ ∈ R
d, if there

is a unique global minimizer θ∗, then the goal of optimization algorithms is to find this minimizer, that
is, we want that the t-th iterate θt converges to that θ∗. When there are multiple minimizers (thus for a
function which cannot be strongly convex), we showed only that F (θt)− infθ∈Rd F (θ) is converging to zero
(and only if a minimizer exists, see Lecture 4).

With some extra assumptions, we can show that the algorithm is converging to one of the multiple mini-
mizers of F (note that when F is convex, this set is also convex). But which one? This is what is referred
to as the implicit regularization properties of optimization algorithms, and here gradient descent and its
variants.

This is interesting in machine learning because, when F (θ) is the empirical loss on n observations, and
d is much larger than n, and no regularization is used, there are multiple minimizers, and an arbitrary

1



empirical risk minimizer is not expected to work well on unseen data. A classical solution is to use explicit
regularization (e.g., ℓ2-norms like in Lecture 2 and 6, or ℓ1-norms like in Lecture 7). In this section, we
show that optimization algorithms have a similar regularizing effect. In a nutshell, gradient descent usually
leads to minimum ℓ2-norm solutions. This shows that the chosen empirical risk minimizer is not arbitrary.

This will be explicitly shown for the quadratic loss, and partially only for the logistic loss. These results
will be used in subsequent sections.

1.1 Least-squares

We consider F (θ) = 1

2n‖y − Φθ‖22, with Φ ∈ R
n×d such that d > n and (for simplicity) ΦΦ⊤ ∈ R

n×n

invertible (this is the kernel matrix). There are thus infinitely many (a whole affine subspace) solutions
such that y = Φθ, since the column space of Φ is the entire space Rn and θ has dimension d > n. We apply

gradient descent with step-size γ 6
1

λmax(
1

nΦ
⊤Φ)

=
1

λmax(
1

nΦΦ
⊤)

starting from θ0 = 0. Thus, for any θ

solution of y = Φθ, we have, as shown in Lecture 4:

θt − θ =
(

I − γ

n
Φ⊤Φ

)t
(θ0 − θ) = −

(

I − γ

n
Φ⊤Φ)tθ,

leading to

θt =
[

I −
(

I − γ

n
Φ⊤Φ

)t]
θ.

Note that it is not entirely obvious that the formula above is independent of the choice of θ (but it is).

If Φ = U Diag(s)V ⊤ is the SVD decomposition of Φ, where U ∈ R
n×n is orthonormal, and V ∈ R

d×n has
orthonormal columns and s ∈ (R∗

+)
n, we can take θ = V Diag(s)−1U⊤y as one of the solutions (since then

Φθ = U Diag(s)V ⊤V Diag(s)−1U⊤y = U Diag(s)Diag(s)−1U⊤y = UU⊤y = y) and get:

θt = V Diag((1 − (1− γs2i /n)
t)s−1

i )U⊤y.

Since each si > 0, and γi 6
n

maxi s2i
, we have

s−1

i 6 (1− (1− γs2i /n)
t)s−1

i 6 s−1

i (1− (1− γmin
i
s2i /n)

t),

and thus
∥

∥θt − V Diag(s)−1U⊤y
∥

∥

2
6 (1− γmin

i
s2i /n)

t‖V Diag(s)−1U⊤y
∥

∥

2
.

We thus get linear convergence to V Diag(s)−1U⊤y, which happens to be the minimum ℓ2-norm solution,
because all solutions to y = Φθ can be written as V Diag(s)−1U⊤y plus a vector which is orthogonal to
the column space of V .

Moreover, with γi =
n

maxi s2i
(largest allowed step-size), we get a rate of

(

1− γ
mini s2i
maxi s2i

)t
.

Lojasiewicz’s inequality (�). It turns out that linear convergence here can be shown directly for any
L-smooth function, for which we have the so-called Lojasiewicz’s inequality:

∀θ ∈ R
d, F (θ)− F (θ∗) 6

1

2µ
‖F ′(θ)‖22, (1)
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for some µ > 0.

We have seen in Lecture 4 that this is a consequence of µ-strong-convexity, but this can be satisfied without
strong convexity. For example, for any least-squares example, we have, for any minimizer θ∗:

‖F ′(θ)‖22 = ‖ 1
n
Φ⊤Φ(θ − θ∗)‖22 =

1

n2
(θ − θ∗)

⊤Φ⊤ΦΦ⊤Φ(θ − θ∗) >
λ+
min

(ΦΦ⊤)

n2
(θ − θ∗)

⊤Φ⊤Φ(θ − θ∗),

where λ+
min

(ΦΦ⊤) = λ+
min

(Φ⊤Φ) is the smallest non-zero eigenvalue of ΦΦ⊤ (which is also the one of Φ⊤Φ).
Thus, we have

‖F ′(θ)‖22 >
λ+
min

(K)

n2
‖Φ(θ − θ∗)‖22 =

2λ+
min

(K)

n
[F (θ)− F (θ∗)].

Thus, Eq. (1) is satisfied with µ = 1

nλ
+

min
(K), where K = ΦΦ⊤ ∈ R

n×n is the kernel matrix. Note that
this includes also the strongly-convex case since λ+

min
(Φ⊤Φ) > λmin(Φ

⊤Φ).

When Eq. (1) is satisfied, we have for the t-th iterate of gradient descent with step-size γ = 1/L, following
the analysis of Lecture 4:

F (θt)− F (θ∗) 6 F (θt−1)− F (θ∗)−
1

2L
‖F ′(θt−1)‖22 6

(

1− µ

L

)[

F (θt−1)− F (θ∗)
]

.

Moreover, we can then show that the iterates xt are also converging to a minimizer of F (see, [1, 2] for
more details).

Alternative proof. If started at θ0 = 0, gradient descent techniques (stochastic or not) will always have
iterates θt which are linear combinations of row of Φ, that is, of the form θt = Φ⊤αt for some αt ∈ R

n.
This is an alternative algorithmic version of the representer theorem from Lecture 6.

If the method is converging, then we must have Φθt converging to y (because the standard squared Euclidean
norm is strongly-convex, and Φθ is unique while θ may not be), and thus ΦΦ⊤αt is converging to y. If
K = ΦΦ⊤ is invertible, this means that αt is converging to K−1y, and thus θt = Φ⊤αt is converging to
Φ⊤K−1y.

It turns out that this is exactly the minimum ℓ2-norm solution as, by standard Lagrangian duality:

inf
θ∈Rd

1

2
‖θ‖22 such that y = Φθ = inf

θ∈Rd

sup
α∈Rn

1

2
‖θ‖22 + α⊤(y − Φθ)

= sup
α∈Rn

α⊤y − 1

2
‖Φ⊤α‖22 with θ = Φ⊤α at optimum,

= sup
α∈Rn

α⊤y − 1

2
α⊤Kα.

The last problem is exactly solved for α = K−1y. Note that in Lecture 6, we used this formula for function
interpolation to compare different RKHSs.

1.2 Separable classification

We now consider logistic regression, that is,

F (θ) =
1

n

n
∑

i=1

log(1 + exp(−yiϕ(xi)⊤θ)),
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with Φ ∈ R
n×d the design matrix such that d > n and ΦΦ⊤ invertible.

Maximum margin classifier. Since ΦΦ⊤ is invertible, there exists η ∈ R
d of unit norm such that

∀i ∈ {1, . . . , n}, yiϕ(xi)⊤η > 0. We denote by η∗ the one such that

min
i∈{1,...,n}

yiϕ(xi)
⊤η

is maximal (and thus strictly positive). That is, η∗ solves the following problem, which can be rewritten
as, using Lagrange duality:

sup
‖η‖261

min
i∈{1,...,n}

yiϕ(xi)
⊤η = sup

‖η‖261,t∈R
t such that ∀i ∈ {1, . . . , n}, yiϕ(xi)⊤η > t

= inf
α∈Rn

+

sup
‖η‖261,t∈R

t+

n
∑

i=1

αi(yiϕ(xi)
⊤η − t)

= inf
α∈Rn

+

∥

∥

∥

n
∑

i=1

αiyiϕ(xi)
∥

∥

∥

2
such that

n
∑

i=1

αi = 1,

with η ∝ ∑n
i=1

αiyiϕ(xi) at optimum. Moreover, by complementary slackness non-negative αi is non zero
only for i attaining the minimum in mini∈{1,...,n} yiϕ(xi)

⊤η.

Moreover, because of homogeneity, we want mini∈{1,...,n} yiϕ(xi)
⊤η large and ‖η‖2 small, and we can decide

to constrain the first and minimize the second one. In other words, we can see η∗ as the direction of the
solution θ∗ of:

inf
θ∈Rd

1

2
‖θ‖22 such that Diag(y)Φθ > 1n = inf

θ∈Rd

sup
α∈Rn

+

1

2
‖θ‖22 + α⊤(1n −Diag(y)Φθ)

= sup
α∈Rn

+

α⊤1n − 1

2
‖Φ⊤Diag(y)α‖22 with θ = Φ⊤Diag(y)α at optimum.

Note that above, Diag(y)Φθ > 1n is the compact formulation of ∀i ∈ {1, . . . , n}, yiϕ(xi)⊤θ > 1.

The θ∗ above is the solution of the separable SVM with vanishing regularization parameter, that is, of

1

2
‖θ‖2 + C

n
∑

i=1

(1− yiϕ(xi)
⊤θ)+ for C large enough.

θ⊤ϕ(x) = 0
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Divergence and convergence of directions. The function F has an infimum equal to zero, which
is not attained. However, for any sequence θt such that all yiϕ(xi)

⊤θt tend to infinity, we have F (θt) →
infθ∈Rd F (θ) = 0.

yϕ(x)⊤θ

loss

In such a situation, gradient descent cannot converge to a point, and, to achieve small values of F , it has
to diverge. It turns out that it diverges along a direction, that is, ‖θt‖2 → +∞, with 1

‖θt‖2
θt → η for some

η ∈ R
d of unit ℓ2-norm. See [3] for a proof. Here, we just show what the vector η is.

The gradient F ′(θ) is equal to F ′(θ) = − 1

n

n
∑

i=1

exp(−yiϕ(xi)⊤θ)
1 + exp(−yiϕ(xi)⊤θ)

yiϕ(xi).

Asymptotically, θt will behave as ‖θt‖η, with ‖θt‖2 tending to infinity. Thus, because we have a sum of
exponentials with scale that goes to infinity, the dominant term in F ′(θt) corresponds to the indices i for
which −yiϕ(xi)⊤η is largest. Moreover, all of these values have to be negative (indeed we can only attain
zero loss for well-classified training data). We denote by I this set. Thus,

F ′(θt) ∼ − 1

n

∑

i∈I

yi exp(−‖θt‖2yiϕ(xi)⊤η)ϕ(xi).

Moreover, we must have F ′(θt) along −u to diverge in the direction u, thus u has to be proportional to a

vector
∑

i∈I

αiyiϕ(xi), where α > 0, and αi = 0 as soon as i is not among the minimizers of yiϕ(xi)
⊤η. This

is exactly the optimality condition for η∗ above. Thus η = η∗.

Overall, we obtain a classifier corresponding to a minimum ℓ2-norm. See examples in two dimensions
below.
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General result. The result above extends to more general situation beyond linear classification. See [4].

2 Double descent

In this section, we consider a recent and interesting phenomenom described in several recent works [5, 6,
7, 8].

2.1 The double descent phenomenon

As seen in Lectures 1 and 3, typical learning curves look like the one below (figure taken from [5]):
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Training risk

Test risk

Capacity of H

sweet spot

under-fitting over-fitting

Typically the “capacity” of the space of functions H is controlled either by the number of parameters,
either by some norms of its parameters. In particular, at the extreme right of the curve, when there is zero
training error, the testing error may be arbitrarily bad, and the bound that we have used in Lecture 3, such
as Rademacher averages for H controlled by the ℓ2-norm of some parameters (with a bound D), grows as
D/

√
n, which can typically be quite large. These bounds were true for all empirical risk minimizers. In

this section we will focus on a particular one, namely the one obtained by unconstrained gradient descent.

When the model is over-parameterized (in other words, the capacity gets very large), that is, when the
number of parameters is large or the norm constraint allows for exact fitting, a new phenomenom occurs,
where after the test error explodes as the capacity grows, it goes down again (figure also taken from [5]):

R
is
k

Training risk

Test risk

Capacity of H

under-parameterized

“modern”

interpolating regime

interpolation threshold

over-parameterized

“classical”

regime

The goal of this section is to understand why. But before this let’s present some empirical evidence, from
toy examples and research papers.

△! There may be no double descent phenomenon if other empirical risk minimizers are used
(instead of the one obtained by (stochastic) gradient descent).

2.2 Empirical evidence

Toy example with random feature. We consider a random feature models like in Lectures 6 and 9,
with the features (v⊤x)+, for neurons v sampled uniformly on the unit spheres. We consider n = 200, d = 5

7



with input data distributed uniformly on the unit sphere, and we consider y =
(

1

4
+ (v⊤∗ x)

2
)−1

+N(0, σ2),
σ = 2, for some random v∗.

We sample m random features v1, . . . , vm uniformly on the sphere, and we learn parameters θ ∈ R
m by

minimizing

1

n

n
∑

i=1

(

yi −
m
∑

j=1

θj(v
⊤
j xi)+

)2

+ λ‖θ‖22. (2)

Below we report test errors after learning with gradient descent until convergence: (Left) varying m with
λ = 0, (Right) varying λ with m = +∞.
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In the left curve above, the number of random features m is left less than n, as the test error diverges.
But, when this number m is allowed to grow past n, we see the double descent phenomenon below (the
right curve does not move). Similar experiments are shown in [5, 6].
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Neural networks. We consider here a single hidden-layer fully connected network, on the MNIST
dataset of handwritten digits, trained by stochastic gradient descent. As shown below (figure taken from
[5]), we see a similar spike in errors around n = 40000 which is the number of training data points.
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No phenomenom when using regularization. When an extra regularizer is used, that is λ 6= 0 in
Eq. (2), then the double descent phenomenom is reduced (see plots below from [6], in particular the right
one), where “ψ1/ψ2 = N/n” is exactly m/n.

If the regularization parameter λ is adapted for each m, then the phenomenom totally disappears (plot
below from [6]).
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2.3 Simplest analysis

We consider a Gaussian random variable with mean 0 and covariance matrix identity, with n obervations
x1, . . . , xn, and responses yi = x⊤i θ∗ + εi, with εi normal with mean zero and variance σ2I. We will
compute an exact expectation of the risk of the minimum norm empirical risk minimizer (as detailed in
Section 1.1), which is the one gradient descent converges to. We denote by X ∈ R

n×d the design matrix,
and Σ̂ = 1

nX
⊤X the non-centered covariance matrix, and by K = XX⊤ ∈ R

n×n the kernel matrix.

The excess risk is R(θ̂) = (θ̂ − θ∗)Σ(θ̂ − θ∗) = ‖θ̂ − θ∗‖22.

Underparameterized regime. In the underparameterized regime, then the minimum norm empirical
risk minimizer is simply the ordinary least-squares estimator, which is unbiased, that is E

[

θ̂
]

= θ∗, and we
have an expected excess risk equal to (see the random design analysis from Lecture 2):

E
[

R(θ̂)
]

=
σ2

n
E
[

tr(ΣΣ̂−1)
]

.

As seen in Lecture 2, the expected risk is equal to

σ2E
[

tr
(

(X⊤X)−1
)]

,

where X ∈ R
n×d is the associated design matrix. The matrix X⊤X ∈ R

d×d has a Wishart distribution with
n degrees of freedom. It is almost surely invertible if n > d, and is such that E

[

tr
(

(X⊤X)−1
)]

= d
n−d−1

if n > d+ 2. The expectation is infinite for n = d and n = d+ 1.

Therefore, we have for n > d+ 2:

E
[

R(θ̂)
]

= σ2
d

n− d− 1
.
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Overparameterized regime. In the overparameterized regime, when n 6 d, then the kernel matrix is
almost surely invertible, and the minimum ℓ2-norm interpolator θ̂ is equal to (using the formulas above)
θ̂ = X⊤(XX⊤)−1y = X⊤(XX⊤)−1Xθ∗+X

⊤(XX⊤)−1ε. The expected excess risk decomposes into a bias
and a variance term.

The variance term is equal to, since Σ = I,

E
[

ε⊤(XX⊤)−1XΣX⊤(XX⊤)−1ε
]

= σ2E
[

tr
(

(XX⊤)−1XX⊤(XX⊤)−1
)

]

= σ2E
[

tr
(

(XX⊤)−1
)

]

,

which is now a Wishart related expectation with the order of n and d reversed, that is, σ2 n
d−n−1

for
d > n+ 2.

The bias term is equal to

E

[

‖Σ1/2
(

X⊤(XX⊤)−1Xθ∗ − θ∗
)

‖22
]

.

Since Σ = I, then we get a bias term equal to

E

[

θ⊤∗
(

I −X⊤(XX⊤)−1X
)

θ∗

]

.

The matrix X⊤(XX⊤)−1X ∈ R
d×d is the projection matrix on a random subspace of size n. By rotational

invariance of the Gaussian distribution, this random subspace is uniformly distributed among all subspaces,
and therefore, by rotational invariance, we can replace θ∗ by ‖θ∗‖2ej , that is,

E

[

θ⊤∗ X
⊤(XX⊤)−1Xθ∗

]

= ‖θ∗‖22 · E
[

e⊤j X
⊤(XX⊤)−1ej

]

for any of the d canonical basis vectors ej, j = 1, . . . , d, and thus

E

[

θ⊤∗ X
⊤(XX⊤)−1Xθ∗

]

=
‖θ∗‖22
d

d
∑

j=1

E

[

e⊤j X
⊤(XX⊤)−1Xej

]

=
‖θ∗‖22
d

E
[

tr
[

X⊤(XX⊤)−1X
]]

=
‖θ∗‖22n
d

.

Thus the bias term is equal to d−n
d ‖θ∗‖22.

Therefore the overall expected risk is

σ2n

d− n− 1
+ ‖θ∗‖22

d− n

d
.

Summary. We get

if d 6 n− 2, E
[

R(θ̂)
]

= σ2
d

n− d− 1

if d > n+ 2, E
[

R(θ̂)
]

=
σ2n

d− n− 1
+ ‖θ∗‖22

d− n

d
.

This leads to the following picture.
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This extends to more general sampling models, see [8], and to random non-linear features [6].

3 Global convergence of gradient descent for two-layer neural networks

See the two blog posts based on [9, 10]:

• https://francisbach.com/gradient-descent-neural-networks-global-convergence/

• https://francisbach.com/gradient-descent-for-wide-two-layer-neural-networks-implicit-bias/

Acknowledgements

These class notes have been adapted from the notes of many colleagues I have the pleasure to work with,
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