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1 Introduction

In this course, we have seen the strong effect of the dimensionality of the input space X on the generalization
performance of supervised learning methods, in two settings:

• When the target function f∗ was only assumed to be Lipschitz-continuous on X = R
d, we saw that

the excess risk for k-nearest-neigbors, Nadaraya-Watson estimation (Lecture 5), or positive kernel
methods (Lecture 6), was scaling as n−2/(d+2).

• When the target function is linear in some features ϕ(x) ∈ R
d, then the excess risk was scaling as

d/n.

In these two situations, when d is large (of course much larger in the linear case), efficient learning is not
possible in general.

In order to improve upon these rates, we study two techniques in this course. The first one is regularization,
e.g., by the ℓ2-norm, that allows to obtain dimension-independent bounds that cannot improve over the
bounds above in the worst-case, but are typically adaptive to additional regularity (see Lectures 2 and 6).

In this lecture, we consider a another framework, namely variable selection, whose aim is to build predictors
that depend only on a small number of variables. The key difficulty is that the identity of the selected
variables is not known in advance. Note that this can be done by regularization techniques.

In practice, variable selection is used in mainly two ways:

• The original set of features is large.
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• Given some input x ∈ X, a large-dimensional feature vector ϕ(x) is built where features are added
that could potentially help predicting the response, but from which we expect only a small number
to be relevant.

△! If no good predictor with small number of active variables exists, these methods are not supposed
to work better.

In this lecture, we focus on linear methods, where we assume that we have a feature vector ϕ(x) ∈ R
d, and

we aim to minmize
E[ℓ(y, ϕ(x)⊤θ)]

with respect to θ ∈ R
d, for some loss function ℓ : Y × R → R. We will consider two variable selection

techniques, namely the penalization by ‖θ‖0 the number of non-zeros in θ (often called abusively the
“ℓ0-norm”), or the ℓ1-norm.

Main focus on least-squares. These two types of penalties can be applied to all losses, but in this
lecture, for simplicity we will mostly consider the square loss, and in most cases, the fixed design setting
(see the classical set-up in Lecture 2), and assume that we have n observations (xi, yi) ∈ X× Y, such that
there exists θ∗ ∈ R

d for which for i ∈ {1, . . . , n},

yi = ϕ(xi)
⊤θ∗ + εi,

where xi is assumed deterministic, and εi has zero mean and variance σ2 (we also assume independence,
and sometimes stronger regulariry, such as bounded almost surely, or Gaussian). The goal is then to find
θ ∈ R

d, such that
1

n
‖Φ(θ − θ∗)‖22 = (θ − θ∗)

⊤Σ̂(θ − θ∗)

is as small as possible, where Φ ∈ R
n×d is the design matrix and Σ̂ = 1

nΦ
⊤Φ the non-centered empirical

covariance matrix. We recall from Lecture 2 that for the ordinary least-squares estimator, this excess risk
is less than σ2d/n. This is the best possible performance if we make no assumption on θ∗. In this lecture,
we assume that θ∗ is sparse, that is, only a few of its components are non-zero, or in other words, ‖θ∗‖0 = k
is small compared to d.

1.1 Dedicated proof technique for constrained least-squares

In this lecture, we consider a more refined proof technique1 that can extend to constrained versions of
least-squares (while our technique in Lecture 2 heavily relies on having a closed form for the estimator,
which is not possible in constrained or regularized cases except in few instances, such as ridge regression).

We denote by θ̂ a minimizer of 1
n‖y − Φθ‖22 with the constraint that θ ∈ Θ. If θ∗ ∈ Θ, then we have, by

optimality of θ̂:
‖y − Φθ̂‖22 6 ‖y − Φθ∗‖22.

1Taken from Philippe Rigollet’s lecture notes, see http://www-math.mit.edu/~rigollet/PDFs/RigNotes17.pdf. See
also [1] for an example of application.
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By expanding with y = Φθ∗ + ε, we get ‖ε− Φ(θ̂ − θ∗)‖22 6 ‖ε‖22, leading to, by expanding the norms:

‖ε‖22 − 2ε⊤Φ(θ̂ − θ∗) + ‖Φ(θ̂ − θ∗)‖22 6 ‖ε‖22,

and thus
‖Φ(θ̂ − θ∗)‖22 6 2ε⊤Φ(θ̂ − θ∗).

We can write it as

‖Φ(θ̂ − θ∗)‖22 6 2‖Φ(θ̂ − θ∗)‖2 · ε⊤
( Φ(θ̂ − θ∗)

‖Φ(θ̂ − θ∗)‖2

)
.

This reformulation is difficult to deal with because θ̂ appears on the right side of the equation. Like done
for upper-bounding estimation errors in Lecture 3, we can maximize with respect to θ ∈ Θ, which leads to

‖Φ(θ̂ − θ∗)‖22 6 2‖Φ(θ̂ − θ∗)‖2 · sup
θ∈Θ

ε⊤
( Φ(θ − θ∗)

‖Φ(θ − θ∗)‖2

)
,

and finally

‖Φ(θ̂ − θ∗)‖22 6 4 sup
θ∈Θ

[
ε⊤

( Φ(θ − θ∗)

‖Φ(θ − θ∗)‖2

)]2
. (1)

This inequality is true almost surely, and we can take expectation (with respect to ε) to obtain bounds.
Therefore, in this lecture, we will compute expectations of maxima of quadratic forms in ε.

For example, when Θ = R
d (no constraints), we get, by taking z = Φ(θ−θ∗)

‖Φ(θ−θ∗)‖2
, with ΠΦ the orthogonal

projector on the image space im(Φ):

E
[
‖Φ(θ̂ − θ∗)‖22

]
6 4E

[
sup

z∈im(Φ),‖z‖2=1

[
ε⊤z

]2]
.

By the simple geometric argument below,

im(Φ)

ε

Πim(Φ)ε

we have
sup

z∈im(Φ),‖z‖2=1

[
ε⊤z

]2
= ‖ΠΦε‖2,

leading to

E
[
‖Φ(θ̂ − θ∗)‖22

]
6 4E

[
‖ΠΦε‖2

]
= 4σ2rank(Φ).

]
= 4σ2rank(Φ).

We thus, get up to a constant 4, the excess risk as σ2d/n, which is worse than the direct computation from
Lecture 2, but allows extensions to more complex situations.

This reasoning also allows to get high probability bounds by adding assumptions on the noise ε. This also
extends to penalized problems (see Section 2.2).
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1.2 Probabilistic and combinatorial lemmas

We start with two small probabilistic lemmas:

Lemma 1 If z ∈ R
n is normally distributed with mean 0 and covariance matrix σ2I, then, if s < 1

2σ2 ,

E
[
es‖z‖

2
2

]
= (1− 2σ2s)−n/2.

Proof We have, for σ = 1 (from which we can derive the result for all σ), and s < 1/2:

E
[
es‖z‖

2
2

]
= E

[
es

∑n
i=1

z2i
]
=

n∏

i=1

E
[
esz

2
i
]
=

1

(2π)n/2

n∏

i=1

∫ ∞

−∞
e(s−

1

2
)z2i dzi

=
1

(2π)n/2

n∏

i=1

√
2π

(
1− 2s)−1/2 = (1− 2s)−n/2.

Lemma 2 Let u1, . . . , um be m random variables which are potentially dependent, and s > 0, v > 0 such
that for each i ∈ {1, . . . ,m}, E

[
esui

]
6 v. Then, E

[
max{u1, . . . , um}

]
6 1

s log(mv).

Proof Following the reasoning from Section 6.2 in Lecture 1, for any s ∈ R,

E
[
max{u1, . . . , um}

]
6

1

s
log

( m∑

i=1

E
[
esui

])
6

1

s
log(mv).

The previous two lemmas can be combined to upper-bound the expectation of squared norms of Gaussian
random variables: if z1, . . . , zm ∈ R

n are Gaussian random vectors which are potentially dependent, but
for which the covariance matrix of zi has eigenvalues less than σ2, we have for s = 1

4σ2 , and Lemma 1,

E[es‖z‖
2
2 ] 6 2n/2, and from Lemma 2,

E[max{‖z1‖22, . . . , ‖zm‖22}] 6 4σ2 log(m2n/2) = 2nσ2 log(2) + 4σ2 log(m),

which is to be compared to the expectation of each elements of the max, which is less than σ2n. We pay
an additive factor proportion to σ2 log(m). This will be applied to m ∝ dk, leading to the extra term in
σ2k log(d) for methods based on the ℓ0-penalty.

The term in dk comes from the following lemma.

Lemma 3 Let d > 0 and k ∈ {1, . . . , d}. Then log
(d
k

)
6 k(1 + log d

k ).

Proof By recursion on k, the inequality is trivial for k = 1, and if
( d
k−1

)
6

(
ed
k−1

)k−1
, then

(
d

k

)
=

(
d

k − 1

)
d− k

k
6

( ed

k − 1

)k−1 d

k
6

(ed
k

)k−1
(1 +

1

k − 1
)k−1 d

k
6

(ed
k

)k−1
e
d

k
=

(ed
k

)k
,

where we use for α > 0, (1 + 1
α)

α = exp(α log(1 + α)) 6 exp(1) = e.
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We now consider two types of variable selection frameworks, one based on ℓ0-penalties, one based on
ℓ1-penalties.

2 Variable selection by ℓ0 penalty

In this section, we assume that the target θ∗ has k non-zero components, that is, ‖θ∗‖0 = k. We denote
by A = supp(θ∗) the “support” of θ∗, that is, the subset of {1, . . . , d} composed of j such that (θ∗)j 6= 0.
We have |A| = k.

2.1 Assuming k is known

Price of adaptivity. If we knew the set A, then we could simply perform least-squares with the design
matrix ΦA ∈ R

n×|A|, where ΦB denotes the sub-matrix of Φ obtained by keeping only the columns from B,
with an excess risk proportional to σ2k/n (this is what we called the “oracle” in Section 4). Thus, as long
as k is small compared to n, we can estimate θ∗ correctly, regardless of the potentially large value of d.

However, we do not know A in advance, and we have to estimate it. We will see that this will lead to an

extra factor of log
(d
k

)
6 log d, due to the potentially large number of models with k variables. We first

start by assuming that the cardinality k is known in advance, and we consider Gaussian noise for simplicity
(this extends to sub-Gaussian noise as well, see note below).

Proposition 1 (Model selection - known k) Assume y = Φθ∗ + ε, with ε ∈ R
n a vector with inde-

pendent Gaussian components of zero mean and variance σ2, with ‖θ∗‖0 6 k, for k 6 d/2. Let θ̂ be the
minimizer of ‖y − Φθ‖22 with the constraint that ‖θ‖0 6 k. Then:

E
[
(θ̂ − θ∗)

⊤Σ̂(θ̂ − θ∗)
]
= E

[ 1
n
‖Φ(θ̂ − θ∗)‖22

]
6 32σ2 k

n

(
log

(d
k

)
+ 1

)
.

Proof Starting from Eq. (1), we see that for any θ such that ‖θ‖0 6 k, we have ‖θ− θ∗‖0 6 2k, and thus
we have, from Section 1.1:

‖Φ(θ̂ − θ∗)‖22 6 4 sup
θ∈Rd,‖θ‖06k

[
ε⊤

( Φ(θ − θ∗)

‖Φ(θ − θ∗)‖2

)]2

6 4 sup
θ∈Rd,‖θ−θ∗‖062k

[
ε⊤

( Φ(θ − θ∗)

‖Φ(θ − θ∗)‖2

)]2
from the discussion above,

= 4 sup
B⊂{1,...,n}, |B|62k

4 sup
Supp(θ−θ∗)=B

[
ε⊤

( Φ(θ − θ∗)

‖Φ(θ − θ∗)‖2

)]2
by separating by supports,

6 4 sup
B⊂{1,...,n}, |B|62k

sup
z∈im(ΦB),‖z‖2=1

[
ε⊤z

]2

6 4 sup
B⊂{1,...,n}, |B|62k

‖ΠΦB
ε‖2 6 4 sup

B⊂{1,...,n}, |B|=2k
‖ΠΦB

ε‖2,
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because ‖ΠΦB
ε‖2 is non-decreasing in B.

The random variable ‖ΠΦB
ε‖2 has an expectation which is less than 2k, given that there are

(
d

2k

)
6

( ed
2k

)2k
sets B of cardinality 2k (bound from Lemma 3), we should expect, with concentration inequalities

from Section 1.2, that we pay a price of log
(
ed
2k

)2k
≈ k log d

k . We will make this reasoning formal.

Indeed, ΠΦB
ε is normally distributed with isotropic covariance matrix of dimension |B| 6 2k, and thus we

have for sσ2 < 1/2 small enough, from Lemma 1:

E
[
es‖ΠΦB

ε‖2
]
6 (1− 2σ2s)−k = 2−k.

Thus, with s = 1/(4σ2), we get, from Lemma 2:

E
[
‖Φ(θ̂ − θ∗)‖22

]
6 16σ2 log

(( d

2k

)
2k
)
6 16σ2 log

(( ed
2k

)2k
2k
)
= 16σ2

(
2k log

(d
k

)
+ (2− log 2)k

)
.

This leads to the desired result.

We can make the following observations:

• The result extends beyond Gaussian noise, that is, for all sub-Gaussian εi, for which E[esεi ] 6 es
2τ2

for all s > 0 (for some τ > 0), or, equivalently P(|εi| > t) = O(e−ct2) for some c > 0.

• The result extends if the minimisation is only done approximately.

• This result is not improvable by any algorithm (polynomial time or not), see, e.g., [2, Theorem 2.3].

Algorithms. In terms of algorithms, essentially all subsets of size k have to be looked at for exact
minimization, with a cost proportional to O(dk), which starts to be a problem when k gets large. There
are however two simple algorithms that come with guarantees when such fast rates are available for ℓ1-
regularization (see Section 3.3).

• Greedy algorithm: starting from the empty set, variables are added one by one that maximizing the
resulting cost reduction. This is often referred to as orthogonal matching pursuit.

• Iterative sorting: Starting from θ0 = 0, the iterative algorithm goes as follows at iteration t; the upper
bound (based on the L-smoothness of the quadratic loss, with L = λmax(

1
nΦ

⊤Φ), see Lecture 4):

1

n
‖y − Φθt−1‖22 −

2

n
(y − Φθt−1)

⊤Φ(θ − θt−1) + λmax(
1

n
Φ⊤Φ)‖θ − θt−1‖22

on the cost function 1
n‖y−Φθ‖22 is built and minimized with respect to ‖θ‖0 6 k to obtain θt, which is

done (check as an exercise) by computing the unconstrained minimizer θt−1+
1

λmax(
1
nΦ

⊤Φ)

1

n
Φ⊤(y−

Φθt−1), and selecting the k largest components.
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2.2 Estimating k (��)

In practice, regardless of the computational cost, one also needs to estimate k. A classical idea to consider
penalized maximum likelihood and minimize

1

n
‖y − Φθ‖22 + λ‖θ‖0. (2)

This is known to be a hard problem to solve, which essentially requires to look at all 2d subsets. For a well
chosen λ, this (almost) leads to the same performance as if k were known.

Proposition 2 (Model selection - ℓ0-penalty) Assume y = Φθ∗ + ε, with ε ∈ R
n a vector of with

independent Gaussian components of zero mean and variance σ2, with ‖θ∗‖0 6 k. Let θ̂ be the minimizer

of Eq. (2). Then, for λ = 2σ2

n (3 + 2 log d), we have:

E
[ 1
n
‖Φ(θ̂ − θ∗)‖22

]
6

16σ2k

n
(3 + 2 log d) +

5σ2

n
.

Proof We follow the same proof technique than in Section 1.1, but now for regularized problems. We
have by optimality of θ̂:

‖y − Φθ̂‖22 + nλ‖θ̂‖0 6 ‖y −Φθ∗‖22 + nλ‖θ∗‖0,
which leads to, using the inequality 2ab 6 2a2 + 1

2b
2:

‖Φ(θ̂ − θ∗)‖22 6 2‖Φ(θ̂ − θ∗)‖2 · ε⊤
( Φ(θ̂ − θ∗)

‖Φ(θ̂ − θ∗)‖2

)
+ nλ‖θ∗‖0 − nλ‖θ̂‖0

6 2
(
ε⊤

( Φ(θ̂ − θ∗)

‖Φ(θ̂ − θ∗)‖2

))2
+

1

2
‖Φ(θ̂ − θ∗)‖22 + nλ‖θ∗‖0 − nλ‖θ̂‖0,

leading to, by taking the supremum over θ ∈ R
d:

‖Φ(θ̂ − θ∗)‖22 6 sup
θ∈Rd

{
4
(
ε⊤

( Φ(θ − θ∗)

‖Φ(θ − θ∗)‖2

))2
+ 2nλ‖θ∗‖0 − 2nλ‖θ‖0

}
.

We then take the supremum by layers, as sup
θ∈Rd

= sup
k∈{1,...,d}

sup
|B|=k

sup
supp(θ)=B

, that is, and using the same

derivations as for Prop. 1:

E
[
‖Φ(θ̂ − θ∗)‖22

]
6 E

[
sup

k∈{1,...,d}
sup
|B|=k

sup
supp(θ)=B

{
4
(
ε⊤

( Φ(θ − θ∗)

‖Φ(θ − θ∗)‖2

))2
+ 2nλ‖θ∗‖0 − 2nλk

}]2

6 4E

[
sup

k∈{1,...,d}
sup
|B|=k

{
‖ΠΦA∪B

ε‖2 + nλ

2
‖θ∗‖0 −

nλ

2
k
}]2

.
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We thus get with the same reasoning as in Section 2.1 (based on the probabilistic lemmas from Section 1.2):

E
[
‖Φ(θ̂ − θ∗)‖22

]
6 16σ2 log

( d∑

k=1

(
d

2k

)
22k exp(

n

2

λ

σ2
‖θ∗‖0 −

n

2

λ

σ2
k)
)

6 8nλ‖θ∗‖0 + 16σ2 log
( d∑

k=1

(
d

2k

)
22k exp(−n

2

λ

σ2
k)
)

6 8nλ‖θ∗‖0 + 16σ2 log
( d∑

k=1

( ed
2k

)2k
22k exp(−n

2

λ

σ2
k)
)

6 8nλ‖θ∗‖0 + 16σ2 log
( d∑

k=1

(
exp(k(2 log(d) + 2− n

2

λ

σ2
)
)
.

We thus simply impose that 2 log(d) + 2− n
2

λ
σ2 6 − log 2, to get

E
[
‖Φ(θ̂ − θ∗)‖22

]
6 8nλ‖θ∗‖0 + 16σ2 log(2).

We can thus choose: λ = 2σ2

n (3 + 2 log d) > 2σ2

n (2 + log 2), and get the desired result.

We can make the following observations:

• The penalty proportional to ‖θ‖0 log d is often referred to as the “BIC penalty”.

• Note that we need to know σ2 in advance, which can be a problem in practice. See [3] for more
details and alternative formulations.

• The three most important aspects are that: (1) the bound does not require any assumption on the
design matrix Φ, (2) that we observer a positive high-dimensional phenomenon, where d only appears
as log d

n , but (3) only exponential-time algorithms are possible for solving the problem with guarantees
(see algorithms below).

• Exercise (�): With a penalty proportional to ‖θ‖0 log d
θ0
, show the same bound than for d known.

Algorithms. We can extend the two algorithms from Section 2.1 for the penalized case:

• Forward-backward algorithm to minimize a function of a set B: Starting from the empty set B = ∅,
at every step of the algorithm, one tries both a forward algorithm (adding a node to B) and a
backward algorithm (removing a node from B), and only perform a step if it decreases the overall
cost function.

• Iterative hard thresholding: compared to the constrained case, we minimize

1

n
‖y − Φθt−1‖22 −

2

n
(y − Φθt−1)

⊤Φ(θ − θt−1) + λmax(
1

n
Φ⊤Φ)‖θ − θt−1‖22 + λ‖θ‖0,

which can also be computed in closed form (by iterative hard thresholding). That is, with θt =

θt−1 +
1

λmax(Φ⊤Φ)
Φ⊤(y − Φθt−1), all components (θt)j such that |(θt)j|2 > λ

1

n
λmax(Φ⊤Φ)

, are left

unchanged and all others are set to zero (left as an exercise).
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This is referred to as iterative hard thresholding (while for the ℓ1-norm, this will be iterative soft
thresholding, because, a component is either kept intact or set exactly to zero, leading to a discon-
tinuous behavior.

3 High-dimensional estimation through ℓ1-regularization

We now consider a computationally efficient alternative to ℓ0 penalties, namely using ℓ1 penalties, by
minimizing, for the square loss:

1

2n
‖y − Φθ‖22 + λ‖θ‖1. (3)

This is a convex optimization problem on which algorithms from Lecture 4 can be applied (see instances
below). It is often referred to as the “Lasso”problem, for “least absolute shrinkage and selection operator”.

3.1 Intuition and algorithms

Sparsity-inducing effect. As opposed to the sqaured ℓ2-norm used in ridge regression, the ℓ1-norm is
non differentiable, and its non-differentiability is not limited to θ = 0, but in many other points. To see
this, we can look at the ℓ1-ball and its different geometry compared to the ℓ2-ball. This is directly relevant
to situations where we constrain the value of the norm instead of penalizing by it.

θ1

θ2

θ1

θ2

As shown above, where we represent the level set of a potential loss function, the solution of the mini-
mization of the loss subject to the ℓ1-constraint (in green), is obtained when level sets are “tangent” to
the constraint set. In right part, this is obtained in a point away from the axes, but on the left part, this
is achieved at one of the corners of the ℓ1-ball, which are points where one of the components of θ is equal
to zero. Such corners are attractive and thus typically lead to sparse solutions.

One-dimensional problem. Another classical way to understand the sparsity-inducing effect is to con-
sider the one-dimensional problem:

min
θ∈R

F (θ) =
1

2
(y − θ)2 + λ|θ|.
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Since F is strongly-convex, it has a unique minimizer θ∗λ(y). For λ = 0 (no regularization), we have
θ∗0(y) = y, while for λ > 0, by computing left and right derivatives at zero (to be done as an exercise), one
can check that θ∗λ(y) = 0 if |y| 6 λ, and θ∗λ(y) = y − λ for y > λ, and θ∗λ(y) = y + λ for y < −λ, which
can be put all together as θ∗λ(y) = max{|y| − λ, 0} sign(y), which is depicted below. This referred to as
iterative soft thresholding (this will be useful for proximal methods below).

y

θ
∗

λ
(y)

λ

−λ

Note that the minimizer is either sent to zero, or shrunk towards zero.

Optimization algorithms. We can adapt algorithms from Lecture 4 to the problem in Eq. (3).

• Iterative hard-thresholding: We can apply proximal methods to the objective function of the form
F (θ)+λ‖θ‖1 for F (θ) = 1

2n‖y−Φθ‖22, for which F ′(θ) = 1
2nΦ

⊤(y−Φθ). The plain (non-accelerated)
proximal method recursion is

θt = arg min
θ∈Rd

F (θt−1) + F ′(θt−1)
⊤(θ − θt−1) +

L

2
‖θ − θt−1‖22 + λ‖θ‖1,

with L = λmax(
1
nΦ

⊤Φ). This leads to (θt)j = max{|(ηt)j |−λ, 0} sign((ηt)j), for ηt = θt−1− 1
LF

′(θt−1).
This simple algorithm can also be accelerated. The convergence rate then depends on invertibility of
1
nΦ

⊤Φ.

• Coordinate descent: Although the ℓ1-norm is a non-differentiable function, coordinate descent can
be applied (because the ℓ1-norm is “separable”). At each iteration, we select a coordinate to update
(at random or by cycling), and optimize with respect to this coordinate, which is a one-dimensional
problem which can be solved in closed form. The convergence properties are similar to proximal
methods [4].

η-trick. The non-differentiability of the ℓ1-norm may also be treated through the simple identity:

|θj | = inf
ηj>0

θ2j
2ηj

+
ηj
2
,

where the minimizer is attained at ηj = |θj|. See below.
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This leads to the reformulation of Eq. (3) as

inf
θ∈Rd

1

2n
‖y − Φθ‖22 + λ‖θ‖1 = inf

η∈Rd
+

inf
θ∈Rd

1

2n
‖y − Φθ‖22 +

λ

2

d∑

j=1

θ2j
2ηj

+
λ

2

d∑

j=1

ηj,

and alternating optimization algorithms can be used: (a) minimizing with respect to η when θ is fixed
can be done in closed form as ηj = |θj |, while minimizing with respect to θ when η is fixed is a quadratic
optimization problem which can be solved by a linear system. See more details in https://francisbach.

com/the-\%ce\%b7-trick-or-the-effectiveness-of-reweighted-least-squares/.

Optimality conditions (�). In order to study the estimator defined by Eq. (3), it is often necessary to
characterize when a certain θ is optimal or not, that is, to derive optimality conditions.

Since the objective function H(θ) = F (θ)+λ‖θ‖1 is not differentiable, we need other tools than having the
gradient equal to zero. The gradient looks only at d directions (along the coordinate axis), while, in the
non-smooth context, we need to look at all directions, that is, for all ∆ ∈ R

d, we need that the directional
derivative

∂H(θ,∆) = lim
ε→0

1

ε

[
H(θ + ε∆)−H(θ)

]
,

is non-negative. That is, we need to go up in all directions. When H is differentiable at θ, then ∂H(θ,∆) =
H ′(θ)⊤∆, and the positivity for all ∆ is equivalent to H ′(θ) = 0.

For H(θ) = F (θ) + λ‖θ‖1, we have:

∂H(θ,∆) = F ′(θ)⊤∆+ λ
∑

j, θj 6=0

sign(θj)∆j + λ
∑

j, θj=0

|∆j |.

It is separable in ∆j , j = 1, . . . , d, and it is non-negative for all j, if and only if, all components that
depend on ∆j are non-negative.

When θj 6= 0, then this requires F ′(θ)j+λ sign(θj) = 0, while when θj = 0, then we need F ′(θ)j∆j+λ|∆j| >
0 for all ∆j, which is equivalent to |F ′(θ)j| 6 λ. This leads to the set of conditions:

{
F ′(θ)j + λ sign(θj), ∀j ∈ {1, . . . , d} such that θj 6= 0,
|F ′(θ)j | 6 λ, ∀j ∈ {1, . . . , d} such that θj = 0.

See [2] for more details.
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Homotopy method (��). We assume for simplicity that Φ⊤Φ is invertible so that the minimizer θ(λ)
is unique, Given a certain sign pattern for θ, optimality conditions are all convex in λ and thus define an
interval in λ where the sign is constant. Given the sign, then the solution θ(λ) is affine in λ, leading to a
piecewise affine function in λ (see an example below). This is leads to the regularization path below.

0 0.1 0.2 0.3 0.4 0.5 0.6

−0.6

−0.4
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0
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0.4

0.6
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w
e
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h
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If we know the break points in λ and the associated signs, then we can compute all solutions for all λ.
This is the source of the homotopy algorithm for Eq. (3), which starts with large λ and builds the path of
solutions by computing break points one by one. See more details in [5].

3.2 Slow rates

We first consider analysis based on simple tools and with no assumptions on the design matrix Φ. We will
see that we can deal with high-dimensional inference problems where d can be large, but it will be rates
in 1/

√
n and not 1/n, hence the denomination “slow”.

We study the penalization by a general norm Ω : Rd → R with dual norm Ω∗. We thus denote by θ̂ a
minimizer of

1

2n
‖y − Φθ‖22 + λΩ(θ). (4)

We first start by a lemma characterizing the excess risk in two situations: (a) where λ is large enough, and
(b) in the general case.

Lemma 4 Let θ̂ be a minimizer of Eq. (4).

(a) If Ω∗(Φ⊤ε) 6 nλ
2 , then we have Ω(θ̂) 6 3Ω(θ∗) and

1
n‖Φ(θ̂ − θ∗)‖22 6 3λΩ(θ∗).

(b) In all cases, 1
n‖Φ(θ̂ − θ∗)‖22 6 8

n‖ε‖22 + 4λΩ(θ∗).

Proof We have, like in previous proofs, by optimality of θ̂ for Eq. (4):

‖Φ(θ̂ − θ∗)‖22 6 2ε⊤Φ(θ̂ − θ∗) + 2nλΩ(θ∗)− 2nλΩ(θ̂).

12



Then, with the dual norm Ω∗(z) = supΩ(θ)61 z
⊤θ, assuming that Ω∗(Φ⊤ε) 6 nλ

2 , and using the triangle
inequality:

‖Φ(θ̂ − θ∗)‖22 6 2Ω∗(Φ⊤ε)Ω(θ̂ − θ∗) + 2nλΩ(θ∗)− 2nλΩ(θ̂)

6 nλΩ(θ̂ − θ∗) + 2nλΩ(θ∗)− 2nλΩ(θ̂)

6 nλΩ(θ̂) + nλΩ(θ∗) + 2nλΩ(θ∗)− 2nλΩ(θ̂) 6 3nλΩ(θ∗)− nλΩ(θ̂).

This implies that Ω(θ̂) 6 3Ω(θ∗) and
1
n‖Φ(θ̂ − θ∗)‖22 6 3λΩ(θ∗).

We also have a general bound through:

‖Φ(θ̂ − θ∗)‖22 6 2‖ε‖2‖Φ(θ̂ − θ∗)‖2 + 2nλΩ(θ∗),

which leads to2, without any constraint on λ:

‖Φ(θ̂ − θ∗)‖2 6 2‖ε‖2 +
√

2nλΩ(θ∗),

which leads to the desired bound.

We can now use the lemma above to compute the excess risk of the Lasso, for which Ω∗(Φ⊤ε) = ‖Φ⊤ε‖∞.
The key is to note that since ‖Φ⊤ε‖∞ is a maximum of 2d terms that scales as

√
n, it maximum scales as

√
n log(d) and we will apply the lemma above when λ is larger than

√
log d
n .

Proposition 3 (Lasso - slow rate) Assume y = Φθ∗ + ε, with ε ∈ R
n a vector of with independent

Gaussian components of zero mean and variance σ2. Let θ̂ be the minimizer of Eq. (3). Then, for λ =

4σ

√
log(dn)

n

√
‖Σ̂‖∞, we have:

E
[ 1
n
‖Φ(θ̂ − θ∗)‖22

]
6 40σ

√
log(dn)

n

√
‖Σ̂‖∞‖θ∗‖1 +

6
√
2

n
σ2.

Proof For each j, the random variable (Φ⊤ε)j is Gaussian with mean zero and variance σ2Σ̂jj. Thus,
we get from the union bound and from the fact that for a standard Gaussian variable z, P(|z| > t) 6

2 exp(−t2/2):

P
(
‖Φ⊤ε‖∞ >

nλ

2

)
6

d∑

j=1

P
(
|Φ⊤ε|j >

nλ

2

)
6 2

d∑

j=1

exp
(
− nλ2

8Σ̂jj

)
6 2d exp

(
− nλ2

8σ2‖Σ̂‖∞
)
= δ.

Thus, with probability greater than 1 − δ, we can apply the first part of Lemma 4, and thus the error is
less than 3λ‖θ∗‖1. This would be the end of the proof if a high-probability result was desired. For a result
in expectation, we need also the second part.

Overall, we get, denoting A the event A =
{
Ω∗(Φ⊤ε) 6

nλ

2

}
, and the previous lemma:

E
[
‖Φ(θ̂ − θ∗)‖22

]
= E

[
1A‖Φ(θ̂ − θ∗)‖22

]
+ E

[
1Ac‖Φ(θ̂ − θ∗)‖22

]

6 3nλ‖θ∗‖1 + P(Ac)1/2
(
E
[
(2‖ε‖2 +

√
2nλ‖θ∗‖1)4

])1/2

6 3nλ‖θ∗‖1 + 2P(Ac)1/2
(
4
(
E
[
‖ε‖42

])1/2
+ 2nλ‖θ∗‖1

)
.

2Using the lemma: if a > 0 is such that a2
6 ab + c for some b, c > 0, then a 6 b +

√

c. Note that we could also use the
identity 2ab 6 2a2 + 1

2
b2.
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With Gaussian noise, we have:
√

E
[
‖ε‖42

]
6 3nσ2, leading to:

1

n
E
[
‖Φ(θ̂ − θ∗)‖22

]
6 3λ‖θ∗‖1 + 2

√
2d exp

(
− nλ2

16σ2‖Σ̂‖∞
)
(3σ2 + 2λ‖θ∗‖1).

With nλ2

16σ2‖Σ̂‖∞
= log(dn), we get

1

n
E
[
‖Φ(θ̂ − θ∗)‖22

]
6 3λ‖θ∗‖1 +

2
√
2

n
(3σ2 + 2λ‖θ∗‖1)

6 40σ

√
log(dn)

n

√
‖Σ̂‖∞‖θ∗‖1 +

6
√
2

n
σ2.

△! Check homogeneity!

We can make the following observations:

• We already observe some high-dimensional phenomenon with the term
√

log d
n , where n can be much

larger than d (if of course we assume that the optimal predictor θ∗ is sparse).

• Exercise (�): Using Rademacher complexities from Lecture 3, show a similar slow rate for ℓ1-
constrained optimization with Lipschitz-continuous losses.

3.3 Fast rates (�)

We now consider conditions to obtain a fast rate with leading term proportional to σ2k log dn, which is the
same as for ℓ0-penalty, but with tractable algorithms. This will come with extra (very) strong conditions
on the design matrix Φ.

We start with a simple (but crucial) lemma, characterizing the solution of Eq. (3) in terms of the support
A of θ∗.

Lemma 5 Let θ̂ be a minimizer of Eq. (4). If ∆ = θ̂−θ∗, then ‖∆Ac‖1 6 3‖∆A‖1 and ‖Φ∆‖22 6 3nλ‖∆A‖1.

Proof We have, like in previous proofs, with ∆ = θ̂ − θ∗, and A the support of θ∗:

‖Φ∆‖22 6 2ε⊤Φ∆+ 2nλ‖θ∗‖1 − 2nλ‖θ̂‖1.

Then, assuming that ‖Φ⊤ε‖∞ 6 nλ
2 ,

‖Φ∆‖22 6 2‖Φ⊤ε‖∞‖∆‖1 + 2nλ‖θ∗‖1 − 2nλ‖θ̂‖1
‖Φ∆‖22 6 nλ‖∆‖1 + 2nλ‖θ∗‖1 − 2nλ‖θ̂‖1.

We then use, by using the decomposability of the ℓ1-norm and the triangle inequality:

‖θ∗‖1 − ‖θ̂‖1 = ‖(θ∗)A‖1 − ‖θ∗ +∆‖1 = ‖(θ∗)A‖1 − ‖(θ∗ +∆)A‖1 − ‖∆Ac‖1 6 ‖∆A‖1 − ‖∆Ac‖1,
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to get

‖Φ∆‖22 6 nλ‖∆‖1 + 2nλ(‖θ∗‖1 − ‖θ̂‖1) 6 nλ‖∆‖1 + 2nλ(‖∆A‖1 − ‖∆Ac‖1)
6 nλ(‖∆A‖1 + ‖∆Ac‖1) + 2nλ(‖∆A‖1 − ‖∆Ac‖1) = 3nλ‖∆A‖1 − nλ‖∆Ac‖1.

This leads to ‖∆Ac‖1 6 3‖∆A‖1 and the other desired inequality.

We can now add an extra assumption that will make the proof go through, namely

1

n
‖Φ∆‖22 > κ‖∆A‖22 (5)

for all ∆ that satisfies the condition ‖∆Ac‖1 6 3‖∆A‖1. This is called the “restrictive eigenvalue property”,
because is the smallest eigenvalue of 1

nΦ
⊤Φ is great than κ, the condition is satisfied (but this is only possible

if n > d). This leads to the following proposition.

Proposition 4 (Lasso - fast rate) Assume y = Φθ∗ + ε, with ε ∈ R
n a vector with independent Gaus-

sian components of zero mean and variance σ2. Let θ̂ be the minimizer of Eq. (3). Then, for λ =

4σ

√
log(dn)

n

√
‖Σ̂‖∞, we have, if Eq. (5) is satisfied:

E
[ 1
n
‖Φ(θ̂ − θ∗)‖22

]
6

144|A|σ2‖Σ̂‖∞
κ

log(dn)

n
+

6
√
2

n
σ2 +

8

n
‖θ∗‖1σ

√
log(dn)

n

√
‖Σ̂‖∞.

Proof (�) We have, when λ is large enough, and by application of Lemma 5, and using Eq. (5):

‖∆A‖1 6 |A|1/2‖∆A‖2 6
|A|1/2√

nκ
‖Φ∆‖2 6

|A|1/2√
nκ

√
3nλ‖∆A‖1,

which leads to ‖∆A‖1 6
3|A|λ
κ

. We then get 1
n‖Φ∆‖22 6

9|A|λ2

κ , and we can reuse the same reasoning as

for the slow rate, to get

E
[ 1
n
‖Φ∆‖22

]
6

9|A|λ2

κ
+

2
√
2

n
(3σ2 + 2λ‖θ∗‖1)

6
144|A|σ2‖Σ̂‖∞

κ

log(dn)

n
+

6
√
2

n
σ2 +

8

n
‖θ∗‖1σ

√
log(dn)

n

√
‖Σ̂‖∞.

The dominant part of the rate is proportional to σ2k log d
n , which is a fast rate, but depends crucially on a

very strong assumption.

3.4 Zoo of conditions (��)

Conditions to obtain fast rates are plentyful: they all assume that there is low-correlation among predictors,
which is rarely the case in practice (in particular, if there is two features which are equal, they are never
satisfied).
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Restricted eigenvalue property (REP). The most direct condition is the so-called restricted eigen-
value property (REP), which is exactly Eq. (5), with the supremum taken over the unknown set A of
cardinality less than k:

inf
|A|6k

inf
‖∆Ac‖163‖∆A‖1

‖Φ∆‖22
n‖∆A‖22

> κ > 0.

Mutual incoherence condition. A simpler one to check, but weaker, is the mutual incoherence con-
dition:

sup
i 6=j

|Σ̂ij| 6
minj∈{1,...,d} Σ̂jj

14k
, (6)

which states that all cross-correlation coefficient are small (pure decorrelation would set them to zero).

This is weaker than the REP condition above. Indeed, by expanding, we have:

‖Φ∆‖22 = ‖ΦA∆A+ΦAc∆Ac‖22 = ‖ΦA∆A‖22+2∆⊤
AΦ

⊤
AΦAc∆Ac +‖ΦAc∆Ac‖22 > ‖ΦA∆A‖22+2∆⊤

AΦ
⊤
AΦAc∆Ac .

Moreover, we have:

∆⊤
AΣ̂AA∆A = ∆⊤

A Diag(diag(Σ̂AA))∆A+∆⊤
A(Σ̂AA−Diag(diag(Σ̂AA))∆A > min

j∈{1,...,d}
Σ̂jj

(
‖∆A‖22−

1

14k
‖∆A‖21

)
,

and

|∆⊤
AΦ

⊤
AΦAc∆Ac | 6

minj∈{1,...,d} Σ̂jj

14k
‖∆Ac‖1‖∆A‖1 6

3minj∈{1,...,d} Σ̂jj

14k
‖∆A‖21.

This leads to 1
n‖Φ∆‖22 > minj∈{1,...,d} Σ̂jj

(
‖∆A‖22 − 7

14k‖∆A‖21
)
> minj∈{1,...,d} Σ̂jj

(
‖∆A‖22 − 7k

14k‖∆A‖22
)
,

thus leading to κ = minj∈{1,...,d} Σ̂jj/2 for the REP condition.

Restricted isometry property. One of the earlier conditions was the restricted isometry property: all
eigenvalues of submatrices of Σ̂ of size less than 2k, are between 1 − δ and 1 + δ for δ small enough. See
[2, 6] for details.

Gaussian designs (�). It is not obvious that the conditions above are non-trivial (that is, there may
exist no matrix with good sizes d and n for k large enough). In order for our results to be non-trivial,
we need that k log d

n is small but not too small. We show in this paragraph that when sampling from
Gaussian distributions, then assumptions above are satisfied. This is a first step towards a random design
assumption.

Theorem 1 ([6], Theorem 7.16) If sampling ϕ(x) from a Gaussian with mean zero and covariance

matrix Σ, then with probability greater than 1− e−n/32

1−e−n/32 , the REP property is satisfied with κ = c1
2 λmin(Σ)

as soon as k log d
n 6 c1

8c2

λmin(Σ)
‖Σ‖∞

, with c1 = 1/8 and c2 = 50.

The theorem above is hard to prove, the following exercise proposes to prove a weaker result, showing that
the guarantees for the maximal cardinality k of the support has to be smaller.
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• Exercise (���): If sampling ϕ(x) from a Gaussian with mean zero and covariance matrix identity,
then with large probability, for n greater than a constant times k2 log d

n , then mutual incoherence
property in Eq. (6) is satisfied.

Model selection and irrepresentable condition (�). Given that the Lasso aims at performing vari-
able selection, it is natural to study its capacity to find the support of θ∗, that is, the set of non-zero
variables. It turns out that it also depends on some conditions on the design matrix, which are stronger
than the REP conditions, and called the “ irrepresentable condition”, and also valid for Gaussian random
matrices with similar scalings between n, d and k. See [2, 6] for details.

△! Algorithmic and theoretical tools are similar to compressed sensing, where the design matrix
represents a set of measurements, which can be chosen by the user/theoretician. In this context,
sampling from i.i.d. Gaussians make sense. For machine learning and statistics, the design
matrix is the data, and comes as it is, often with strong correlations.

4 Experiments

In this section, we perform a simple experiment on Gaussian design matrices, where all entries in Φ ∈ R
n×d

are sampled independently from a standard Gaussian distribution. Then θ∗ is taken to be zero except on
k components where it is randomly equal to −1 or 1. We consider σ =

√
k (to have a signal to noise ratio

that remains constant when k varies). We perform 128 replications. For each method and each value of its
hyperparameter, we averaged the test risk over the 128 replications and report the minimum value (with
respect to the hyperparameter). We compare the following three methods:

• Ridge regression: penalty by λ‖θ‖22.

• Lasso regression: penalty by λ‖θ‖1.

• Orthogonal matching pursuit (greedy forward method), with hyperparameter k (the number of in-
cluded variables).

We compare two situations: (1) non-rotated data (exactly the model above), and (2) rotated data, where
we replace Φ by ΦR and θ∗ by R⊤θ∗, where R is a rotation matrix. For the rotated data, we do not expect
sparse solutions, and hence sparse methods are not expected to work better than ridge regression (and
OMP performs significantly because once the support is chosen, there is no regularization). Note that the
two curves for ridge regression are exactly the same (as expected from rotation invariance of the ℓ2-norm).
The oracle performance corresponds to the estimator where the true support is given.
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△! Sparse methods make assumptions regarding the best predictor. Like all assumptions, when this
assumed prior knowledge is not correct, the method does not perform better.

5 Extensions

Sparse methods are more general than the ℓ1-norm, and can be extended in a number of ways:

• Group penalties: in many cases, {1, . . . , d} is partitioned in to m subsets A1, . . . , Am, and the goal
is to consider “group sparsity”, that is, if we select one variable within a group Aj , the entire group
should be selected. Such behavior can be obtained using the penalty

∑m
i=1 ‖θAi‖2 or

∑m
i=1 ‖θAi‖∞.

See, e.g., [2] for details.

• Structured sparsity: it is also possible to favor other specific patterns for the selected variables, such
as blocks, trees, etc. See [7] for details.

• Nuclear norm: when learning on matrices, a natural form of sparsity is for a matrix to have low rank.
This can be achieved by penalizing by the sum of singular values of a matrix, which is a norm called
the nuclear norm or the trace norm. See [8] and references therein.

• Multiple kernel learning: the group penalty can be extended when the groups have an infinite dimen-
sion and ℓ2-norms are replaced by RKHS norms defined in Lecture 6. This becomes a tool to learn
the kernel matrix from data. See [9] for details.

• Elastic net: often, when both effects of the ℓ1-norm (sparsity) and of the squared ℓ2-norm (strong-
convexity) are desired, we can sum the two, which is referred to as the “elastic net” penalty.

• Concave penalization and debiasing: in order to obtain a sparsity-inducing effect, the penalty in the
ℓ1-norm has to be quite large, such as in 1/

√
n, which often creates a strong bias in the estimation

once the support is selected. There are several ways on debiasing the Lasso, an elegant one being to
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use a “concave” penalty. That is, we use
∑d

i=1 a(|θi|) where a is a concave increasing function on R
+

such as a(u) = uα for α ∈ (0, 1). This leads to a non-convex optimization problem, where iterative
weighted ℓ1-minimization provides natural algorithms (see [10] and references therein).
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