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Class summary

- Guarantees in the fixed design settings (simple in closed-form as σ2d/n)
- Ridge regression: dimension independent bounds
- Guarantees in the random design setting
- Lower bound of performance

Announcements

• Ask questions! (chat or directly)

• Coding assignment for each lecture: reproduce the experiments and send the figures to the following
address: learning.theory.first.principles@gmail.com (and not my personal email address).

△! Each student is expected to read class notes before the
class. △!
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1 Introduction

In this class, we introduce and analyze linear least-squares regression, a tool that can be traced back to
Legendre (1805) and Gauss (1809)—see https://en.wikipedia.org/wiki/Least_squares#The_method

for an interesting discussion and the claim that Gauss knew about it already in 1795.

Why should we study linear least-squares regression? Isn’t there any progress since 1805? A few reasons:

• It already captures many of the concepts in learning theory, such as the bias-variance trade-off, as
well as the dependence of generalization performance on the underlying dimension of the problem,
or on dimension-less quantities.

• Because of its simplicity, many results can be easily derived without the need for complicated math-
ematics (simple linear algebra for the simplest results).

• Using features, it can be extended to arbitrary non-linear predictions (see kernel methods in Lec-
ture 6).

In subsequent lectures, we will extend many of these results beyond least-squares.

2 Least-squares framework

• We recall the goal of supervised machine learning from Lecture 1: given some observations (xi, yi) ∈
X × Y, i = 1, . . . , n, of inputs/outputs, features/variables (training data), given a new x ∈ X,
predict y ∈ Y (testing data) with a regression function f such that y ≈ f(x). We use the square
loss ℓ(y, z) = (y − z)2, for which we know from the previous lecture, that the optimal predictor if
f∗(x) = E(y|x).

• In this lecture, we consider empirical risk minimization. We choose a parameterized family of pre-
diction functions fθ : X → Y for θ ∈ Θ and minimize the empirical risk

1

n

n∑

i=1

(yi − fθ(xi))
2,

leading to the estimator θ̂ ∈ argmin 1
n

∑n
i=1(yi−fθ(xi))

2. Note that in most cases, the Bayes predictor
f∗ does not belong to the class of functions {fθ, θ ∈ Θ}, that is, the model is said misspecified.

• Least-squares regression can be carried out with parameterizations of the function fθ which may be
non-linear in the parameter θ. In this lecture, we will consider only situations where fθ(x) is linear
in θ, which is thus assumed to live in a vector space, and which we take to be R

d for simplicity.

△! Being linear in x or linear θ is different!

• While we assume linearity in the parameter θ, nothing forces fθ(x) to be linear in the input x. In
fact, even the concept of linearity may be meaningless if X is not a vector space. Through Riesz
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representation theorem, for any x ∈ X, there exists a vector in R
d, which we denote ϕ(x), such that

fθ(x) = ϕ(x)⊤θ.

The vector ϕ(x) ∈ R
d is typically called the feature vector, which we assume to be known (in other

words, it is given to us and can be computed explicitly when needed). We thus consider minimizing

R̂(θ) :=
1

n

n∑

i=1

(yi − ϕ(xi)
⊤θ)2.

• When X ⊂ R
d, we can make the extra assumptions that fθ is an affine function, which can be obtained

through ϕ(x) =

(
x

1

)
∈ R

d+1. Other classical assumptions are ϕ(x) composed of monomials. We will

see in Lecture 6 (kernel methods) that we can consider infinite-dimensional features.

• Matrix notation: the cost function above can be rewritten in matrix notations. Let y = (y1, . . . , yn)
⊤ ∈

R
n be the vector of outputs (sometimes called the response vector), and Φ ∈ R

n×d the matrix of
inputs, which rows are ϕ(xi)

⊤. It is called the design matrix. In these notations, the empirical risk
is

R̂(θ) =
1

n
‖y − Φθ‖22, (1)

where ‖α‖22 =
∑d

j=1 α
2
j is the squared ℓ2-norm of α.

△! It is sometimes tempting at first to avoid matrix notations. We strongly advise against it as it leads
to long and error-prone formulas.

3 Ordinary least-squares (OLS) estimator

We make the assumption that the matrix Φ ∈ R
n×d has full column rank (i.e., the rank of Φ is d). In

particular, the problem is said “over-determined”, and d 6 n. Equivalently, we assume that Φ⊤Φ ∈ R
d×d

is invertible.

Definition 1 When Φ has full column rank, the minimizer of Eq. (1) is called the ordinary least-squares
(OLS) estimator.

3.1 Closed-form solution

Proposition 1 When Φ has full column rank, the OLS estimator exists and is unique. It is given by

θ̂ = (Φ⊤Φ)−1Φ⊤y.

Denote the (non-centered1empirical covariance matrix Σ̂ := 1
nΦ

⊤Φ ∈ R
d×d; we have θ̂ = 1

n Σ̂
−1Φ⊤y.

1The “centered” covariance matrix would be 1

n

∑n

i=1
[ϕ(xi)−µ][ϕ(xi)−µ]⊤ where µ = 1

n

∑n

i=1
ϕ(xi) is the empirical mean,

while we consider Σ̂ = 1

n

∑n

i=1
ϕ(xi)ϕ(xi)

⊤.
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Proof Since the function R̂ is coercive (i.e., going to infinity at infinity) and continuous, it admits at least
a minimizer. Moreover, it is differentiable, so a minimizer θ̂ must satisfy ∇R̂(θ̂) = 0. For all θ ∈ R

d, we
have

R̂(θ) =
1

n

(
‖y‖22 − 2θ⊤Φ⊤y + θ⊤Φ⊤Φθ

)
and ∇R̂(θ) =

2

n

(
Φ⊤Φθ −Φ⊤y

)
.

The condition ∇R̂(θ̂) = 0 gives the so-called normal equations:

Φ⊤Φθ̂ = Φ⊤y.

The normal equations have a unique solution θ̂ = (Φ⊤Φ)−1Φ⊤y. This shows the uniqueness of the minimizer
of R̂ as well as its closed-form expression.

Another way to show uniqueness of the minimizer is by showing that R̂ is strongly convex since∇2R̂(θ) = 2Σ̂
for all θ ∈ R

d (convexity will be studied in Lecture 4).

△! For readers worried about carrying a factor of two in the gradients, we will use an additional factor
1/2 in lectures on optimization (e.g., Lecture 4).

3.2 Geometric interpretation

Proposition 2 The vector of predictions Φθ̂ = Φ(Φ⊤Φ)−1Φ⊤y is the orthogonal projection of y ∈ R
n

onto im(Φ) ⊂ R
n, the column space of Φ.

Proof Let us show that P := Φ(Φ⊤Φ)−1Φ⊤ ∈ R
n×n is the orthogonal projection on im(Φ). For any a ∈ R

d,
it holds PΦa = Φ(Φ⊤Φ)−1Φ⊤Φa = Φa, so Pu = u for all u ∈ im(Φ). Also, since im(Φ)⊥ = null(Φ⊤),
where Pu′ = 0 for all u′ ∈ im(Φ)⊥. These properties characterize the orthogonal projection on im(Φ).

Thus we can interpret the OLS estimation as doing the following (see below for an illustration):

1. compute ȳ the projection of y on the image of Φ,

2. solve the linear system Φθ = ȳ which has a unique solution.

im(Φ)
0

y

ȳ

3.3 Numerical resolution

While the closed-form θ̂ = (Φ⊤Φ)−1Φ⊤y is convenient for analysis, inverting Φ⊤Φ is sometimes unstable
and has a large computational cost when d is large. The following methods are usually preferred.
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QR factorization. The QR decomposition factorizes the matrix Φ as Φ = QR where Q ∈ R
n×d has

orthonormal columns and R ∈ R
d×d is upper triangular (see [1]). Computing a QR decomposition is faster

and more stable than inverting a matrix. One has

(Φ⊤Φ)θ̂ = Φ⊤y ⇔ R⊤Q⊤QRθ̂ = R⊤Q⊤y ⇔ R⊤Rθ̂ = R⊤Q⊤y ⇔ Rθ̂ = Q⊤y.

It only remains to solve a triangular linear system which is easy. The overall running time complexity
remains O(d3). The conjugate gradient algorithm can also be used.

Gradient descent. We can completely bypass the need of matrix inversion or factorization using gradient
descent. It consists in minimizing approximately R̂ by taking an initial point θ0 ∈ R

d and iteratively going
towards the minimizer by following the opposite of the gradient

θk+1 = θk − γ∇R̂(θk) for k ≥ 0,

where γ > 0 is the step-size. When these iterates converge, it is towards the OLS estimator since a fixed-
point θ satisfies ∇R̂(θ) = 0. We will study such algorithms in Lecture 4, with running-time complexities
going up to linear in d.
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4 Statistical analysis of OLS

We now prove guarantees on the performance of the OLS estimator. There are two settings of analysis for
least-squares:

• Random design. In this setting, both the input and the output are random. This is the classical
setting of supervised machine learning, where the goal is generalization to unseen data (like in last
lecture). Since it is bit more complicated, it will be done after the fixed design setting.

• Fixed design. In this setting, we assume that the input data (x1, . . . , xn) are not random and we are
interested in obtaining a small prediction error on those input points only. Alternatively, this can
be seen as a prediction problem where the input distribution dp(x) is the empirical distribution of
(x1, . . . , xn).

Our goal is thus to minimize the fixed design risk (where thus Φ is deterministic):

R(θ) = Ey

[
1

n

n∑

i=1

(yi − ϕ(xi)
⊤θ)2

]
= Ey

[
1

n
‖y − Φθ‖22

]
. (2)

This assumption allows a complete analysis with basic linear algebra. It is justified in some settings,
e.g., when the input is a fixed grid, but is otherwise just a simplifying assumption. It can also be
understood as learning the optimal vector Φθ∗ ∈ R

n of best predictions for a well-defined θ∗, instead
of a function.

In the fixed design setting, no attempts are made to generalize to unseen input points x, and we want
to estimate well a label vector y resampled from the same distribution than the observed y. The risk
in Eq. (2) is often called the in-sample prediction error.

We will first consider below the fixed design setting, where the celebrated rate σ2d/n will appear naturally.

Relationship to maximum likelihood estimation. If, in the fixed design setting, we make the
stronger assumption that the noise is Gaussian with mean zero and variance σ2, i.e., εi = yi − ϕ(xi)

⊤θ∗ ∼
N(0, σ2), then the least mean-squares estimator of θ∗ coincides with the maximum likelihood estimator
(where Φ is assumed fixed). Indeed, the density / likelihood of y is, using independence and the density of
the normal distribution:

p(y|θ, σ2) =

n∏

i=1

1√
2πσ2

exp
(
− (yi − ϕ(xi)

⊤θ)2/(2σ2)
)
.

Taking the logarithm and removing constants, the maximum likelihood estimators (θ̃, σ̃2) minimize

1

2σ2

n∑

i=1

(yi − ϕ(xi)
⊤θ)2 + n log(σ).

We immediately see that θ̃ = θ̂, that is, OLS corresponds to maximum likelihood.

• △! While maximum likelihood under a Gaussian model provides an interesting interpretation, the
Gaussian assumption is not needed for the forthcoming analysis.

• Exercise: what is σ̃2 the maximum likelihood of σ2? Solution: σ̃2 = 1
n

∑n
i=1(yi − ϕ(xi)

⊤θ̂)2.
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5 Fixed design setting

We now assume that Φ is deterministic, and as before, we assume that Σ̂ = 1
nΦ

⊤Φ is invertible.

Any kind of guarantee requires assumptions about how the data are generated. We assume that:

• there exists a vector θ∗ ∈ R
d such that the relationship between input and output is for i ∈ {1, . . . , n}

yi = ϕ(xi)
⊤θ∗ + εi.

• εi are independent of expectation E[εi] = 0 and variance E[ε2i ] = σ2.

The vector ε ∈ R
n accounts for variabilities in the output which are due to unobserved factors or to noise.

The “homoscedasticity” assumption above, where the noise variances are uniform, is made for simplicity
(and allows for the later bound σ2d/n bound to be an equality). Note that to prove upper-bounds in
performance, we could also only assume that E[ε2i ] 6 σ2 for each i ∈ {1, . . . , n}.
Denoting R∗ the minimum value of R(θ) = Ey

[
1
n‖y − Φθ‖22

]
over Rd, the following proposition shows that

it is attained at θ∗, and that is is equal to σ2.

Proposition 3 (Risk decomposition) Under the linear model and fixed design assumptions above, for
any θ ∈ R

d, we have R∗ = σ2 and
R(θ)− R∗ = ‖θ − θ∗‖2Σ̂,

where Σ̂ := 1
nΦ

⊤Φ is the input covariance matrix and ‖θ‖2
Σ̂
:= θ⊤Σ̂θ. If now θ̂ is a random variable (such

as an estimator of θ∗), then

E[R(θ̂)]− R∗ = ‖E[θ̂]− θ∗‖2Σ̂︸ ︷︷ ︸
Bias

+E

[
‖θ̂ − E[θ̂]‖2

Σ̂

]

︸ ︷︷ ︸
Variance

.

Proof We have, using y = Φθ∗ + ε, with E[ε] = 0 and E[‖ε‖22] = nσ2:

R(θ) = Ey

[
1

n
‖y − Φθ‖22

]
= Ey

[
1

n
‖Φθ∗ + ε− Φθ‖22

]

=
1

n
Ey

[
‖Φ(θ∗ − θ)‖22 + ‖ε‖22 + 2Φ(θ∗ − θ)⊤ε

]

= σ2 +
1

n
(θ − θ∗)

⊤Φ⊤Φ(θ − θ∗).

Since Σ̂ = 1
nΦ

⊤Φ is invertible, this shows that θ∗ is the unique global minimizer of R(θ), and that the
minimum value R∗ is equal to σ2. This shows the first claim.

Now if θ is random, we perform the usual bias/variance decomposition:

E[R(θ̂)]− R∗ = E

[
‖θ̂ − E[θ̂] + E[θ̂]− θ∗‖2Σ̂

]

= E

[
‖θ̂ − E[θ̂]‖2

Σ̂

]
+ E

[
(θ̂ − E[θ̂])⊤Σ̂(E[θ̂]− θ∗)

]
+ E

[
‖E[θ̂]− θ∗‖2Σ̂

]

= E

[
‖θ̂ − E[θ̂]‖2

Σ̂

]
+ 0 + ‖E[θ̂]− θ∗‖2Σ̂.
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(NB: this is also a simple application of E‖z − a‖2M = ‖Ez − a‖2M + E‖z − E[z]‖2M to a = θ∗, M = Σ̂ and

z = θ̂).

• The quantity ‖ · ‖
Σ̂

is called the Mahalanobis distance norm (it is a “true” norm whenever Σ̂ is
positive definite). It is the norm on the parameter space induced by the input data.

Statistical properties of the OLS estimator

We now analyze the properties of the OLS estimator.

Proposition 4 (Estimation properties of OLS) The OLS estimator θ̂ has the following properties:

1. it is unbiased, that is, E[θ̂] = θ∗,

2. its variance is var(θ̂) = E

[
(θ̂ − θ∗)(θ̂ − θ∗)⊤

]
= σ2

n Σ̂−1; Σ̂−1 is often called the precision matrix.

Proof

1. Since E[y] = Φθ∗, we have directly E[θ̂] = (Φ⊤Φ)−1Φ⊤Φθ∗ = θ∗.

2. It follows that θ̂ − θ∗ = (Φ⊤Φ)−1Φ⊤(Φθ∗ + ε) − θ∗ = (Φ⊤Φ)−1Φ⊤ε. Thus, using that E[εε⊤] = σ2I,
we get

var(θ̂) = E

[
(Φ⊤Φ)−1Φ⊤εε⊤Φ(Φ⊤Φ)−1

]
= σ2(Φ⊤Φ)−1(Φ⊤Φ)(Φ⊤Φ)−1 = σ2(Φ⊤Φ)−1 =

σ2

n
Σ̂−1.

We can put back the expression of the variance in the risk.

Proposition 5 (Risk of OLS) The excess risk of the OLS estimator is equal to

E

[
R(θ̂)

]
−R∗ =

σ2d

n
. (3)

Proof Note here that the expectation is over ε only as we are in the fixed design setting. Using the risk
decomposition of Proposition 3 and the fact that E[θ̂] = θ∗, we have

E

[
R(θ̂)

]
− R∗ = E‖θ̂ − θ∗‖2Σ̂.

We have: E
[
R(θ̂)

]
− R∗ = tr[var(θ̂)Σ̂] = σ2d

n tr(I) = σ2d
n .

8



We can also give a direct proof. Using the identity θ̂ − θ∗ = (Φ⊤Φ)−1Φ⊤ε, we get

E[R(θ̂)]− R∗ = E‖(Φ⊤Φ)−1Φ⊤ε‖2
Σ̂

=
1

n
E

[
ε⊤Φ(Φ⊤Φ)−1Φ⊤Φ(Φ⊤Φ)−1Φ⊤ε

]

=
1

n
E

[
ε⊤Φ(Φ⊤Φ)−1Φ⊤ε

]

=
1

n
E

[
ε⊤Pε

]
=

1

n
E

[
tr(Pεε⊤)

]
=

σ2

n
tr(P ) =

σ2d

n
,

where we used that P = Φ(Φ⊤Φ)−1Φ⊤ is the orthogonal projection on im(Φ), which is d-dimensional.

• △! In the fixed design setting, the expectation over ε appears twice: (1) in the definition of the risk
of some θ in Eq. (2), and when taking expectation over the data in Eq. (3).

• Exercise: what is the expected empirical risk E[R̂(θ̂)]? Solution: E[R̂(θ̂)] = n−d
n σ2. In particular,

when n > d, an unbiased estimator of the noise variance σ2 is given by
‖Y−Φθ̂‖2

2

n−d .

• Above, we have an expression of the expected training error, which is equal to n−d
n σ2 = σ2− d

nσ
2,

while the expected testing error is σ2+ d
nσ

2. We thus see that in context of least-squares, the training
error underestimates (in expectation) the testing error by a factor of 2σ2d/n, which characterizes
the amount of overfitting. This differerence can be used to perform model selection (see https:

//en.wikipedia.org/wiki/Mallows\%27s_Cp).

Discussion

• In the fixed design setting, OLS thus leads to unbiased estimation, with an excess risk of σ2d/n.

• On the positive side, the math is very simple, and as we will show below, the obtained convergence
rate is optimal.

• On the negative side, for the excess risk being small compared to σ2, we need d/n to be small, which
seems to exclude high-dimensional problems where d is closed to n (let alone problems where d > n
or d much larger than n). Regularization (ridge or ℓ1) will come to the rescue (see below).

• This is only for the fixed design setting. We consider the random design setting below, which is a bit
more involved mathematically, mostly because of the presence of Σ̂−1 which does not cancel anymore
(leading to a term Σ̂−1Σ).

Experiments

To illustrate the σ2d/n bound, we consider polynomial regression in one dimension, with x ∈ R, ϕ(x) =
(1, x, x2, . . . , xk)⊤ ∈ R

k+1, so d = k + 1. The inputs are sampled from the uniform distribution in [−1, 1],
while the optimal regression function is a degree 2 polynomial (blue curve below). Gaussian noise is added
to generate the outputs (black crosses below). The ordinary least-squares estimator is plotted in red, for
various values of n, from n = 10 to n = 1000, for k = 5.
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We can now plot the expected excess risk as a function of n, estimated by 32 replications of the experiment,
together with the bound. In the right plot, we consider the random design setting (generalization error),
while in the left plot we consider the fixed design setting (in-sample error). Notice the closeness of the
bound for all n for the fixed design (as predicted by our bounds), while this is only true for n large enough
in the random design setting.
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6 Ridge least-squares regression

• When d/n approaches 1, we are essentially memorizing the observations yi. Also when d > n, then
Φ⊤Φ is not invertible and the normal equations admit a linear subspace of solutions. These behaviors
of OLS in high dimension (d large) are often undesirable.

• Several solutions exist to fix these issues. The most common is to regularize the least-squares ob-
jective, either by adding an ℓ1-penalty ‖θ‖1 (leading to, “Lasso” regression, see Lecture 7) or ‖θ‖22
(leading to ridge regression, this lecture and also Lecture 6) to the empirical risk.

Definition 2 (Ridge least-squares regression) For a regularization parameter λ > 0, we define the
ridge least-squares estimator θ̂λ as the minimizer of

min
θ∈Rd

1

n
‖y − Φθ‖22 + λ‖θ‖22.

Proposition 6 We recall that Σ̂ = 1
nΦ

⊤Φ. We have

θ̂λ =
1

n
(Σ̂ + λI)−1Φ⊤y.

Proof Left as an exercise (similar to the proof of Proposition 1).

As for the OLS, we can analyze the statistical properties of this estimator under the linear model and fixed
design assumptions. See Lecture 6 for an analysis for random design and potentially infinite-dimensional
features.

Proposition 7 Under the linear model assumption, the ridge least-squares estimator θ̂λ = 1
nΣ

−1
λ Φ⊤Y has

the following excess risk

E

[
R(θ̂λ)

]
− R∗ = λ2θ⊤∗ (Σ̂ + λI)−2Σ̂θ∗ +

σ2

n
tr
[
Σ̂2(Σ̂ + λI)−2

]
.
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Proof We use the risk decomposition of Proposition 3 into a bias B and variance V terms. Since we have
E[θ̂λ] =

1
n(Σ̂ + λI)−1Φ⊤Φθ∗ = (Σ̂ + λI)−1Σ̂θ∗ = θ∗ − λ(Σ̂ + λI)−1θ∗, it follows

B = ‖E[θ̂λ]− θ∗‖2Σ̂
= λ2θ⊤∗ (Σ̂ + λI)−2Σ̂θ∗.

For the variance term, using the fact that E[εε⊤] = σ2I, we have

V = E

[
‖θ̂λ − E[θ̂λ]‖2Σ̂

]
= E

[ ∥∥∥∥
1

n
(Σ̂ + λI)−1Φ⊤ε

∥∥∥∥
2

Σ̂

]
= E

[ 1

n2
tr
(
ε⊤Φ(Σ̂ + λI)−1Σ̂(Σ̂ + λI)−1Φ⊤ε

) ]

= E

[ 1

n2
tr
(
Φ⊤εε⊤Φ(Σ̂ + λI)−1Σ̂(Σ̂ + λI)−1

) ]
=

σ2

n
tr
(
Σ̂(Σ̂ + λI)−1Σ̂(Σ̂ + λI)−1

)
.

The proposition follows by summing the bias and variance terms.

We can make the following observations:

• The result above is also a bias / variance decomposition with the bias term equal to B = λ2θ⊤∗ (Σ̂ +

λI)−2Σ̂θ∗, and the variance term equal to V = σ2

n tr
[
Σ̂2(Σ̂ + λI)−2

]
.

• The bias term is increasing in λ and equal to zero for λ = 0 if Σ̂ is invertible, while when λ goes to
infinity, the bias goes to θ⊤∗ Σ̂θ∗. It is independent of n and plays the role of the approximation error
in the risk decomposition.

• The variance term is decreasing in λ, and equal to σ2d/n for λ = 0 is Σ̂ is invertible, and converging
to zero when λ goes to infinity. It depends on n and plays the role of the estimation error in the risk
decomposition.

The quantity tr
[
Σ̂2(Σ̂+λI)−2

]
is often called the “degrees of freedom”, and is often considered as an

implicit number of parameters. It can be expressed as
∑d

j=1

λ2

j

(λj+λ)2
, where (λj) are the eigenvalues

of Σ̂. This quantity will be very important in the analysis of kernel methods in Lecture 6.

• Observe how this converges to the OLS estimator (when it is defined) as λ → 0.

• In most cases, λ = 0 is not the optimal choice, that is biased estimation (with controlled bias) is
preferable to unbiased estimation.

Experiments

With the same polynomial regression set-up as above, with k = 10, we can plot the various quantities
above as a function of λ. We can see the monotonicity of bias and variance with respect to λ as well as
the presence of an optimal choice of λ.

12
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Choice of λ

Based on the expression for the risk, we can tune the parameter λ to obtain a potentially better bound
than with the OLS (which corresponds to λ = 0 and the excess risk σ2d/n).

Proposition 8 With the choice λ∗ = σ
√

tr(Σ̂)
‖θ∗‖2

√
n
, we have

E

[
R(θ̂λ∗)

]
− R∗ ≤

σ

√
tr(Σ̂)‖θ∗‖2√

n
.

Proof We have, using the fact that the eigenvalues of (Σ̂ + λI)−2λΣ̂ are less than 1/2 (which is a simple
consequence of (µ+ λ)−2µλ 6 1/2 ⇔ (µ + λ)2 > 2λµ for all eigenvalues µ of Σ̂):

B = λ2θ⊤∗ (Σ̂ + λI)−2Σ̂θ∗ = λθ⊤∗ (Σ̂ + λI)−2λΣ̂θ∗ 6
λ

2
‖θ∗‖22.

Similarly, we have

V =
σ2

n
tr
[
Σ̂2(Σ̂ + λI)−2

]
=

σ2

λn
tr
[
Σ̂λΣ̂(Σ̂ + λI)−2

]
6

σ2 tr Σ̂

2λn
.

Plugging in λ∗ (which was chosen to minimize the upper bound on B + V ) gives the result.

• Observe that if we write R = maxi∈{1,...,n} ‖ϕ(xi)‖2, then we have

tr(Σ̂) =
∑

j≥1

Σ̂jj =
1

n

n∑

i=1

∑

j≥1

ϕ(xi)
2
j =

1

n

n∑

i=1

‖ϕ(xi)‖22 ≤ R2.

13



Thus in the excess risk bound, the dimension d plays no role and it could even be infinite (given that
R and ‖θ∗‖2 remain finite). This type of bounds are called dimension-free bounds.

△! The number of parameters is not the only way to measure the generalization capabilities
of a learning method.

• Comparing this bound with that of the OLS estimator, we see that it converges slower to 0 as a
function of n (from n−1 to n−1/2) but it has a milder dependence on the noise (from σ2 to σ). The
presence of a “fast” rate in O(n−1) with a potentially large constant, and of “slow” rate O(n−1/2)
with a smaller constant will appear several time in this course.

△! Depending on n and the constant, the “fast” rate result is not always the best.

• The value of λ∗ involves quantities which we typically do not know in practice (such as σ and ‖θ∗‖2).
This is still useful to highlight the existence of some λ with good predictions (which can be found by
cross-validation).

• Note here that the choice of λ∗ = σ
√

tr(Σ̂)
‖θ∗‖2

√
n
is optimizing the upper-bound λ

2‖θ∗‖22 + σ2 tr Σ̂
2λn , and is thus

typically not optimal for the true expected risk.

• △! Check homogeneity!

Choosing λ in practice. The regularization λ is an example of a hyper-parameter. This term refers
broadly to any quantity that influences the behavior of a machine learning algorithm and that is left to
choose by the practitioner. While theory often offers guidelines and qualitative understanding on how
to best chose the hyper-parameters, their precise numerical value depends on quantities which are often
difficult to know or even guess. In practice, we typically resort to validation and cross-validation.

• Exercise: Compute the expected risk of the estimator obtained by regularizing by θ⊤Λθ, where
Λ ∈ R

d×d is a positive definite matrix.

14



7 Lower-bound (�)

In order to show a lower bound in the fixed design setting, we will consider only Gaussian noise, that is, ε
has a joint Gaussian distribution with mean zero and covariance matrix σ2I (adding an extra assumption
can only make the lower bound smaller). We follow the elegant and simple proof technique outlined by [2].

The only uncertainty in the model is the location of θ∗. In order to make the dependence on θ∗ explicit, we
denote by Rθ∗(θ) the risk (in the previous lecture, we were using the notation Rdp to make the dependence
on the distribution explicit), which is equal to

Rθ∗(θ) = ‖θ − θ∗‖2Σ̂.

Our goal is to lower bound
sup
θ∗∈Rd

Eε∼N(0,σ2I)Rθ∗(A(Φθ∗ + ε)),

over all functions A from R
n to R

d (these functions are allowed to dependent on the observed deterministic
quantities such as Φ). Indeed, algorithms take y = Φθ∗ + ε ∈ R

n as an input and outputs a vector of
parameters in R

d.

The main idea, which is classical in the Bayesian analysis of learning algorithms, is to lower bound the
supremum by the expectation with respect to some probability on θ∗, called the prior distribution in
Bayesian statistics. That is, we have, for any algorithm / estimator A:

sup
θ∗∈Rd

Eε∼N(0,σ2I)Rθ∗(A(Φθ∗ + ε)) > E
θ∗∼N(0, σ

2

λn
I)
Eε∼N(0,σ2I)Rθ∗(A(Φθ∗ + ε)).

Here, we choose the normal distribution with mean 0 and covariance matrix σ2

λnI as a prior distribution.

Using the expression of the excess risk (and ignoring the additive constant σ2 = R∗), we thus get the lower
bound

E
θ∗∼N(0, σ

2

λn
I)
Eε∼N(0,σ2I)‖A(Φθ∗ + ε)− θ∗‖2Σ̂,

which we need to minimize with respect to A. By making θ∗ random, we now have a joint Gaussian
distribution for (θ∗, ε). The joint distribution of (θ∗, y) = (θ∗,Φθ∗ + ε) is also Gaussian with mean zero
and covariance matrix

( σ2

λnI
σ2

λnΦ
⊤

σ2

λnΦ
σ2

λnΦΦ
⊤ + σ2I

)
=

σ2

λn

(
I Φ⊤

Φ ΦΦ⊤ + nλI

)
.

We need to perform a similar operation as for computing the Bayes predictor in Lecture 1. This will be
done by conditioning on y, by writing

E
θ∗∼N(0, σ

2

λn
I)
Eε∼N(0,σ2I)‖A(Φθ∗ + ε)− θ∗‖2Σ̂ = E(θ∗,y)‖A(y)− θ∗‖2Σ̂

=

∫

Rn

(∫

Rd

‖A(y)− θ∗‖2Σ̂dp(θ∗|y)
)
dp(y).

Thus, for each y, the optimal A(y) has to minimize
∫
Rd ‖A(y)−θ∗‖2Σ̂dp(θ∗|y), which is exactly the posterior

mean of θ∗ given y. Indeed, the vector that minimizes the expected squared deviation is the expectation (ex-
actly like when we computed the Bayes predictor for regression), here applied to the distribution dp(θ∗|y).

15



Since the joint distribution of (θ∗, y) is Gaussian with known parameters, we could use classical results
about conditioning for Gaussian vectors2, but we can also use the property that for Gaussian variables, the
posterior mean given y is equal to the posterior mode given y, that is, it can be obtained by maximizing
the log-likelihood log p(θ∗, y) with respect to θ∗. Up to constants and using independence of ε and θ∗, this
log-likelihood is

− 1

2σ2
‖ε‖2 − λn

2σ2
‖θ∗‖22 = − 1

2σ2
‖y − Φθ∗‖2 −

λn

2σ2
‖θ∗‖22,

which is exactly (up to a sign and a constant) the ridge regression cost function. Thus, we have:
A∗(y) = (Φ⊤Φ + nλI)−1Φ⊤y, which is exactly the ridge regression estimator θ̂λ, and we can compute
the corresponding optimal risk, to get:

inf
A

sup
θ∗∈Rd

Eε∼N(0,σ2I)Rθ∗(A(Φθ∗ + ε))− R∗

> inf
A

E
θ∗∼N(0, σ

2

λn
I)
Eε∼N(0,σ2I)Rθ∗(A(Φθ∗ + ε))− R∗

= E
θ∗∼N(0, σ

2

λn
I)

Eε∼N(0,σ2I)Rθ∗(A
∗(Φθ∗ + ε))− R∗

= E
θ∗∼N(0, σ

2

λn
I)
Eε∼N(0,σ2I)‖A∗(Φθ∗ + ε)− θ∗‖2Σ̂

= E
θ∗∼N(0, σ

2

λn
I)
Eε∼N(0,σ2I)‖(Φ⊤Φ+ nλI)−1Φ⊤(Φθ∗ + ε)− θ∗‖2Σ̂

= E
θ∗∼N(0, σ

2

λn
I)
Eε∼N(0,σ2I)‖(Φ⊤Φ+ nλI)−1Φ⊤ε− nλ(Φ⊤Φ+ nλI)−1θ∗‖2Σ̂

= E
θ∗∼N(0, σ

2

λn
I)
‖ − nλ(Φ⊤Φ+ nλI)−1θ∗‖2Σ̂ + Eε∼N(0,σ2I)‖(Φ⊤Φ+ nλI)−1Φ⊤ε‖2

Σ̂
by independence,

=
σ2

nλ
(nλ)2 tr

[
(Σ̂ + λI)−2Σ̂

]
+

σ2

n
tr
(
Σ̂ + λI)−2Σ̂2

]

=
σ2

n
tr
[
(Σ̂ + λI)−1Σ̂

]

This risk tends to d when λ tends to zero. This such show that

inf
A

sup
θ∗∈Rd

Eε∼N(0,σ2I)Rθ∗(A(Φθ∗ + ε)) >
σ2d

n
.

This gives us a lower-bound on performance, which exactly matches the upper-bound obtained by OLS.
In the general non least-squares case, such results are significantly harder to show. See Lectures 3 and 6.

2See https://en.wikipedia.org/wiki/Multivariate_normal_distribution#Conditional_distributions.
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8 Random design analysis

In this section, we consider the regular random design setting, that is, both x and y are considered random,
and each pair (xi, yi) is assumed independent and identically distributed from a distribution dp(x, y). Our
goal is to show that the bound on the the excess risk that we have shown for the fixed design setting,
namely σ2d/n, is still valid. We will make the following assumptions regarding the joint distribution
dp(x, y), transposed from the fixed design setting to the random design setting:

• there exists a vector θ∗ ∈ R
d such that the relationship between input and output is

y = ϕ(x)⊤θ∗ + ε.

• ε is independent from x, and E[ε] = 0 and with variance E[ε2] = σ2.

With the assumption above, E(y|x) = ϕ(x)⊤θ∗, and thus, we perform empirical risk minimization where
our class of functions includes the Bayes predictor, a situation that is often referred to as the well-specified
setting. The risk also has a simple expression:

Proposition 9 Under the linear model above, for any θ ∈ R
d, the excess risk is equal to:

R(θ)− R∗ = ‖θ − θ∗‖2Σ
where Σ := E[ϕ(x)ϕ(x)⊤] is the (non-centered) covariance matrix, and R∗ = σ2.

Proof We have:

R(θ) = E
[
(y − θ⊤ϕ(x))2

]

= E
[
(ϕ(x)⊤θ∗ + ε− θ⊤ϕ(x))2

]

= E
[
(ϕ(x)⊤θ∗ − θ⊤ϕ(x))2

]
+ E

[
ε2
]

= (θ − θ∗)
⊤Σ(θ − θ∗) + σ2,

which leads to the desired result.

Note that the only difference with the fixed design setting is the replacement of Σ̂ by Σ. We can now
express the risk of the OLS estimator.

Proposition 10 Under the linear model above, assuming Σ̂ is invertible, the expected excess risk of the
OLS estimator is equal to

σ2

n
E
[
tr(ΣΣ̂−1)

]
.

Proof Since the OLS estimator is equal to θ̂ = 1
nΣ̂

−1Φ⊤y = 1
n Σ̂

−1Φ⊤(Φθ∗+ ε) = θ∗+ 1
n Σ̂

−1Φ⊤ε, we have:

E[R(θ̂)]− R∗ = E
[( 1
n
Σ̂−1Φ⊤ε

)⊤
Σ
( 1
n
Σ̂−1Φ⊤ε

)]

= E
[
tr
(
Σ
( 1
n
Σ̂−1Φ⊤ε

)( 1
n
Σ̂−1Φ⊤ε

)⊤)]
=

1

n2
E
[
tr
(
ΣΣ̂−1Φ⊤εε⊤ΦΣ̂−1

)]

=
1

n2
E
[
tr
(
ΣΣ̂−1Φ⊤

E[εε⊤]ΦΣ̂−1
)]

=
σ2

n2
tr
(
ΣΣ̂−1Φ⊤ΦΣ̂−1

)
=

σ2

n
tr(ΣΣ̂−1).
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Thus, to compute the expected risk of the OLS estimator, we need to compute E
[
tr(ΣΣ̂−1)

]
. One difficulty

here is the potential non-invertibility of Σ̂. Under simple assumptions (e.g., ϕ(x) has a density on R
d),

as soon as n > d, Σ̂ is almost surely invertible, however its smallest eigenvalue can be very small. Extra
assumptions are then needed to control it (see, e.g., [2, Section 3]).

8.1 Gaussian designs

If we assume that ϕ(x) is normally distributed with mean 0 and covariance matrix Σ, then we can directly
compute the desired expectation, by first considering z = Σ−1/2ϕ(x), which has a standard normal distri-
bution (that is, with mean zero and identity covariance matrix), with the corresponding normalized design
matrix Z ∈ R

n×d, and compute E
[
tr(Z⊤Z)−1

]
.

Note that E[Z⊤Z] = nI, and by convexity of the function M 7→ tr(M−1) on the cone of positive definite
matrices, and using Jensen’s inequality, we see that E

[
tr(Z⊤Z)−1

]
> d

n (here we have not used the
Gaussian assumption). However, this bound is in the incorrect direction (this happens a lot with Jensen’s
inequality).

It turns out that for Gaussians, the matrix (Z⊤Z)−1 has a specific distribution, called the inverse Wishart
distribution3, with an expectation that can be computed exactly as E[(Z⊤Z)−1] = 1

n−d+1I. Thus, we have:

E
[
tr(Z⊤Z)−1

]
= d

n−d−1 if n > d+ 1, thus leading to the expected excess risk of

σ2d

n− d− 1
=

σ2d

n

1

1− (d+ 1)/n
.

See [3] for further details. Note here that for Gaussian designs, the expected risk is exactly equal to the
expression above, and that this will only be upper-bounds later in this course.

We see that we have an explicit non-asymptotic bound on the risk, which is equivalent to σ2d/n when n
goes to infinity.

8.2 General designs (��)

In this last more technical section, we highlight how the Gaussian assumption can be avoided. The main
idea is to show that with high probability, the lowest eigenvalue of Σ−1/2Σ̂Σ−1/2 is larger than some 1− t,
for some t ∈ (0, 1). Since the excess risk is σ2

n tr(ΣΣ̂−1), this immediately shows that with high probability,

the excess risk is less than σ2d
n

1
1−t .

In order to obtain such results, more refined concentration inequalities are needed, such as described in [4],
[5], [6], and [7]. The sharpest known results for least-squares regression can be found in [2].

Matrix concentration inequality. We will use the matrix Bernstein bound, adapted from [4, Theorem
1.4]. Note the similarity with the regular Bernstein bound for scalars when d = 1.

3See https://en.wikipedia.org/wiki/Inverse-Wishart_distribution.
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Proposition 11 (matrix Bernstein bound) Given n independent symmetric matrices Mi ∈ R
d×d,

such that for all i ∈ {1, . . . , n}, E[Mi] = 0, λmax(Mi) 6 b almost surely. Then for all t > 0,

P

(
λmax

( 1

n

n∑

i=1

Mi

)
6 t

))
6 d · exp

(
− nt2/2

τ2 + bt/3

)
,

for τ2 = λmax

(
1
n

∑n
i=1M

2
i

)
.

Application to re-scaled covariance matrices. Given Σ = E[ϕ(x)ϕ(x)⊤] ∈ R
d×d, we consider the

random vector z = Σ−1/2ϕ(x) ∈ R
d, which is such that E[zz⊤] = I and E[‖z‖22] = d.

We make the extra assumption that λmax

(
E

[
‖z‖2zz⊤

])
6 ρd, for ρ a constant. A sufficient condition is

that almost surely ‖z‖22 6 ρd. For a Gaussian distribution with zero mean, one can check as an exercise
that ρ = (1 + 2/d).

We consider the random symmetric matrix Mi = I − ziz
⊤
i , which is such that EMi = 0, λmax(Mi) 6 1

almost surely, and E[M2
i ] = E

[
‖zi‖2ziz⊤i

]
− I with largest eigenvalue less than ρd. We thus have for any

t > 0,

P

(
λmax(I −

1

n
Z⊤Z) > t

)
6 d · exp

(
− nt2/2

ρd+ t/3

)
.

Thus, if t is such that nt2

2ρd+2t/3 > log d
δ , then, with probability greater than 1−δ, we have I−Σ−1/2Σ̂Σ−1/2 4

tI, that is
Σ−1/2Σ̂Σ−1/2 < (1− t)I,

and thus the risk is less than σ2d
n

1
1−t , which is the desired result. We have used the order between symmetric

matrices, defined as A < B ⇔ B 4 A ⇔ A−B positive semi-definite.

This is possible when t >

√
2ρd
n log d

δ + 2
3n log d

δ . The bound is non-vacuous only when t < 1, that is,

it is sufficient to impose 2
3n log d

δ < 1/2 and
√

2ρd
n log d

δ < 1/2, which is equivalent to n > 4
3 log

d
δ , and

n > 8ρd log d
δ . Without surprise, the bound is non vacuous only for n > d.
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in particular Lénäıc Chizat, Pierre Gaillard, Alessandro Rudi and Simon Lacoste-Julien. Special thanks
to Jaouad Mourtada for his help on lower bounds and random design analysis.

References

[1] G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins University Press, 1996.

[2] Jaouad Mourtada. Exact minimax risk for linear least squares, and the lower tail of sample covariance
matrices. Technical Report 1912.10754, arXiv, 2019.

19



[3] Leo Breiman and David Freedman. How many variables should be entered in a regression equation?
Journal of the American Statistical Association, 78(381):131–136, 1983.

[4] Joel A. Tropp. User-friendly tail bounds for sums of random matrices. Foundations of Computational
Mathematics, 12(4):389–434, 2012.

[5] Daniel Hsu, Sham M. Kakade, and Tong Zhang. Random design analysis of ridge regression. In
Conference on Learning Theory, 2012.

[6] Roberto Imbuzeiro Oliveira. The lower tail of random quadratic forms, with applications to ordinary
least squares and restricted eigenvalue properties. Technical Report 1312.2903, arXiv, 2013.
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