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Two-minute summary

• Stochastic gradient descent for large-scale machine learning

– Processes observations one by one

• Theory: Single pass SGD is optimal

– Only for “easy” problems

• Practice: Multiple pass SGD always works better

– Provable for “hard” problems

– Quantification of required number of passes

– Optimal statistical performance

– Source and capacity conditions from kernel methods
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• Data: n observations (xi, yi) ∈ X× R, i = 1, . . . , n, i.i.d.

• Prediction as linear functions 〈θ,Φ(x)〉 of features Φ(x) ∈ H = R
d

– Optimal prediction θ∗ ∈ H minimizing F (θ) = E(y − 〈θ,Φ(x)〉)2

– Assumption: ‖Φ(x)‖ 6 R almost surely

– Assumption: |y| 6 M and |y − 〈θ∗,Φ(x)〉| 6 σ almost surely

• Statistical performance of estimators θ̂ defined as EF (θ̂)−F (θ∗)

– Finite dimension: optimal rate σ2dim(H)
n = σ2d

n

– Attained by empirical risk minimization (ERM) and SGD

• What if n ≫ dim(H)?

– Needs assumptions on Σ = E
[

Φ(x)⊗ Φ(x)
]

and θ∗



Spectrum of covariance matrix Σ = E
[

Φ(x)⊗ Φ(x)
]

• Eigenvalues λm(Σ) (in decreasing order)

• Example: News dataset (d = 1 300 000, n = 20 000)
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Spectrum of covariance matrix Σ = E
[

Φ(x)⊗ Φ(x)
]

• Eigenvalues λm(Σ) (in decreasing order)

• Example: News dataset (d = 1 300 000, n = 20 000)
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• Assumption: tr(Σ1/α) =
∑

m>1

λm(Σ)1/α is “small” (compared to n)

– “Equivalent” to λm(Σ) = O(m−α)



Difficulty of the learning problem

• Measuring difficulty through “the” norm of θ∗

• Assumption: ‖Σ1/2−rθ∗‖ is “small” (compared to n)

– r = 1/2: usual assumption on ‖θ∗‖

– Larger r: simpler problems

– Smaller r: harder problems (r = 0 always true)
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Optimal statistical performance

• Easy problems r >
α−1
2α : optimal rate is O(n

−2rα
2rα+1), achieved by:

– Regularized ERM (Caponnetto and De Vito, 2007)

– Early-stopped gradient descent (Yao et al., 2007)

– Single-pass averaged SGD (Dieuleveut and Bach, 2016)



Optimal statistical performance

• Easy problems r >
α−1
2α : optimal rate is O(n

−2rα
2rα+1)

• Hard problems r 6
α−1
2α

– Lower bound: O(n
−2rα
2rα+1). Known upper bound: O(n−2r)



Least-mean-square (LMS) algorithm

• Least-squares: F (θ) = 1
2E

[

(y − 〈Φ(x), θ〉)2
]

with θ ∈ R
d

– SGD = least-mean-square algorithm (see, e.g., Macchi, 1995)

– Iteration: θi = θi−1 − γ
(

〈Φ(xi), θi−1〉 − yi
)

Φ(xi)



Least-mean-square (LMS) algorithm

• Least-squares: F (θ) = 1
2E

[

(y − 〈Φ(x), θ〉)2
]

with θ ∈ R
d

– SGD = least-mean-square algorithm (see, e.g., Macchi, 1995)

– Iteration: θi = θi−1 − γ
(

〈Φ(xi), θi−1〉 − yi
)

Φ(xi)

• New analysis for averaging and constant step-size γ = 1/(4R2)

– Bach and Moulines (2013)

– Assume ‖Φ(x)‖ 6 R and |y − 〈Φ(x), θ∗〉| 6 σ almost surely

– No assumption regarding lowest eigenvalues of Σ

– Main result: EF (θ̄n)− F (θ∗) 6
4σ2d

n
+

4R2‖θ0 − θ∗‖
2

n

• Matches statistical lower bound (Tsybakov, 2003)
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Markov chain interpretation of constant step sizes

• LMS recursion: θi = θi−1 − γ
(

〈Φ(xi), θi−1〉 − yi
)

Φ(xi)

• The sequence (θi)i is a homogeneous Markov chain

– convergence to a stationary distribution πγ

– with expectation θ̄γ
def
=

∫

θπγ(dθ)

• For least-squares, θ̄γ = θ∗
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Markov chain interpretation of constant step sizes

• LMS recursion: θi = θi−1 − γ
(

〈Φ(xi), θi−1〉 − yi
)

Φ(xi)

• The sequence (θi)i is a homogeneous Markov chain

– convergence to a stationary distribution πγ

– with expectation θ̄γ
def
=

∫

θπγ(dθ)

• For least-squares, θ̄γ = θ∗

– θn does not converge to θ∗ but oscillates around it

• Ergodic theorem:

– Averaged iterates converge to θ̄γ = θ∗ at rate O(1/n)

– See Dieuleveut, Durmus, and Bach (2017) for more details



Simulations - synthetic examples

• Gaussian distributions - d = 20
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Simulations - benchmarks

• alpha (d = 500, n = 500 000), news (d = 1 300 000, n = 20 000)
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[
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and θ∗



Finer assumptions (Dieuleveut and Bach, 2016)

• Covariance eigenvalues

– Pessimistic assumption: all eigenvalues λm less than a constant

– Actual decay as λm = o(m−α) with tr Σ1/α =
∑

m

λ1/α
m small

– New result: replace
σ2d

n
by

σ2(γn)1/α trΣ1/α

n
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• Optimal predictor
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√
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n

• Optimal predictor

– Pessimistic assumption: ‖θ0 − θ∗‖
2 finite/small

– Finer assumption: ‖Σ1/2−r(θ0 − θ∗)‖2 small, for r ∈ [0, 1]

– Always satisfied for r = 0 and θ0 = 0, since ‖Σ1/2θ∗‖ 6 2
√

Ey2n

– New result: replace
‖θ0 − θ∗‖

2

γn
by

‖Σ1/2−r(θ0 − θ∗)‖
2

γ2rn2r



Optimal bounds for least-squares?

• Least-squares: cannot beat σ2d/n (Tsybakov, 2003). Really?

– What if d ≫ n?

• Refined assumptions with adaptivity (Dieuleveut and Bach, 2016)

– Beyond strong convexity or lack thereof

EF (θ̄n)− F (θ∗) 6 inf
α>1,r∈[0,1]

4σ2 tr Σ1/α

n
(γn)1/α +

4‖Σ1/2−rθ∗‖
2

γ2rn2r

– Previous results: α = +∞ and r = 1/2
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Optimal bounds for least-squares?

• Least-squares: cannot beat σ2d/n (Tsybakov, 2003). Really?

– What if d ≫ n?

• Refined assumptions with adaptivity (Dieuleveut and Bach, 2016)

– Beyond strong convexity or lack thereof

EF (θ̄n)− F (θ∗) 6 inf
α>1,r∈[0,1]

4σ2 tr Σ1/α

n
(γn)1/α +

4‖Σ1/2−rθ∗‖
2

γ2rn2r

– Previous results: α = +∞ and r = 1/2

– Optimal step-size γ potentially decaying with n, but depends on

usually unknown quantities α and r ⇔ no adaptivity (yet)

– Extension to non-parametric estimation (using kernels) with

optimal rates when r > (α−1)/(2α), still with O(n2) running-time



From least-squares to non-parametric estimation

• Extension to Hilbert spaces: Φ(x), θ ∈ H

θi = θi−1 − γ
(

〈Φ(xi), θi−1〉 − yi
)

Φ(xi)

• If θ0 = 0, θi is a linear combination of Φ(x1), . . . ,Φ(xi)

θi =
i

∑

k=1

akΦ(xk) and ai = −γ
i−1
∑

k=1

ak〈Φ(xk),Φ(xi)〉+ γyi

– Kernel trick: k(x, x′) = 〈Φ(x),Φ(x′)〉

– Reproducing kernel Hilbert spaces and non parametric estimation

– See, e.g., Schölkopf and Smola (2001); Shawe-Taylor and

Cristianini (2004); Dieuleveut and Bach (2016)

– Still O(n2) overall running-time
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Example: Sobolev spaces in one dimension

• X = [0, 1], functions represented through their Fourier series

– Weighted Fourier basis Φ(x)m = λ
1/2
m cos(2mπx) (plus sines)

– kernel k(x, x′) =
∑

m λm cos
[

2mπ(x− x′)
]
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Example: Sobolev spaces in one dimension

• X = [0, 1], functions represented through their Fourier series

– Weighted Fourier basis Φ(x)m = λ
1/2
m cos(2mπx) (plus sines)

– kernel k(x, x′) =
∑

m λm cos
[

2mπ(x− x′)
]

• λm ∝ m−α corresponds to Sobolev penalty on fθ(x) = 〈θ,Φ(x)〉

‖fθ‖
2 = ‖θ‖2 =

∑

m

|Fourier(fθ)m|2λ−1
m ∝

∫ 1

0

|f
(α/2)
θ (x)|2dx

• Adapted norm ‖Σ1/2−rθ‖2 depends on regularity of fθ

– ‖Σ1/2−rθ‖2 =
∑

m

|Fourier(fθ)m|2λ−2r
m ∝

∫ 1

0

|f
(rα)
θ (x)|2dx

– Optimal rate is O(n
−2rα
2rα+1)



New assumption needed

• Assumption: ‖Σµ/2−1/2Φ(x)‖ almost surely “small”

– Already used by Steinwart et al. (2009)

– True for µ = 1

– Usually µ > 1/α (equal for Sobolev spaces)

– Relationship between L∞ norm ‖ · ‖L∞
and RKHS norm ‖ · ‖

‖g‖L∞
= O(‖g‖µ‖g‖1−µ

L2
)

– NB: implies bounded leverage scores (Rudi et al., 2015)



Multiple pass SGD (sampling with replacement)

• Algorithm from n i.i.d. observations (xi, yi), i = 1, . . . , n:

θu = θu−1 + γ
(

yi(u) − 〈θu−1,Φ(xi(u))〉
)

Φ(xi(u))

– θ̄t averaged iterate after t > n iterations
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(

yi(u) − 〈θu−1,Φ(xi(u))〉
)

Φ(xi(u))

– θ̄t averaged iterate after t > n iterations

• Theorem (Pillaud-Vivien, Rudi, and Bach, 2018): Assume r 6
α−1
2α .

– If µ 6 2r, then after t = Θ(nα/(2rα+1)) iterations, we have:

EF (θ̄t)− F (θ∗) = O(n−2rα/(2rα+1)) Optimal

– Otherwise, then after t = Θ(n1/µ (log n)
1
µ) iterations, we have:

EF (θ̄t)− F (θ∗) 6 O(n−2r/µ) Improved

• Proof technique following Rosasco and Villa (2015)



Proof sketch
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• Algorithm from n i.i.d. observations (xi, yi), i = 1, . . . , n:

θu = θu−1 + γ
(

yi(u) − 〈θu−1,Φ(xi(u))〉
)

Φ(xi(u))

– θ̄t averaged iterate after t > n iterations

• Following Rosasco and Villa (2015), consider batch gradient recursion

ηu = θu−1 +
γ

n

n
∑

i=1

(

yi − 〈θu−1,Φ(xi)〉
)

Φ(xi)

– η̄t averaged iterate after t > n iterations

• As long as t = O(n1/µ)

– Property 1: EF (θ̄t)− EF (η̄t) = O
(t1/α

t

)

– Property 2: EF (η̄t)− F (θ∗) = O
(t1/α

n

)

+O(t−2r)



Multiple pass SGD (sampling with replacement)

• Algorithm from n i.i.d. observations (xi, yi), i = 1, . . . , n:

θu = θu−1 + γ
(

yi(u) − 〈θu−1,Φ(xi(u))〉
)

Φ(xi(u))

– θ̄t averaged iterate after t > n iterations

• Theorem (Pillaud-Vivien, Rudi, and Bach, 2018): Assume r 6
α−1
2α .

– If µ 6 2r, then after t = Θ(nα/(2rα+1)) iterations, we have:

EF (θ̄t)− F (θ∗) = O(n−2rα/(2rα+1)) Optimal

– Otherwise, then after t = Θ(n1/µ (log n)
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Statistical optimality

• If µ 6 2r, then after t = Θ(nα/(2rα+1)) iterations, we have:

EF (θ̄t)− F (θ∗) = O(n−2rα/(2rα+1)) Optimal

• Otherwise, then after t = Θ(n1/µ (log n)
1
µ) iterations, we have:

EF (θ̄t)− F (θ∗) 6 O(n−2r/µ) Improved
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• Synthetic examples

– One-dimensional kernel regression

– Sobolev spaces

– Arbitrary chosen values for r and α

• Check optimal number of iterations over the data



Simulations

• Synthetic examples

– One-dimensional kernel regression

– Sobolev spaces

– Arbitrary chosen values for r and α

• Check optimal number of iterations over the data

• Comparing three sampling schemes

– With replacement

– Without replacement (cycling with random reshuffling)

– Cycling



Simulations (sampling with replacement)

α = 3/2, r = 1/3 > (α− 1)/(2α) α = 4, r = 1/4 = (α− 1)/(2α)
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Simulations (sampling without replacement)

α = 3/2, r = 1/3 > (α− 1)/(2α) α = 4, r = 1/4 = (α− 1)/(2α)
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α = 5/2, r = 1/5 < (α− 1)/(2α) α = 3, r = 1/6 < (α− 1)/(2α)
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Simulations (cycling)

α = 3/2, r = 1/3 > (α− 1)/(2α) α = 4, r = 1/4 = (α− 1)/(2α)
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α = 5/2, r = 1/5 < (α− 1)/(2α) α = 3, r = 1/6 < (α− 1)/(2α)
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Simulations - Benchmarks

• MNIST dataset with linear kernel
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Conclusion

• Benefits of multiple passes

– Number of passes grows with sample size for “hard” problems

– First provable improvement of multiple passes over SGD

[NB: Hardt et al. (2016); Lin and Rosasco (2017) consider small step-sizes]
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[NB: Hardt et al. (2016); Lin and Rosasco (2017) consider small step-sizes]

• Current work - Extensions

– Study of cycling and sampling without replacement

(Shamir, 2016; Gürbüzbalaban et al., 2015)

– Mini-batches

– Beyond least-squares

– Optimal efficient algorithms for the situation µ > 2r

– Combining analysis with exponential convergence of testing

errors (Pillaud-Vivien, Rudi, and Bach, 2017)
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