Second Order Strikes Back Globally Convergent Newton Methods for Ill-conditioned Generalized Self-concordant Losses

Francis Bach

INRIA - Ecole Normale Supérieure, Paris, France

Joint work with Ulysse Marteau-Ferey and Alessandro Rudi

- Data: n observations $(x_i, y_i) \in \mathfrak{X} \times \mathfrak{Y}$, $i = 1, \dots, n$
- Prediction function $h(x, \theta) \in \mathbb{R}$ parameterized by $\theta \in \mathbb{R}^d$

- Data: n observations $(x_i, y_i) \in \mathfrak{X} \times \mathfrak{Y}$, $i = 1, \dots, n$
- Prediction function $h(x, \theta) \in \mathbb{R}$ parameterized by $\theta \in \mathbb{R}^d$

- Advertising: $n > 10^9$
 - $\Phi(x) \in \{0, 1\}^d$, $d > 10^9$ - Navigation history + ad
- Linear predictions

$$-h(x,\theta) = \theta^{\top} \Phi(x)$$

- Data: n observations $(x_i, y_i) \in \mathfrak{X} \times \mathfrak{Y}$, $i = 1, \ldots, n$
- Prediction function $h(x, \theta) \in \mathbb{R}$ parameterized by $\theta \in \mathbb{R}^d$

- Advertising: $n > 10^9$
 - $\Phi(x) \in \{0, 1\}^d$, $d > 10^9$ - Navigation history + ad
- Linear predictions

$$-h(x,\theta) = \theta^{\top} \Phi(x)$$

• Kernel methods

$$-k(x,x') = \Phi(x)^{\top} \Phi(x')$$

- Data: n observations $(x_i, y_i) \in \mathfrak{X} \times \mathfrak{Y}$, $i = 1, \ldots, n$
- Prediction function $h(x, \theta) \in \mathbb{R}$ parameterized by $\theta \in \mathbb{R}^d$

 $y_1 = 1$ $y_2 = 1$ $y_3 = 1$ $y_4 = -1$ $y_5 = -1$ $y_6 = -1$

- Data: n observations $(x_i, y_i) \in \mathfrak{X} \times \mathfrak{Y}$, $i = 1, \dots, n$
- Prediction function $h(x, \theta) \in \mathbb{R}$ parameterized by $\theta \in \mathbb{R}^d$

 $y_1 = 1$ $y_2 = 1$ $y_3 = 1$ $y_4 = -1$ $y_5 = -1$ $y_6 = -1$

- Neural networks $(n, d > 10^6)$: $h(x, \theta) = \theta_m^\top \sigma(\theta_{m-1}^\top \sigma(\cdots \theta_2^\top \sigma(\theta_1^\top x)))$

- Data: n observations $(x_i, y_i) \in \mathfrak{X} \times \mathfrak{Y}$, $i = 1, \ldots, n$
- Prediction function $h(x, \theta) \in \mathbb{R}$ parameterized by $\theta \in \mathbb{R}^d$
- (regularized) empirical risk minimization:

$$\min_{\theta \in \mathbb{R}^d} \quad \frac{1}{n} \sum_{i=1}^n \quad \ell(y_i, h(x_i, \theta)) \quad + \quad \lambda \Omega(\theta)$$

data fitting term + regularizer

- Data: n observations $(x_i, y_i) \in \mathfrak{X} \times \mathfrak{Y}$, $i = 1, \ldots, n$
- Prediction function $h(x,\theta) \in \mathbb{R}$ parameterized by $\theta \in \mathbb{R}^d$
- (regularized) empirical risk minimization:

$$\min_{\theta \in \mathbb{R}^d} \quad \frac{1}{2n} \sum_{i=1}^n \left(y_i - h(x_i, \theta) \right)^2 + \lambda \Omega(\theta)$$

(least-squares regression)

- Data: n observations $(x_i, y_i) \in \mathfrak{X} \times \mathfrak{Y}$, $i = 1, \ldots, n$
- Prediction function $h(x, \theta) \in \mathbb{R}$ parameterized by $\theta \in \mathbb{R}^d$
- (regularized) empirical risk minimization:

$$\min_{\theta \in \mathbb{R}^d} \quad \frac{1}{n} \sum_{i=1}^n \log \left(1 + \exp(-y_i h(x_i, \theta)) \right) + \lambda \Omega(\theta)$$

(logistic regression)

- Data: n observations $(x_i, y_i) \in \mathfrak{X} \times \mathfrak{Y}$, $i = 1, \ldots, n$
- Prediction function $h(x, \theta) \in \mathbb{R}$ parameterized by $\theta \in \mathbb{R}^d$
- (regularized) empirical risk minimization:

$$\min_{\theta \in \mathbb{R}^d} \quad \frac{1}{n} \sum_{i=1}^n \quad \ell(y_i, h(x_i, \theta)) \quad + \quad \lambda \Omega(\theta)$$

data fitting term + regularizer

- Data: n observations $(x_i, y_i) \in \mathfrak{X} \times \mathfrak{Y}$, $i = 1, \ldots, n$
- Prediction function $h(x, \theta) \in \mathbb{R}$ parameterized by $\theta \in \mathbb{R}^d$
- (regularized) empirical risk minimization:

$$\min_{\theta \in \mathbb{R}^d} \quad \frac{1}{n} \sum_{i=1}^n \quad \ell(y_i, h(x_i, \theta)) \quad + \quad \lambda \Omega(\theta)$$

data fitting term + regularizer

• Actual goal: minimize test error $\mathbb{E}_{p(x,y)}\ell(y,h(x,\theta))$

- Data: n observations $(x_i, y_i) \in \mathfrak{X} \times \mathfrak{Y}$, $i = 1, \ldots, n$
- Prediction function $h(x, \theta) \in \mathbb{R}$ parameterized by $\theta \in \mathbb{R}^d$
- (regularized) empirical risk minimization:

$$\min_{\theta \in \mathbb{R}^d} \quad \frac{1}{n} \sum_{i=1}^n \quad \ell(y_i, h(x_i, \theta)) \quad + \quad \lambda \Omega(\theta) \qquad = \frac{1}{n} \sum_{i=1}^n f_i(\theta)$$

data fitting term + regularizer

- Actual goal: minimize test error $\mathbb{E}_{p(x,y)}\ell(y,h(x,\theta))$
- Machine learning through large-scale optimization

- Data: n observations $(x_i, y_i) \in \mathfrak{X} \times \mathfrak{Y}$, $i = 1, \ldots, n$
- Prediction function $h(x, \theta) \in \mathbb{R}$ parameterized by $\theta \in \mathbb{R}^d$
- (regularized) empirical risk minimization:

$$\min_{\theta \in \mathbb{R}^d} \quad \frac{1}{n} \sum_{i=1}^n \quad \ell(y_i, h(x_i, \theta)) \quad + \quad \lambda \Omega(\theta) \qquad = \frac{1}{n} \sum_{i=1}^n f_i(\theta)$$

data fitting term + regularizer

- Actual goal: minimize test error $\mathbb{E}_{p(x,y)}\ell(y,h(x,\theta))$
- Machine learning through large-scale optimization
 - Convex vs. non-convex optimization problems

• Minimizing
$$g(\theta) = \frac{1}{n} \sum_{i=1}^{n} f_i(\theta)$$
 with $f_i(\theta) = \ell(y_i, h(x_i, \theta)) + \lambda \Omega(\theta)$

• Minimizing
$$g(\theta) = \frac{1}{n} \sum_{i=1}^{n} f_i(\theta)$$
 with $f_i(\theta) = \ell(y_i, h(x_i, \theta)) + \lambda \Omega(\theta)$

- Condition number
 - κ = ratio between largest and smallest eigenvalues of Hessians
 - Typically proportional to $1/\lambda$ when $\Omega = \|\cdot\|^2$.

• Minimizing
$$g(\theta) = \frac{1}{n} \sum_{i=1}^{n} f_i(\theta)$$
 with $f_i(\theta) = \ell(y_i, h(x_i, \theta)) + \lambda \Omega(\theta)$

- Batch gradient descent: $\theta_t = \theta_{t-1} \gamma \nabla g(\theta_{t-1}) = \theta_{t-1} \frac{\gamma}{n} \sum_{i=1}^n \nabla f_i(\theta_{t-1})$
 - Exponential convergence rate in $O(e^{-t/\kappa})$ for convex problems
 - Can be accelerated to $O(e^{-t/\sqrt{\kappa}})$ (Nesterov, 1983)
 - Iteration complexity is linear in n, typically O(nd)

• Minimizing
$$g(\theta) = \frac{1}{n} \sum_{i=1}^{n} f_i(\theta)$$
 with $f_i(\theta) = \ell(y_i, h(x_i, \theta)) + \lambda \Omega(\theta)$

- Batch gradient descent: $\theta_t = \theta_{t-1} \gamma \nabla g(\theta_{t-1}) = \theta_{t-1} \frac{\gamma}{n} \sum_{i=1}^n \nabla f_i(\theta_{t-1})$
 - Exponential convergence rate in $O(e^{-t/\kappa})$ for convex problems
 - Can be accelerated to $O(e^{-t/\sqrt{\kappa}})$ (Nesterov, 1983)
 - Iteration complexity is linear in n, typically O(nd)
- Stochastic gradient descent: $\theta_t = \theta_{t-1} \gamma_t \nabla f_{i(t)}(\theta_{t-1})$
 - Sampling with replacement: i(t) random element of $\{1, \ldots, n\}$
 - Convergence rate in $O(\kappa/t)$
 - Iteration complexity is independent of n, typically O(d)

- Variance reduction
 - Exponential convergence with O(d) iteration cost
 - SAG (Le Roux, Schmidt, and Bach, 2012)
 - SVRG (Johnson and Zhang, 2013; Zhang et al., 2013)
 - SAGA (Defazio, Bach, and Lacoste-Julien, 2014), etc...

$$\theta_t = \theta_{t-1} - \gamma \Big[\nabla f_{i(t)}(\theta_{t-1}) \Big]$$

- Variance reduction
 - Exponential convergence with O(d) iteration cost
 - SAG (Le Roux, Schmidt, and Bach, 2012)
 - SVRG (Johnson and Zhang, 2013; Zhang et al., 2013)
 - SAGA (Defazio, Bach, and Lacoste-Julien, 2014), etc...

$$\theta_t = \theta_{t-1} - \gamma \left[\nabla f_{i(t)}(\theta_{t-1}) + \frac{1}{n} \sum_{i=1}^n z_i^{t-1} - z_{i(t)}^{t-1} \right]$$

(with z_i^t stored value at time t of gradient of the *i*-th function)

• Variance reduction

- Exponential convergence with O(d) iteration cost
- SAG (Le Roux, Schmidt, and Bach, 2012)
- SVRG (Johnson and Zhang, 2013; Zhang et al., 2013)
- SAGA (Defazio, Bach, and Lacoste-Julien, 2014), etc...
- **Running-time to reach precision** ε (with κ = condition number)

Stochastic gradient descent	$d \times$	κ	$\times \frac{1}{\varepsilon}$
Gradient descent	$d \times$	$n\kappa$	$\times \log \frac{1}{\varepsilon}$
Variance reduction	$d \times$	$(n+\kappa)$	$\times \log \frac{1}{\varepsilon}$

• Variance reduction

- Exponential convergence with O(d) iteration cost
- SAG (Le Roux, Schmidt, and Bach, 2012)
- SVRG (Johnson and Zhang, 2013; Zhang et al., 2013)
- SAGA (Defazio, Bach, and Lacoste-Julien, 2014), etc...
- **Running-time to reach precision** ε (with κ = condition number)

Stochastic gradient descent	$d \times$	κ	×	$\frac{1}{\varepsilon}$
Gradient descent	$d \times$	$n\kappa$	$\times \log$	$\frac{1}{\varepsilon}$
Variance reduction	$d \times$	$(n+\kappa)$	$\times \log$	$\frac{1}{\varepsilon}$

- Can be accelerated (e.g., Lan, 2015): $n + \kappa \Rightarrow n + \sqrt{n\kappa}$
- Matching upper and lower bounds of complexity

First-order methods are great!

- But...
 - What if the condition number is huge?

First-order methods are great!

- But...
 - What if the condition number is huge?
- Test errors: Logistic regression with Gaussian kernels
 - Left: Susy dataset ($n = 5 \times 10^6$, d = 18)
 - Right: Higgs dataset $(n = 1.1 \times 10^7, d = 28)$

- Using the Hessian of g
 - Newton method: $\theta_t = \theta_{t-1} \nabla^2 g(\theta_{t-1})^{-1} \nabla g(\theta_{t-1})$
 - Local quadratic convergence: need $O(\log \log \frac{1}{\epsilon})$ iterations

• Three classical reasons for discarding them in machine learning

- 1. Only useful for high precision, but ML only requires low precision
- 2. Computing the Newton step is too expensive
- 3. No global convergence for many ML problems

• Three classical reasons for discarding them in machine learning

- 1. Only useful for high precision, but ML only requires low precision
- 2. Computing the Newton step is too expensive
- 3. No global convergence for many ML problems

• Three solutions

- 1. Even a low-precision solution requires second-order schemes
- 2. Approximate linear system solvers
- 3. Novel globally convergent second-order method

• Three classical reasons for discarding them in machine learning

- 1. Only useful for high precision, but ML only requires low precision
- 2. Computing the Newton step is too expensive
- 3. No global convergence for many ML problems

• Three solutions

- 1. Even a low-precision solution requires second-order schemes
- 2. Approximate linear system solvers
- 3. Novel globally convergent second-order method
- Globally Convergent Newton Methods for Ill-conditioned Generalized Self-concordant Losses
 - Marteau-Ferey, Bach, and Rudi (2019a)

$$\min_{\theta \in \mathbb{R}^d} g_{\lambda}(\theta) = \frac{1}{n} \sum_{i=1}^n \ell(y_i, \theta^{\top} \Phi(x_i)) + \frac{\lambda}{2} \|\theta\|^2$$

- Regular self-concordance (Nemirovskii and Nesterov, 1994)
 - One dimension: for all $t, \, |\varphi^{(3)}(t)| \leqslant 2(\varphi^{\prime\prime}(t))^{3/2}$
 - Affine invariance
 - Few instances in machine learning
 - See Pilanci and Wainwright (2017)

$$\min_{\theta \in \mathbb{R}^d} \quad g_{\lambda}(\theta) = \frac{1}{n} \sum_{i=1}^n \ell(y_i, \theta^{\top} \Phi(x_i)) + \frac{\lambda}{2} \|\theta\|^2$$

- Regular self-concordance (Nemirovskii and Nesterov, 1994)
 - One dimension: for all $t, |\varphi^{(3)}(t)| \leqslant 2(\varphi^{\prime\prime}(t))^{3/2}$
 - Affine invariance
 - Few instances in machine learning
 - See Pilanci and Wainwright (2017)
- Generalized self-concordance (Bach, 2010, 2014)
 - One dimension: for all t, $|\varphi^{(3)}(t)| \leq C \varphi''(t)$
 - No affine invariance
 - Applies to logistic regression and beyond

• Examples

- Logistic regression: $\log(1 + \exp(-y_i \Phi(x_i)^\top \theta))$
- Softmax regression: $\log \left(\sum_{j=1}^{k} \exp(\theta_j^{\top} \Phi(x_i)) \right) \theta_{y_i}^{\top} \Phi(x_i)$
- Generalized linear models with bounded features, including conditional random fields (Sutton and McCallum, 2012)
- Robust regression: $\varphi(y_i \Phi(x_i)^\top \theta)$ with $\varphi(u) = \log(e^u + e^{-u})$

• Examples

- Logistic regression: $\log(1 + \exp(-y_i \Phi(x_i)^\top \theta))$
- Softmax regression: $\log \left(\sum_{j=1}^{k} \exp(\theta_j^{\top} \Phi(x_i)) \right) \theta_{y_i}^{\top} \Phi(x_i)$
- Generalized linear models with bounded features, including conditional random fields (Sutton and McCallum, 2012)
- Robust regression: $\varphi(y_i \Phi(x_i)^\top \theta)$ with $\varphi(u) = \log(e^u + e^{-u})$
- Statistical analysis
 - Non-asymptotic locally quadratic analysis
 - Finite dimension: Ostrovskii and Bach (2018)
 - Kernels: Marteau-Ferey, Ostrovskii, Bach, and Rudi (2019b)

Newton method for self-concordant functions

$$\min_{\theta \in \mathbb{R}^d} \quad g_{\lambda}(\theta) = \frac{1}{n} \sum_{i=1}^n \ell(y_i, \theta^{\top} \Phi(x_i)) + \frac{\lambda}{2} \|\theta\|^2$$

• Newton step: $\theta^{\text{Newton}} = \theta - \nabla^2 g_{\lambda}(\theta)^{-1} \nabla g_{\lambda}(\theta)$

Newton method for self-concordant functions

$$\min_{\theta \in \mathbb{R}^d} \quad g_{\lambda}(\theta) = \frac{1}{n} \sum_{i=1}^n \ell(y_i, \theta^{\top} \Phi(x_i)) + \frac{\lambda}{2} \|\theta\|^2$$

- Newton step: $\theta^{\text{Newton}} = \theta \nabla^2 g_{\lambda}(\theta)^{-1} \nabla g_{\lambda}(\theta)$
 - Approximation by $\hat{\theta}$ with appropriate norm:

$$\left(\theta^{\text{Newton}} - \hat{\theta}\right)^{\top} \nabla^2 g_{\lambda}(\theta) \left(\theta^{\text{Newton}} - \hat{\theta}\right) \leqslant \rho^2 \nabla g_{\lambda}(\theta)^{\top} \nabla^2 g_{\lambda}(\theta)^{-1} \nabla g_{\lambda}(\theta)$$

Newton method for self-concordant functions

$$\min_{\theta \in \mathbb{R}^d} \quad g_{\lambda}(\theta) = \frac{1}{n} \sum_{i=1}^n \ell(y_i, \theta^{\top} \Phi(x_i)) + \frac{\lambda}{2} \|\theta\|^2$$

- Newton step: $\theta^{\text{Newton}} = \theta \nabla^2 g_{\lambda}(\theta)^{-1} \nabla g_{\lambda}(\theta)$
 - Approximation by $\hat{\theta}$ with appropriate norm:

$$\left(\theta^{\text{Newton}} - \hat{\theta}\right)^{\top} \nabla^2 g_{\lambda}(\theta) \left(\theta^{\text{Newton}} - \hat{\theta}\right) \leqslant \rho^2 \nabla g_{\lambda}(\theta)^{\top} \nabla^2 g_{\lambda}(\theta)^{-1} \nabla g_{\lambda}(\theta)$$

- Local convergence: if $\rho \leqslant \frac{1}{7}$ and $\nabla g_{\lambda}(\theta_0)^{\top} \nabla^2 g_{\lambda}(\theta_0)^{-1} \nabla g_{\lambda}(\theta_0) \leqslant \frac{\lambda}{R^2}$

$$g_{\lambda}(\theta_t) - \inf_{\theta \in \mathbb{R}^d} g_{\lambda}(\theta) \leqslant 2^{-t}$$

- Linear convergence with no dependence on condition number

Globalization scheme

$$\min_{\theta \in \mathbb{R}^d} \ g_{\lambda}(\theta) = \frac{1}{n} \sum_{i=1}^n \ell(y_i, \theta^{\top} \Phi(x_i)) + \frac{\lambda}{2} \|\theta\|^2$$

- Start with large $\lambda = \lambda_0$
 - Reduce it geometrically until desired λ
 - Minimize g_{λ} approximately with approximate Newton steps

Globalization scheme

$$\min_{\theta \in \mathbb{R}^d} \quad g_{\lambda}(\theta) = \frac{1}{n} \sum_{i=1}^n \ell(y_i, \theta^{\top} \Phi(x_i)) + \frac{\lambda}{2} \|\theta\|^2$$

- Start with large $\lambda = \lambda_0$
 - Reduce it geometrically until desired λ
 - Minimize g_{λ} approximately with approximate Newton steps
- Rate of convergence
 - reach precision ε after $\Omega(\log \frac{\lambda_0}{\lambda} + \log \frac{1}{\varepsilon})$ Newton steps

Approximate Newton steps

$$\min_{\theta \in \mathbb{R}^d} \ g_{\lambda}(\theta) = \frac{1}{n} \sum_{i=1}^n \ell(y_i, \theta^{\top} \Phi(x_i)) + \frac{\lambda}{2} \|\theta\|^2$$

• Hessian:
$$\nabla^2 g_{\lambda}(\theta) = \frac{1}{n} \sum_{i=1}^n \ell'' (y_i, \theta^{\top} \Phi(x_i)) \Phi(x_i) \Phi(x_i)^{\top} + \lambda I$$

Approximate Newton steps

$$\min_{\theta \in \mathbb{R}^d} \quad g_{\lambda}(\theta) = \frac{1}{n} \sum_{i=1}^n \ell(y_i, \theta^{\top} \Phi(x_i)) + \frac{\lambda}{2} \|\theta\|^2$$

• Hessian:
$$\nabla^2 g_{\lambda}(\theta) = \frac{1}{n} \sum_{i=1}^n \ell''(y_i, \theta^{\top} \Phi(x_i)) \Phi(x_i) \Phi(x_i)^{\top} + \lambda I$$

- Efficient Newton linear system (Pilanci and Wainwright, 2017; Agarwal et al., 2017; Bollapragada et al., 2018; Roosta-Khorasani and Mahoney, 2019)
 - Hadamard transform (Boutsidis and Gittens, 2013)
 - Randomized sketching (Drineas et al., 2012)
 - Falkon: preconditioned Nyström method for kernel methods (Rudi, Carratino, and Rosasco, 2017)

Optimal predictions for kernel methods

$$\min_{\theta \in \mathbb{R}^d} \quad g_{\lambda}(\theta) = \frac{1}{n} \sum_{i=1}^n \ell(y_i, \theta^{\top} \Phi(x_i)) + \frac{\lambda}{2} \|\theta\|^2$$

- Nyström / Falkon method + globalization scheme
 - Worst-case optimal regularization parameter $\lambda=1/\sqrt{n}$
 - Optimal excess error $O(1/\sqrt{n})$.
 - O(n) space and $O(n\sqrt{n})$ time

Optimal predictions for kernel methods

$$\min_{\theta \in \mathbb{R}^d} \quad g_{\lambda}(\theta) = \frac{1}{n} \sum_{i=1}^n \ell(y_i, \theta^{\top} \Phi(x_i)) + \frac{\lambda}{2} \|\theta\|^2$$

- Nyström / Falkon method + globalization scheme
 - Worst-case optimal regularization parameter $\lambda=1/\sqrt{n}$
 - Optimal excess error $O(1/\sqrt{n})$
 - O(n) space and $O(n\sqrt{n})$ time
- Extensions to more refined convergence bounds
 - Source and capacity conditions
 - See Marteau-Ferey et al. (2019b,a)

Experiments

- Left: Susy dataset $(n = 5 \times 10^6, d = 18)$
- Right: Higgs dataset $(n = 1.1 \times 10^7, d = 28)$

Conclusions

• Second order strikes back

- 1. Even a low-precision solution requires second-order schemes
- 2. Approximate linear system solvers
- 3. Novel globally convergent second-order method

Conclusions

• Second order strikes back

- 1. Even a low-precision solution requires second-order schemes
- 2. Approximate linear system solvers
- 3. Novel globally convergent second-order method

• Extensions

- Beyond Euclidean regularization
- Beyond convex problems

References

- Naman Agarwal, Brian Bullins, and Elad Hazan. Second-order stochastic optimization for machine learning in linear time. J. Mach. Learn. Res., 18(1):4148–4187, January 2017.
- F. Bach. Self-concordant analysis for logistic regression. *Electronic Journal of Statistics*, 4:384–414, 2010. ISSN 1935-7524.
- Francis Bach. Adaptivity of averaged stochastic gradient descent to local strong convexity for logistic regression. *Journal of Machine Learning Research*, 15(1):595–627, 2014.
- Raghu Bollapragada, Richard H. Byrd, and Jorge Nocedal. Exact and inexact subsampled newton methods for optimization. *IMA Journal of Numerical Analysis*, 39(2):545–578, 2018.
- Christos Boutsidis and Alex Gittens. Improved matrix algorithms via the subsampled randomized hadamard transform. *SIAM Journal on Matrix Analysis and Applications*, 34(3):1301–1340, 2013.
- Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. SAGA: A fast incremental gradient method with support for non-strongly convex composite objectives. In *Advances in Neural Information Processing Systems*, 2014.
- Petros Drineas, Malik Magdon-Ismail, Michael W Mahoney, and David P Woodruff. Fast approximation of matrix coherence and statistical leverage. *Journal of Machine Learning Research*, 13(Dec):3475–3506, 2012.
- Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive variance reduction. In Advances in Neural Information Processing Systems, 2013.

- G. Lan. An optimal randomized incremental gradient method. Technical Report 1507.02000, arXiv, 2015.
- N. Le Roux, M. Schmidt, and F. Bach. A stochastic gradient method with an exponential convergence rate for strongly-convex optimization with finite training sets. In *Advances in Neural Information Processing Systems (NIPS)*, 2012.
- Ulysse Marteau-Ferey, Francis Bach, and Alessandro Rudi. Globally convergent newton methods for ill-conditioned generalized self-concordant losses. In *Advances in Neural Information Processing Systems*, pages 7636–7646, 2019a.
- Ulysse Marteau-Ferey, Dmitrii Ostrovskii, Francis Bach, and Alessandro Rudi. Beyond least-squares: Fast rates for regularized empirical risk minimization through self-concordance. In *Proceedings of the Conference on Computational Learning Theory*, 2019b.
- Arkadii Nemirovskii and Yurii Nesterov. Interior-point polynomial algorithms in convex programming. Society for Industrial and Applied Mathematics, 1994.
- Y. Nesterov. A method for solving a convex programming problem with rate of convergence $O(1/k^2)$. Soviet Math. Doklady, 269(3):543–547, 1983.
- Dmitrii Ostrovskii and Francis Bach. Finite-sample analysis of m-estimators using self-concordance. *arXiv preprint arXiv:1810.06838*, 2018.
- Mert Pilanci and Martin J. Wainwright. Newton sketch: A near linear-time optimization algorithm with linear-quadratic convergence. *SIAM Journal on Optimization*, 27(1):205–245, 2017.
- Farbod Roosta-Khorasani and Michael W. Mahoney. Sub-sampled Newton methods. *Math. Program.*, 174(1-2):293–326, 2019.

- Alessandro Rudi, Luigi Carratino, and Lorenzo Rosasco. Falkon: An optimal large scale kernel method. In *Advances in Neural Information Processing Systems*, pages 3888–3898, 2017.
- Charles Sutton and Andrew McCallum. An introduction to conditional random fields. *Foundations and Trends in Machine Learning*, 4(4):267–373, 2012.
- L. Zhang, M. Mahdavi, and R. Jin. Linear convergence with condition number independent access of full gradients. In *Advances in Neural Information Processing Systems*, 2013.