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• E.g., advertising: n > 109

– Φ(x) ∈ {0, 1}d, d > 109

– Navigation history + ad
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• Actual goal: minimize test error Ep(x,y)ℓ(y, h(x, θ))
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- Stochastic methods for large-scale learning and online learning
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– NB: already a simplification

• Main difficulties

1. Non-convex optimization problems

2. Generalization guarantees in the overparameterized regime



Optimization for multi-layer neural networks

• What can go wrong with non-convex optimization problems?

– Local minima

– Stationary points

– Plateaux

– Bad initialization
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• Generic local theoretical guarantees

– Convergence to stationary points or local minima

– See, e.g., Lee et al. (2016); Jin et al. (2017)
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• General global performance guarantees impossible to obtain

• Special case of (deep) neural networks

– Most local minima are equivalent (Choromanska et al., 2015)

– No spurrious local minima (Soltanolkotabi et al., 2018)
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– Overparameterized models withm large ≈ measure µ with densities

– Barron (1993); Kurkova and Sanguineti (2001); Bengio et al.

(2006); Rosset et al. (2007); Bach (2017)
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– Frank-Wolfe techniques for incremental learning

– Non-tractable (Bach, 2017), not what is used in practice
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• Minimize with respect to measure µ: R
(

∫

W

Ψ(w)dµ(w)
)

– Convex optimization problem on measures

– Frank-Wolfe techniques for incremental learning

– Non-tractable (Bach, 2017), not what is used in practice

• Represent µ by a finite set of “particles” µ = 1
m

∑m

j=1 δwj

– Backpropagation = gradient descent on (w1, . . . , wm)

• Three questions:

– Algorithm limit when number of particles m gets large

– Global convergence to a global minimizer

– Prediction performance
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2. Multiple pass SGD or full GD on the empirical risk



Many particle limit and global convergence

(Chizat and Bach, 2018)

• General framework: minimize F (µ) = R
(

∫

W

Ψ(w)dµ(w)
)

– Algorithm: minimizing Fm(w1, . . . , wm) = R
( 1

m
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Ψ(wj)
)

– Gradient flow Ẇ = −m∇Fm(W ), with W = (w1, . . . , wm)

– Idealization of (stochastic) gradient descent

• Limit when m tends to infinity

– Wasserstein gradient flow (Nitanda and Suzuki, 2017; Chizat and

Bach, 2018; Mei, Montanari, and Nguyen, 2018; Sirignano and

Spiliopoulos, 2018; Rotskoff and Vanden-Eijnden, 2018)

• NB: for more details on gradient flows, see Ambrosio et al. (2008)
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– Applies to rectified linear units (but also to sigmoid activations)

• Sufficiently spread initial measure

– Needs to cover the entire sphere of directions
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• (informal) theorem: when the number of particles tends to infinity,

the gradient flow converges to the global optimum

– See precise definitions and statement in paper

– Two key ingredients: homogeneity and initialization

• Homogeneity (see, e.g., Haeffele and Vidal, 2017; Bach et al., 2008)

– Full or partial, e.g., Ψ(wj)(x) = mθ2(j) · σ
[

θ1(·, j)
⊤x

]

– Applies to rectified linear units (but also to sigmoid activations)

• Sufficiently spread initial measure

– Needs to cover the entire sphere of directions

• Only qualititative!
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• ReLU units with d = 2 (optimal predictor has 5 neurons)
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(plotting |θ2(j)|θ1(·, j) for each hidden neuron j)

NB : also applies to spike deconvolution
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( |θ2(j)|θ1(·, j) video!

NB : also applies to spike deconvolution
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+

– If m tends to infinity, the gradient flow converges to a global

minimizer of the risk R(h) = Ep(x,y)ℓ(y, h(x))

– Requires well-spread initialization, no quantitative results

• Single-pass SGD with R the (unobserved) expected risk

– Converges to an optimal predictor on the testing distribution

– Tends to underfit

• Multiple-pass SGD or full GD with R the empirical risk

– Converges to an optimal predictor on the training distribution

– Should overfit?
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– When m(d+ 1) > n, typically there exist many h such that

∀i ∈ {1, . . . , n}, h(xi) = yi (or ℓ(yi, h(xi)) = 0)
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• Which h is the gradient flow converging to?

– Implicit bias of (stochastic) gradient descent

– Typically minimum Euclidean norm solution (Gunasekar et al.,

2017; Soudry et al., 2018; Gunasekar et al., 2018)

– Surprisingly difficult for the square loss

– Surprisingly easy for the logistic loss
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maximum margin and logistic regression

• Logistic regression: min
θ∈Rd

1

n

n
∑

i=1

log(1 + exp(−yiθ
⊤xi))

– Separable data: ∃θ ∈ R
d, ∀i ∈ {1, . . . , n}, yiθ

⊤xi > 1

– 0 = infimum of the risk, attained for infinitely large ‖θ‖2

• Implicit bias of gradient descent (Soudry et al., 2018)

– GD diverges but 1
‖θt‖2θt converges to maximum margin separator

max
‖η‖2=1

min
i∈{1,...,n}

yiη
⊤xi

– often written as

min ‖θ‖22 such that ∀i, yiθ
⊤xi > 1

– Separable support vector machine

(Vapnik and Chervonenkis, 1964)
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• Overparameterized regime m → +∞

– Will converge to well-defined “maximum margin” separator
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h(x) =
1

m

m
∑

j=1

θ2(j)
(

θ1(·, j)
⊤x

)

+

• Overparameterized regime m → +∞

– Will converge to well-defined “maximum margin” separator

• Two different regimes (Chizat and Bach, 2020)

1. Optimizing over output layer only θ2: random feature kernel

2. Optimizing over all layers θ1, θ2: feature learning
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– Direct application of results from Soudry et al. (2018)

– Limit when m tends to infinity?

• Kernel Φ(x)⊤Φ(x′) =
1

m

m
∑

j=1

(

θ1(·, j)
⊤
x
)

+

(

θ1(·, j)
⊤
x′)

+

– Converges to Eη

(

η⊤x
)

+

(

η⊤x′)
+

– “Random features” (Neal, 1995; Rahimi and Recht, 2007)
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+

– Reproducing kernel Hilbert spaces (RKHS)

(see, e.g., Schölkopf and Smola, 2001)

– Space of (very) smooth functions (Bach, 2017)
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• Limiting kernel Eη

(

η⊤x
)

+

(

η⊤x′)
+

– Reproducing kernel Hilbert spaces (RKHS)

(see, e.g., Schölkopf and Smola, 2001)

– Space of (very) smooth functions (Bach, 2017)

• (informal) theorem (Chizat and Bach, 2020): when m → +∞, the

gradient flow converges to the function in the RKHS that separates

the data with minimum RKHS norm

– Quantitative analysis available

– Letting m → +∞ is useless in practice

– See Montanari et al. (2019) for related work in the context of

“double descent”
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‖f‖2 = inf
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∫
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|a(η)|2dτ(η) such that f(x) =
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– Input weigths uniformly distributed on the sphere (Bach, 2017)

– Smooth functions (does not allow single hidden neuron)
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• Alternative definition of the RKHS norm

‖f‖2 = inf
a(·)

∫

Sd
|a(η)|2dτ(η) such that f(x) =

∫

Sd
(η⊤x)+a(η)dτ(η)

– Input weigths uniformly distributed on the sphere (Bach, 2017)

– Smooth functions (does not allow single hidden neuron)

• Variation norm (Kurkova and Sanguineti, 2001)

Ω(f) = inf
a(·)

∫

Sd
|a(η)|dτ(η) such that f(x) =

∫

Sd
(η⊤x)+a(η)dτ(η)

– Larger space including non-smooth functions

– Allows single hidden neuron

– Adaptivity to linear structures (Bach, 2017)



Feature learning regime

• Prediction function h(x) =
1

m

m
∑

j=1

θ2(j)
(

θ1(·, j)
⊤x

)

+

– Optimize over all weights θ1, θ2



Feature learning regime

• Prediction function h(x) =
1

m

m
∑

j=1

θ2(j)
(

θ1(·, j)
⊤x

)

+

– Optimize over all weights θ1, θ2

• (informal) theorem (Chizat and Bach, 2020): when m → +∞, the

gradient flow converges to the function that separates the data with

minimum variation norm

– Actual learning of representations

– Adaptivity to linear structures (see Chizat and Bach, 2020)

– No known convex optimization algorithms in polynomial time

– End of the curve of double descent (Belkin et al., 2018)



Optimizing over two layers

• Two-dimensional classification with “bias” term

Space of parameters

• Plot of |θ2(j)|θ1(·, j)

• Color depends on sign of θ2(j)

• “tanh” radial scale

Space of predictors

• (+/−) training set

• One color per class

• Line shows 0 level set of h






Comparison of kernel and feature learning regimes

• ℓ2 (left: kernel) vs. ℓ1 (right: feature learning and variation norm)






Comparison of kernel and feature learning regimes

• Adaptivity to linear structures

• Two-class classification in dimension d = 15

– Two first coordinates as shown below

– All other coordinates uniformly at random



Conclusion

• Summary

– Qualitative analysis of gradient descent for 2-layer neural networks

– Global convergence with infinitely many neurons

– Convergence to maximum margin separators in well-defined

function spaces

– Only qualitative



Conclusion

• Summary

– Qualitative analysis of gradient descent for 2-layer neural networks

– Global convergence with infinitely many neurons

– Convergence to maximum margin separators in well-defined

function spaces

– Only qualitative

• Open problems

– Quantitative analysis in terms of number of neurons m and time t

– Extension to convolutional neural networks

– Extension to deep neural networks
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