Statistical Optimality of Stochastic Gradient Descent through Multiple Passes

Francis Bach

INRIA - Ecole Normale Supérieure, Paris, France

Joint work with Loucas Pillaud-Vivien and Alessandro Rudi Newton Institute, Cambridge - June 2018

Two-minute summary

- Stochastic gradient descent for large-scale machine learning
 - Processes observations one by one

Two-minute summary

- Stochastic gradient descent for large-scale machine learning
 - Processes observations one by one
- **Theory**: Single pass SGD is optimal

• **Practice**: Multiple pass SGD always works better

Two-minute summary

- Stochastic gradient descent for large-scale machine learning
 - Processes observations one by one
- **Theory**: Single pass SGD is optimal
 - Only for "easy" problems
- Practice: Multiple pass SGD always works better
 - Provable for "hard" problems
 - Quantification of required number of passes
 - Optimal statistical performance
 - Source and capacity conditions from kernel methods

- Data: n observations $(x_i, y_i) \in \mathfrak{X} \times \mathbb{R}$, $i = 1, \ldots, n$, i.i.d.
- Prediction as linear functions $\langle \theta, \Phi(x) \rangle$ of features $\Phi(x) \in \mathcal{H} = \mathbb{R}^d$

- Data: n observations $(x_i, y_i) \in \mathfrak{X} \times \mathbb{R}$, $i = 1, \ldots, n$, i.i.d.
- Prediction as linear functions $\langle \theta, \Phi(x) \rangle$ of features $\Phi(x) \in \mathcal{H} = \mathbb{R}^d$

- Optimal prediction $\theta_* \in \mathcal{H}$ minimizing $F(\theta) = \mathbb{E}(y - \langle \theta, \Phi(x) \rangle)^2$

- Data: n observations $(x_i, y_i) \in \mathfrak{X} \times \mathbb{R}$, $i = 1, \ldots, n$, i.i.d.
- Prediction as linear functions $\langle \theta, \Phi(x) \rangle$ of features $\Phi(x) \in \mathcal{H} = \mathbb{R}^d$
 - Optimal prediction $\theta_* \in \mathcal{H}$ minimizing $F(\theta) = \mathbb{E}(y \langle \theta, \Phi(x) \rangle)^2$
 - Assumption: $\|\Phi(x)\| \leq R$ almost surely
 - Assumption: $|y|\leqslant M$ and $|y-\langle \theta_*,\Phi(x)\rangle|\leqslant \sigma$ almost surely

- Data: n observations $(x_i, y_i) \in \mathfrak{X} \times \mathbb{R}$, $i = 1, \ldots, n$, i.i.d.
- Prediction as linear functions $\langle \theta, \Phi(x) \rangle$ of features $\Phi(x) \in \mathcal{H} = \mathbb{R}^d$
 - Optimal prediction $\theta_* \in \mathcal{H}$ minimizing $F(\theta) = \mathbb{E}(y \langle \theta, \Phi(x) \rangle)^2$
 - Assumption: $\|\Phi(x)\| \leqslant R$ almost surely
 - Assumption: $|y|\leqslant M$ and $|y-\langle \theta_*,\Phi(x)\rangle|\leqslant\sigma$ almost surely
- Statistical performance of estimators $\hat{\theta}$ defined as $\mathbb{E}F(\hat{\theta}) F(\theta_*)$
 - Finite dimension: optimal rate $\frac{\sigma^2 \dim(\mathcal{H})}{n} = \frac{\sigma^2 d}{n}$
 - Attained by empirical risk minimization (ERM) and SGD

- Data: n observations $(x_i, y_i) \in \mathfrak{X} \times \mathbb{R}$, $i = 1, \ldots, n$, i.i.d.
- Prediction as linear functions $\langle \theta, \Phi(x) \rangle$ of features $\Phi(x) \in \mathcal{H} = \mathbb{R}^d$
 - Optimal prediction $\theta_* \in \mathcal{H}$ minimizing $F(\theta) = \mathbb{E}(y \langle \theta, \Phi(x) \rangle)^2$
 - Assumption: $\|\Phi(x)\| \leqslant R$ almost surely
 - Assumption: $|y|\leqslant M$ and $|y-\langle heta_*,\Phi(x)
 angle|\leqslant\sigma$ almost surely
- Statistical performance of estimators $\hat{\theta}$ defined as $\mathbb{E}F(\hat{\theta}) F(\theta_*)$
 - Finite dimension: optimal rate $\frac{\sigma^2 \dim(\mathcal{H})}{n} = \frac{\sigma^2 d}{n}$
 - Attained by empirical risk minimization (ERM) and SGD
- What if $n \gg \dim(\mathcal{H})$?

– Needs assumptions on $\Sigma = \mathbb{E} \big[\Phi(x) \otimes \Phi(x) \big]$ and θ_*

Spectrum of covariance matrix $\Sigma = \mathbb{E}[\Phi(x) \otimes \Phi(x)]$

- **Eigenvalues** $\lambda_m(\Sigma)$ (in decreasing order)
- **Example**: News dataset $(d = 1 \ 300 \ 000, n = 20 \ 000)$

Spectrum of covariance matrix $\Sigma = \mathbb{E}[\Phi(x) \otimes \Phi(x)]$

- **Eigenvalues** $\lambda_m(\Sigma)$ (in decreasing order)
- **Example**: News dataset $(d = 1 \ 300 \ 000, n = 20 \ 000)$

• Assumption: $\operatorname{tr}(\Sigma^{1/\alpha}) = \sum_{m \ge 1} \lambda_m(\Sigma)^{1/\alpha}$ is "small" (compared to n)

- "Equivalent" to $\lambda_m(\Sigma) = O(m^{-\alpha})$

Difficulty of the learning problem

- Measuring difficulty through "the" norm of θ_{\ast}
- Assumption: $\|\Sigma^{1/2-r}\theta_*\|$ is "small" (compared to n)

Difficulty of the learning problem

- Measuring difficulty through "the" norm of θ_*
- Assumption: $\|\Sigma^{1/2-r}\theta_*\|$ is "small" (compared to n)
 - r=1/2: usual assumption on $\|\theta_*\|$
 - Larger r: simpler problems
 - Smaller r: harder problems (r = 0 always true)

Difficulty of the learning problem

- Measuring difficulty through "the" norm of θ_*
- Assumption: $\|\Sigma^{1/2-r}\theta_*\|$ is "small" (compared to n)

–
$$r=1/2$$
: usual assumption on $\| heta_*\|$

- Larger r: simpler problems
- Smaller r: harder problems (r = 0 always true)

Optimal statistical performance

• Easy problems $r \ge \frac{\alpha - 1}{2\alpha}$: optimal rate is $O(n^{\frac{-2r\alpha}{2r\alpha + 1}})$

Optimal statistical performance

- **Easy problems** $r \ge \frac{\alpha-1}{2\alpha}$: optimal rate is $O(n^{\frac{-2r\alpha}{2r\alpha+1}})$, achieved by:
 - Regularized ERM (Caponnetto and De Vito, 2007)
 - Early-stopped gradient descent (Yao et al., 2007)
 - Single-pass averaged SGD (Dieuleveut and Bach, 2016)

Optimal statistical performance

- Easy problems $r \ge \frac{\alpha 1}{2\alpha}$: optimal rate is $O(n^{\frac{-2r\alpha}{2r\alpha + 1}})$
- Hard problems $r \leq \frac{\alpha 1}{2\alpha}$

– Lower bound: $O(n^{\frac{-2r\alpha}{2r\alpha+1}})$. Known upper bound: $O(n^{-2r})$

Least-mean-square (LMS) algorithm

- Least-squares: $F(\theta) = \frac{1}{2}\mathbb{E}[(y \langle \Phi(x), \theta \rangle)^2]$ with $\theta \in \mathbb{R}^d$
 - SGD = least-mean-square algorithm (see, e.g., Macchi, 1995)
 - Iteration: $\theta_i = \theta_{i-1} \gamma (\langle \Phi(x_i), \theta_{i-1} \rangle y_i) \Phi(x_i)$

Least-mean-square (LMS) algorithm

- Least-squares: $F(\theta) = \frac{1}{2}\mathbb{E}[(y \langle \Phi(x), \theta \rangle)^2]$ with $\theta \in \mathbb{R}^d$
 - SGD = least-mean-square algorithm (see, e.g., Macchi, 1995)
 - Iteration: $\theta_i = \theta_{i-1} \gamma (\langle \Phi(x_i), \theta_{i-1} \rangle y_i) \Phi(x_i)$
- New analysis for averaging and constant step-size $\gamma = 1/(4R^2)$
 - Bach and Moulines (2013)
 - Assume $\|\Phi(x)\| \leqslant R$ and $|y \langle \Phi(x), \theta_* \rangle| \leqslant \sigma$ almost surely
 - No assumption regarding lowest eigenvalues of $\boldsymbol{\Sigma}$

- Main result:
$$\mathbb{E}F(\bar{\theta}_n) - F(\theta_*) \leqslant \frac{4\sigma^2 d}{n} + \frac{4R^2 \|\theta_0 - \theta_*\|^2}{n}$$

• Matches statistical lower bound (Tsybakov, 2003)

• LMS recursion: $\theta_i = \theta_{i-1} - \gamma (\langle \Phi(x_i), \theta_{i-1} \rangle - y_i) \Phi(x_i)$

- LMS recursion: $\theta_i = \theta_{i-1} \gamma (\langle \Phi(x_i), \theta_{i-1} \rangle y_i) \Phi(x_i)$
- The sequence $(\theta_i)_i$ is a homogeneous Markov chain
 - convergence to a stationary distribution π_{γ}
 - with expectation $\bar{\theta}_{\gamma} \stackrel{\text{def}}{=} \int \theta \pi_{\gamma}(\mathrm{d}\theta)$

- LMS recursion: $\theta_i = \theta_{i-1} \gamma (\langle \Phi(x_i), \theta_{i-1} \rangle y_i) \Phi(x_i)$
- The sequence $(\theta_i)_i$ is a homogeneous Markov chain
 - convergence to a stationary distribution π_{γ}
 - with expectation $\bar{\theta}_{\gamma} \stackrel{\text{def}}{=} \int \theta \pi_{\gamma}(\mathrm{d}\theta)$
- For least-squares, $\bar{\theta}_{\gamma} = \theta_*$

- LMS recursion: $\theta_i = \theta_{i-1} \gamma (\langle \Phi(x_i), \theta_{i-1} \rangle y_i) \Phi(x_i)$
- The sequence $(\theta_i)_i$ is a homogeneous Markov chain
 - convergence to a stationary distribution π_{γ}
 - with expectation $\bar{\theta}_{\gamma} \stackrel{\mathrm{def}}{=} \int \theta \pi_{\gamma}(\mathrm{d}\theta)$
- For least-squares, $\bar{\theta}_{\gamma} = \theta_{*}$

- LMS recursion: $\theta_i = \theta_{i-1} \gamma (\langle \Phi(x_i), \theta_{i-1} \rangle y_i) \Phi(x_i)$
- The sequence $(\theta_i)_i$ is a homogeneous Markov chain
 - convergence to a stationary distribution π_{γ}
 - with expectation $\bar{\theta}_{\gamma} \stackrel{\text{def}}{=} \int \theta \pi_{\gamma}(\mathrm{d}\theta)$
- For least-squares, $\bar{\theta}_{\gamma} = \theta_{*}$
 - θ_n does not converge to θ_* but oscillates around it
- Ergodic theorem:
 - Averaged iterates converge to $ar{ heta}_\gamma= heta_*$ at rate O(1/n)
 - See Dieuleveut, Durmus, and Bach (2017) for more details

Simulations - synthetic examples

• Gaussian distributions - d = 20

Simulations - benchmarks

• alpha (d = 500, n = 500, 000), news (d = 1, 300, 000, n = 20, 000)

• Least-squares: cannot beat $\sigma^2 d/n$ (Tsybakov, 2003). Really?

– What if $d \gg n$?

- Least-squares: cannot beat $\sigma^2 d/n$ (Tsybakov, 2003). Really? – What if $d \gg n$?
- Needs assumptions on $\Sigma = \mathbb{E} \big[\Phi(x) \otimes \Phi(x) \big]$ and θ_*

• Covariance eigenvalues

- Pessimistic assumption: all eigenvalues λ_m less than a constant
- Actual decay as $\lambda_m = o(m^{-\alpha})$ with $\operatorname{tr} \Sigma^{1/\alpha} = \sum_m \lambda_m^{1/\alpha}$ small

• Covariance eigenvalues

– Pessimistic assumption: all eigenvalues λ_m less than a constant

- Actual decay as $\lambda_m = o(m^{-\alpha})$ with $\operatorname{tr} \Sigma^{1/\alpha} = \sum_m \lambda_m^{1/\alpha}$ small

– New result: replace $\frac{\sigma^2 d}{n}$ by $\frac{\sigma^2 (\gamma n)^{1/\alpha} \operatorname{tr} \Sigma^{1/\alpha}}{n}$

• Covariance eigenvalues

– Pessimistic assumption: all eigenvalues λ_m less than a constant

m

- Actual decay as $\lambda_m = o(m^{-\alpha})$ with $\operatorname{tr} \Sigma^{1/\alpha} = \sum \lambda_m^{1/\alpha}$ small

– New result: replace
$$\frac{\sigma^2 d}{n}$$
 by $\frac{\sigma^2 (\gamma n)^{1/\alpha} \operatorname{tr} \Sigma^{1/\alpha}}{n}$

• Optimal predictor

- Pessimistic assumption: $\|\theta_0 \theta_*\|^2$ finite/small
- Finer assumption: $\|\Sigma^{1/2-r}(\theta_0 \theta_*)\|_2$ small, for $r \in [0, 1]$
- Always satisfied for r = 0 and $\theta_0 = 0$, since $\|\Sigma^{1/2}\theta_*\| \leq 2\sqrt{\mathbb{E}y_n^2}$

• Covariance eigenvalues

– Pessimistic assumption: all eigenvalues λ_m less than a constant

m

- Actual decay as $\lambda_m = o(m^{-\alpha})$ with $\operatorname{tr} \Sigma^{1/\alpha} = \sum \lambda_m^{1/\alpha}$ small

– New result: replace
$$\frac{\sigma^2 d}{n}$$
 by $\frac{\sigma^2 (\gamma n)^{1/\alpha} \operatorname{tr} \Sigma^{1/\alpha}}{n}$

• Optimal predictor

- Pessimistic assumption: $\|\theta_0 \theta_*\|^2$ finite/small
- Finer assumption: $\|\Sigma^{1/2-r}(\theta_0 \theta_*)\|_2$ small, for $r \in [0, 1]$
- Always satisfied for r = 0 and $\theta_0 = 0$, since $\|\Sigma^{1/2}\theta_*\| \leq 2\sqrt{\mathbb{E}y_n^2}$
- New result: replace $\frac{\|\theta_0 \theta_*\|^2}{\gamma n}$ by $\frac{\|\Sigma^{1/2 r}(\theta_0 \theta_*)\|^2}{\gamma^{2r} n^{2r}}$

• Least-squares: cannot beat $\sigma^2 d/n$ (Tsybakov, 2003). Really?

– What if $d \gg n$?

- Refined assumptions with adaptivity (Dieuleveut and Bach, 2016)
 - Beyond strong convexity or lack thereof

$$\mathbb{E}F(\bar{\theta}_n) - F(\theta_*) \leqslant \inf_{\substack{\alpha \ge 1, r \in [0, 1]}} \frac{4\sigma^2 \operatorname{tr} \Sigma^{1/\alpha}}{n} (\gamma n)^{1/\alpha} + \frac{4\|\Sigma^{1/2 - r}\theta_*\|^2}{\gamma^{2r} n^{2r}}$$

– Previous results: $\alpha=+\infty$ and r=1/2

• Least-squares: cannot beat $\sigma^2 d/n$ (Tsybakov, 2003). Really?

– What if $d \gg n$?

- Refined assumptions with adaptivity (Dieuleveut and Bach, 2016)
 - Beyond strong convexity or lack thereof

$$\mathbb{E}F(\bar{\theta}_n) - F(\theta_*) \leqslant \inf_{\substack{\alpha \ge 1, r \in [0, 1]}} \frac{4\sigma^2 \operatorname{tr} \Sigma^{1/\alpha}}{n} (\gamma n)^{1/\alpha} + \frac{4\|\Sigma^{1/2 - r}\theta_*\|^2}{\gamma^{2r} n^{2r}}$$

- Previous results: $\alpha=+\infty$ and r=1/2
- Optimal step-size γ potentially decaying with n, but depends on usually unknown quantities α and $r \Leftrightarrow$ no adaptivity (yet)

• Least-squares: cannot beat $\sigma^2 d/n$ (Tsybakov, 2003). Really?

– What if $d \gg n$?

- Refined assumptions with adaptivity (Dieuleveut and Bach, 2016)
 - Beyond strong convexity or lack thereof

$$\mathbb{E}F(\bar{\theta}_n) - F(\theta_*) \leqslant \inf_{\substack{\alpha \ge 1, r \in [0, 1]}} \frac{4\sigma^2 \operatorname{tr} \Sigma^{1/\alpha}}{n} (\gamma n)^{1/\alpha} + \frac{4\|\Sigma^{1/2 - r}\theta_*\|^2}{\gamma^{2r} n^{2r}}$$

- Previous results: $\alpha=+\infty$ and r=1/2
- Optimal step-size γ potentially decaying with n, but depends on usually unknown quantities α and $r \Leftrightarrow$ no adaptivity (yet)
- Extension to non-parametric estimation (using kernels) with optimal rates when $r \ge (\alpha 1)/(2\alpha)$, still with $O(n^2)$ running-time

From least-squares to non-parametric estimation

• Extension to Hilbert spaces: $\Phi(x), \theta \in \mathcal{H}$

$$\theta_i = \theta_{i-1} - \gamma \big(\langle \Phi(x_i), \theta_{i-1} \rangle - y_i \big) \Phi(x_i)$$

• If $\theta_0 = 0$, θ_i is a linear combination of $\Phi(x_1), \ldots, \Phi(x_i)$

$$\theta_i = \sum_{k=1}^i a_k \Phi(x_k) \text{ and } a_i = -\gamma \sum_{k=1}^{i-1} a_k \langle \Phi(x_k), \Phi(x_i) \rangle + \gamma y_i$$

From least-squares to non-parametric estimation

• Extension to Hilbert spaces: $\Phi(x), \theta \in \mathcal{H}$

$$\theta_i = \theta_{i-1} - \gamma \big(\langle \Phi(x_i), \theta_{i-1} \rangle - y_i \big) \Phi(x_i)$$

• If $\theta_0 = 0$, θ_i is a linear combination of $\Phi(x_1), \ldots, \Phi(x_i)$

$$\theta_i = \sum_{k=1}^i a_k \Phi(x_k) \text{ and } a_i = -\gamma \sum_{k=1}^{i-1} a_k \langle \Phi(x_k), \Phi(x_i) \rangle + \gamma y_i$$

- Kernel trick: $k(x, x') = \langle \Phi(x), \Phi(x') \rangle$
 - Reproducing kernel Hilbert spaces and non-parametric estimation
 - See, e.g., Schölkopf and Smola (2001); Shawe-Taylor and Cristianini (2004); Dieuleveut and Bach (2016)
 - Still $O(n^2)$ overall running-time

Example: Sobolev spaces in one dimension

- $\mathfrak{X} = [0, 1]$, functions represented through their Fourier series
 - Weighted Fourier basis $\Phi(x)_m = \lambda_m^{1/2} \cos(2m\pi x)$ (plus sines)
 - kernel $k(x, x') = \sum_{m} \lambda_m \cos \left[2m\pi(x x')\right]$

Example: Sobolev spaces in one dimension

- $\mathfrak{X} = [0, 1]$, functions represented through their Fourier series
 - Weighted Fourier basis $\Phi(x)_m = \lambda_m^{1/2} \cos(2m\pi x)$ (plus sines) - kernel $k(x, x') = \sum_m \lambda_m \cos\left[2m\pi(x - x')\right]$
- $\lambda_m \propto m^{-\alpha}$ corresponds to Sobolev penalty on $f_{\theta}(x) = \langle \theta, \Phi(x) \rangle$ $\|f_{\theta}\|^2 = \|\theta\|^2 = \sum_m |\text{Fourier}(f_{\theta})_m|^2 \lambda_m^{-1} \propto \int_0^1 |f_{\theta}^{(\alpha/2)}(x)|^2 dx$

Example: Sobolev spaces in one dimension

- $\mathfrak{X} = [0, 1]$, functions represented through their Fourier series
 - Weighted Fourier basis $\Phi(x)_m = \lambda_m^{1/2} \cos(2m\pi x)$ (plus sines) - kernel $k(x, x') = \sum_m \lambda_m \cos\left[2m\pi(x - x')\right]$
- $\lambda_m \propto m^{-\alpha}$ corresponds to Sobolev penalty on $f_{\theta}(x) = \langle \theta, \Phi(x) \rangle$ $\|f_{\theta}\|^2 = \|\theta\|^2 = \sum_m |\text{Fourier}(f_{\theta})_m|^2 \lambda_m^{-1} \propto \int_0^1 |f_{\theta}^{(\alpha/2)}(x)|^2 dx$
- Adapted norm $\|\Sigma^{1/2-r}\theta\|^2$ depends on regularity of f_{θ}

$$- \|\Sigma^{1/2-r}\theta\|^2 = \sum_m |\text{Fourier}(f_\theta)_m|^2 \lambda_m^{-2r} \propto \int_0^1 |f_\theta^{(r\alpha)}(x)|^2 dx$$

- Optimal rate is $O(n^{\frac{-2r\alpha}{2r\alpha+1}})$

New assumption needed

- Assumption: $\|\Sigma^{\mu/2-1/2}\Phi(x)\|$ almost surely "small"
 - Already used by Steinwart et al. (2009)
 - True for $\mu = 1$
 - Usually $\mu \geqslant 1/\alpha$ (equal for Sobolev spaces)
 - Relationship between L_∞ norm $\|\cdot\|_{L_\infty}$ and RKHS norm $\|\cdot\|$

$$||g||_{L_{\infty}} = O(||g||^{\mu} ||g||_{L_{2}}^{1-\mu})$$

- NB: implies bounded leverage scores (Rudi et al., 2015)

Multiple pass SGD (sampling with replacement)

• Algorithm from n i.i.d. observations (x_i, y_i) , $i = 1, \ldots, n$:

$$\theta_u = \theta_{u-1} + \gamma \big(y_{i(u)} - \langle \theta_{u-1}, \Phi(x_{i(u)}) \rangle \big) \Phi(x_{i(u)})$$

 $- \bar{\theta}_t$ averaged iterate after $t \ge n$ iterations

Multiple pass SGD (sampling with replacement)

• Algorithm from n i.i.d. observations (x_i, y_i) , $i = 1, \ldots, n$:

$$\theta_u = \theta_{u-1} + \gamma \big(y_{i(u)} - \langle \theta_{u-1}, \Phi(x_{i(u)}) \rangle \big) \Phi(x_{i(u)})$$

 $- \bar{\theta}_t$ averaged iterate after $t \ge n$ iterations

- Theorem (Pillaud-Vivien, Rudi, and Bach, 2018): Assume $r \leq \frac{\alpha-1}{2\alpha}$. - If $\mu \leq 2r$, then after $t = \Theta(n^{\alpha/(2r\alpha+1)})$ iterations, we have: $\mathbb{E}F(\bar{\theta}_t) - F(\theta_*) = O(n^{-2r\alpha/(2r\alpha+1)})$
 - Otherwise, then after $t = \Theta(n^{1/\mu} (\log n)^{\frac{1}{\mu}})$ iterations, we have: $\mathbb{E}F(\bar{\theta}_t) - F(\theta_*) \leq O(n^{-2r/\mu})$
- Proof technique following Rosasco and Villa (2015)

Proof sketch

• Algorithm from n i.i.d. observations (x_i, y_i) , $i = 1, \ldots, n$:

$$\theta_u = \theta_{u-1} + \gamma \big(y_{i(u)} - \langle \theta_{u-1}, \Phi(x_{i(u)}) \rangle \big) \Phi(x_{i(u)})$$

 $- \bar{\theta}_t$ averaged iterate after $t \ge n$ iterations

• Following Rosasco and Villa (2015), consider batch gradient recursion $\eta_u = \theta_{u-1} + \frac{\gamma}{n} \sum_{i=1}^n \left(y_i - \langle \theta_{u-1}, \Phi(x_i) \rangle \right) \Phi(x_i)$

– $\bar{\eta}_t$ averaged iterate after $t \ge n$ iterations

Proof sketch

• Algorithm from n i.i.d. observations (x_i, y_i) , $i = 1, \ldots, n$:

$$\theta_u = \theta_{u-1} + \gamma \big(y_{i(u)} - \langle \theta_{u-1}, \Phi(x_{i(u)}) \rangle \big) \Phi(x_{i(u)})$$

- $\bar{\theta}_t$ averaged iterate after $t \ge n$ iterations

• Following Rosasco and Villa (2015), consider batch gradient recursion $\eta_u = \theta_{u-1} + \frac{\gamma}{n} \sum_{i=1}^n \left(y_i - \langle \theta_{u-1}, \Phi(x_i) \rangle \right) \Phi(x_i)$

– $\bar{\eta}_t$ averaged iterate after $t \ge n$ iterations

- As long as $t = O(n^{1/\mu})$
 - Property 1: $\mathbb{E}F(\bar{\theta}_t) \mathbb{E}F(\bar{\eta}_t) = O\left(\frac{t^{1/\alpha}}{t}\right)$
 - Property 2: $\mathbb{E}F(\bar{\eta}_t) F(\theta_*) = O\left(\frac{t^{1/\alpha}}{n}\right) + O(t^{-2r})$

Multiple pass SGD (sampling with replacement)

• Algorithm from n i.i.d. observations (x_i, y_i) , $i = 1, \ldots, n$:

$$\theta_u = \theta_{u-1} + \gamma \big(y_{i(u)} - \langle \theta_{u-1}, \Phi(x_{i(u)}) \rangle \big) \Phi(x_{i(u)})$$

 $- \bar{\theta}_t$ averaged iterate after $t \ge n$ iterations

$$\mathbb{E}F(\bar{\theta}_t) - F(\theta_*) \leq O(n^{-2r/\mu})$$
 Improved

• Proof technique following Rosasco and Villa (2015)

Statistical optimality

• If $\mu \leq 2r$, then after $t = \Theta(n^{\alpha/(2r\alpha+1)})$ iterations, we have:

$$\mathbb{E}F(\bar{\theta}_t) - F(\theta_*) = O(n^{-2r\alpha/(2r\alpha+1)}) \quad \text{Optimal}$$

• Otherwise, then after $t = \Theta(n^{1/\mu} (\log n)^{\frac{1}{\mu}})$ iterations, we have:

$$\mathbb{E}F(\bar{\theta}_t) - F(\theta_*) \leqslant O(n^{-2r/\mu}) \qquad \text{Improved}$$

Simulations

• Synthetic examples

- One-dimensional kernel regression
- Sobolev spaces
- Arbitrary chosen values for r and α

• Check optimal number of iterations over the data

Simulations

• Synthetic examples

- One-dimensional kernel regression
- Sobolev spaces
- Arbitrary chosen values for r and α
- Check optimal number of iterations over the data

• Comparing three sampling schemes

- With replacement
- Without replacement (cycling with random reshuffling)
- Cycling

Simulations (sampling with replacement)

$$\alpha = 5/2, r = 1/5 < (\alpha - 1)/(2\alpha)$$

Simulations (sampling without replacement)

$$\alpha = 5/2, r = 1/5 < (\alpha - 1)/(2\alpha)$$

$$\alpha = 3, r = 1/6 < (\alpha - 1)/(2\alpha)$$

3.0

Simulations (cycling)

$$\alpha = 4, r = 1/4 = (\alpha - 1)/(2\alpha)$$

$$\alpha = 5/2, r = 1/5 < (\alpha - 1)/(2\alpha)$$

$$\alpha = 3, r = 1/6 < (\alpha - 1)/(2\alpha)$$

Simulations - Benchmarks

• MNIST dataset with linear kernel

Conclusion

• Benefits of multiple passes

- Number of passes grows with sample size for "hard" problems
- First provable improvement of multiple passes over SGD
 [NB: Hardt et al. (2016); Lin and Rosasco (2017) consider small step-sizes]

Conclusion

• Benefits of multiple passes

- Number of passes grows with sample size for "hard" problems
- First provable improvement of multiple passes over SGD
 [NB: Hardt et al. (2016); Lin and Rosasco (2017) consider small step-sizes]

• Current work - Extensions

- Study of cycling and sampling without replacement (Shamir, 2016; Gürbüzbalaban et al., 2015)
- Mini-batches
- Beyond least-squares
- Optimal efficient algorithms for the situation $\mu>2r$
- Combining analysis with exponential convergence of testing errors (Pillaud-Vivien, Rudi, and Bach, 2017)

References

- F. Bach and E. Moulines. Non-strongly-convex smooth stochastic approximation with convergence rate O(1/n). In Advances in Neural Information Processing Systems (NIPS), 2013.
- Andrea Caponnetto and Ernesto De Vito. Optimal rates for the regularized least-squares algorithm. *Foundations of Computational Mathematics*, 7(3):331–368, 2007.
- A. Dieuleveut and F. Bach. Non-parametric Stochastic Approximation with Large Step sizes. *Annals of Statistics*, 44(4):1363–1399, 2016.
- Aymeric Dieuleveut and Francis Bach. Nonparametric stochastic approximation with large step-sizes. *The Annals of Statistics*, 44(4):1363–1399, 2016.
- Aymeric Dieuleveut, Alain Durmus, and Francis Bach. Bridging the gap between constant step size stochastic gradient descent and markov chains. Technical Report 1707.06386, arXiv, 2017.
- Mert Gürbüzbalaban, Asu Ozdaglar, and Pablo Parrilo. Why random reshuffling beats stochastic gradient descent. Technical Report 1510.08560, arXiv, 2015.
- Moritz Hardt, Ben Recht, and Yoram Singer. Train faster, generalize better: Stability of stochastic gradient descent. In *International Conference on Machine Learning*, 2016.
- Junhong Lin and Lorenzo Rosasco. Optimal rates for multi-pass stochastic gradient methods. *Journal of Machine Learning Research*, 18(97):1–47, 2017.
- O. Macchi. Adaptive processing: The least mean squares approach with applications in transmission. Wiley West Sussex, 1995.

- L. Pillaud-Vivien, A. Rudi, and F. Bach. Stochastic gradient methods with exponential convergence of testing errors. Technical Report 1712.04755, arXiv, 2017.
- Loucas Pillaud-Vivien, Alessandro Rudi, and Francis Bach. Statistical optimality of stochastic gradient descent on hard learning problems through multiple passes. Technical Report 1805.10074, arXiv, 2018.
- Lorenzo Rosasco and Silvia Villa. Learning with incremental iterative regularization. In Advances in Neural Information Processing Systems, pages 1630–1638, 2015.
- A. Rudi, R. Camoriano, and L. Rosasco. Less is more: Nyström computational regularization. In *Advances in Neural Information Processing Systems*, pages 1657–1665, 2015.
- B. Schölkopf and A. J. Smola. Learning with Kernels. MIT Press, 2001.
- Ohad Shamir. Without-replacement sampling for stochastic gradient methods. In Advances in Neural Information Processing Systems 29, pages 46–54, 2016.
- J. Shawe-Taylor and N. Cristianini. *Kernel Methods for Pattern Analysis*. Cambridge University Press, 2004.
- Ingo Steinwart, Don R. Hush, and Clint Scovel. Optimal rates for regularized least squares regression. In *Proc. COLT*, 2009.
- A. B. Tsybakov. Optimal rates of aggregation. In Proc. COLT, 2003.
- Yuan Yao, Lorenzo Rosasco, and Andrea Caponnetto. On early stopping in gradient descent learning. *Constructive Approximation*, 26(2):289–315, 2007.