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Acceleration in numerical analysis

• Principle

– Given asymptotic expansion in t around t∞ (typically 0 or +∞)

xt = x∗ + gt +O(ht),

where x∗ ∈ R
d is the desired output and ht = o(‖gt‖)

– Combine iterates simply to obtain a sequence yt = x∗ +O(ht)

– Without the full knowledge of gt
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• Linear convergence (exponential behavior)

– Aitken’s ∆2 (Aitken, 1927), ε-algorithm (Wynn, 1956)

– Anderson acceleration (Walker and Ni, 2011; Scieur et al., 2016)

• Sublinear convergence: Richardson extrapolation



Richardson extrapolation (Richardson, 1911)

• Sublinear convergence: xt = x∗ + tα∆+O(tβ)

– Linear combination 2xt − x21/αt
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= x∗ +O(tβ)



Richardson extrapolation (Richardson, 1911)

• Sublinear convergence: xt = x∗ + tα∆+O(tβ)

– Linear combination 2xt − x21/αt

2xt − x21/αt = 2(x∗ + tα∆+O(tβ))− (x∗ + (21/αt)α∆+O(tβ))

= x∗ +O(tβ)

– Illustration with t∞ = 0 and α = 1, that is, xt = x∗ + t∆+O(t2)

xt

2xt − x2t

x2t

x∗

x∗ + t∆

x∗ + 2t∆

– Typically used within integration methods (Richardson-Romberg)
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• Step-size of stochastic gradient descent: t = γ → 0

• Regularization parameter: t = λ → 0

– Nesterov smoothing

– Ridge regression (not presented)

• Requires asymptotic analysis



Iteration of an optimization algorithm

• Iterative algorithm xk ∈ R
d, k > 0, with asymptotic expansion

xk = x∗ +
1

k
∆+O(1/k2)

– Extrapolation x
(1)
k = 2xk − xk/2 such that x
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• When can we expect extrapolation to work?

– Having ‖xk − x∗‖2 = O(1/k2) is not enough

– Needs a specific asymptotic expansion
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Averaged gradient descent - I

• Unconstrained minimization min
x∈Rd

f(x)

– f convex, three-times differentiable

– Hessian eigenvalues bounded

– Unique minimizer x∗ ∈ R
d such that f ′′(x∗) is positive definite
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– Averaging adds robustness to noise but forbids linear convergence

– Polyak and Juditsky (1992); Nemirovski et al. (2009); Bach and
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Averaged gradient descent - II

xk = xk−1 − γf ′(xk−1) and yk =
1

k

k−1
∑

i=0

xi

• Richardson extrapolation (for k even)

y
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k = 2yk − yk/2 =
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xi =
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– Equivalent to tail-averaging (Jain et al., 2018)



Averaged gradient descent - II

xk = xk−1 − γf ′(xk−1) and yk =
1

k

k−1
∑

i=0

xi

• Richardson extrapolation (for k even)

y
(1)
k = 2yk − yk/2 =

2

k

k−1
∑

i=0

xi −
2

k

k/2−1
∑

i=0

xi =
2

k

k−1
∑

i=k/2

xi

– Equivalent to tail-averaging (Jain et al., 2018)

• Asymptotic expansion: yk = x∗ +
1

k
∆+O(ρk),

where ∆ =
∑∞

i=0(xi − x∗) and ρ ∈ (0, 1)

– Richardson extrapolation restores linear convergence



Averaged gradient descent - III

• Experiments on logistic regression

– Data (ai, bi) ∈ R
d × {−1, 1}, with d = 400 and n = 4000

min
x∈Rd

f(x) =
1

n

n
∑

i=1

log(1 + exp(−bix
⊤ai))

– Covariance matrix of inputs with eigenvalues 1/j, j = 1, . . . , d
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Accelerated gradient descent

• Nesterov acceleration (Nesterov, 1983)

– Convergence in O(1/k2) instead of O(1/k) for convex functions



Accelerated gradient descent

• Nesterov acceleration (Nesterov, 1983)

– Convergence in O(1/k2) instead of O(1/k) for convex functions

– Iterates xk oscillate around the optimum

(see, e.g., Su et al., 2016; Flammarion and Bach, 2015)
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– Richardson extrapolation is useless (but does not hurt)



Frank-Wolfe algorithms - I

• Minimizing function f on a compact set K

x̄k ∈ argmin
x∈K

f(xk−1) + f ′(xk−1)
⊤(x− xk−1)

xk = (1− ρk)xk−1 + ρkx̄k

– ρk = 1/k, ρ = 2/(k + 1) or with line search

– Convergence rate: f(xk)− f(x∗) = O(1/k) or O((log k)/k)

– Dunn and Harshbarger (1978); Jaggi (2013)

K

f ′(xk−1)

xk−1

x̄k
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– Effect of Richardson

extrapolation?
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Frank-Wolfe algorithms - II

• Asssumptions: K polytope + “constraint qualification”

• Step-size ρk = 1/k

– Asymptotic expansion: xk = x∗ +
1

k
∆1 +O(1/k2)

– With ∆1 orthogonal the facet of x∗ in K
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– Function values: f(xk)− f(x∗) =
1
k∆

⊤
1 f

′(x∗) +O(1/k2)

– Richardson: f(2xk − xk/2)− f(x∗) = O(1/k2)

– Richardson extrapolation transforms O(1/k) to O(1/k2)
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Frank-Wolfe algorithms - III

• Step-size ρk = 1/k

• Experiments on constrained logistic regression

– Data (ai, bi) ∈ R
d × {−1, 1}, with d = 400 and n = 400
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Frank-Wolfe algorithms - IV

• Asssumptions: K polytope + “constraint qualification”

• Step-size ρk = 2/(k + 1)

– Asymptotic expansion: xk = x∗ +
1

k(k + 1)
∆2 +O(1/k2)

– With ∆2 orthogonal the facet of x∗ in K
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– Function values: f(xk)− f(x∗) = O(1/k2)

– Richardson: f(2xk − xk/2)− f(x∗) = O(1/k2)

– Richardson is useless (but does not hurt)
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Frank-Wolfe algorithms - V

• Step-size ρk = 2/(k + 1)

• Experiments on constrained logistic regression

– Data (ai, bi) ∈ R
d × {−1, 1}, with d = 400 and n = 400
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Step-size of stochastic gradient descent - I

• Averaged SGD, with stochastic gradients g′(xk−1, zk)

xk = xk−1 − γg′(xk−1, zk) and yk =
1

k

k−1
∑

i=0

xi

– with expectation Ezkg
′(xk−1, zk) = f ′(xk−1)

– yk converges to y
(γ)
∗ 6= x∗ = argmin f (Dieuleveut et al., 2017)

video!
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• Averaged SGD, with stochastic gradients g′(xk−1, zk)

xk = xk−1 − γg′(xk−1, zk) and yk =
1

k

k−1
∑

i=0

xi

– with expectation Ezkg
′(xk−1, zk) = f ′(xk−1)

– yk converges to y
(γ)
∗ 6= x∗ = argmin f (Dieuleveut et al., 2017)

• Asymptotic expansion: y
(γ)
∗ = x∗ + γ∆+O(γ2)

– Richardson extrapolation 2y
(γ)
n − y

(2γ)
n converges to

2y(γ)∗ − y(2γ)∗ = x∗ +O(γ2)

– Higher-order extrapolation 3y
(γ)
n − 3y

(2γ)
n + y

(3γ)
n removes the term

in γ2 and approaches x∗ with rate O(γ3)

– Can go up to order m...



Step-size of stochastic gradient descent - II

• Experiments on logistic regression in dimension 20

– Dieuleveut, Durmus, and Bach (2017)
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– See also Durmus, Simsekli, Moulines, Badeau, and Richard (2016)



Nesterov smoothing - I

• Composite problem: minimize f = h+ g

– With h smooth and g non-smooth

– Structured prediction, or sparsity-inducing norms
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– With gλ is (1/λ)-smooth, and ‖g − gλ‖∞ = O(λ)

– Typically done by inf-convolution with a (1/λ)-smooth function

– Example: smooth max{x, y} by λ log(exp(x/λ) + exp(y/λ))
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• Composite problem: minimize f = h+ g

– With h smooth and g non-smooth

– Structured prediction, or sparsity-inducing norms

• Nesterov smoothing (Nesterov, 2005): replace g by gλ

– With gλ is (1/λ)-smooth, and ‖g − gλ‖∞ = O(λ)

– Typically done by inf-convolution with a (1/λ)-smooth function

– Example: smooth max{x, y} by λ log(exp(x/λ) + exp(y/λ))

• Optimization of h+ gλ by accelerated gradient descent

– Error rate of O
(

λ+ 1/(λk2)
)

– With λ ∝ 1/k, rate of O(1/k)

– Better than subgradient method in O(1/
√
k)



Nesterov smoothing - II

• Assumptions: (1) polyhedral function g

(2) smoothing by entropic or quadratic dual penalty

• Asymptotic expansion

– If xλ is the minimizer of h+ gλ
– If x∗ the global minimizer of f = h+ g

xλ = x∗ + λ∆+O(λ2)
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Nesterov smoothing - II

• Assumptions: (1) polyhedral function g

(2) smoothing by entropic or quadratic dual penalty

• Asymptotic expansion

– If xλ is the minimizer of h+ gλ
– If x∗ the global minimizer of f = h+ g

xλ = x∗ + λ∆+O(λ2)

– Then x
(1)
λ = 2xλ−x2λ = x∗+O(λ2) and f(x

(1)
λ ) = f(x∗)+O(λ2)

– Error rate of O
(

λ2 + 1/(λk2)
)

– With λ ∝ k−2/3, overall convergence rate of k−4/3

– High-order expansions have rate O(k−2(m+1)/(m+2))



Nesterov smoothing - III

• Experiments on penalized Lasso problem
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• Iteration of an optimization algorithm: t = k → +∞
– Averaged gradient descent

– Accelerated gradient descent

– Frank-Wolfe algorithms

• Step-size of stochastic gradient descent: t = γ → 0

• Regularization parameter: t = λ → 0

– Nesterov smoothing

– Ridge regression (not presented)

• Requires asymptotic analysis



Richardson extrapolation in machine learning

• Iteration of an optimization algorithm: t = k → +∞
– Averaged gradient descent

– Accelerated gradient descent

– Frank-Wolfe algorithms

• Step-size of stochastic gradient descent: t = γ → 0

• Regularization parameter: t = λ → 0

– Nesterov smoothing

– Ridge regression (not presented)

• Requires asymptotic analysis

• Other problems?
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