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– Exponential convergence rate in O(e−t/κ) for convex problems

– Can be accelerated to O(e−t/
√
κ) (Nesterov, 1983)

– Iteration complexity is linear in n, typically O(nd)

• Stochastic gradient descent: θt = θt−1 − γt∇fi(t)(θt−1)

– Sampling with replacement: i(t) random element of {1, . . . , n}
– Convergence rate in O(κ/t)

– Iteration complexity is independent of n, typically O(d)
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• But...

– What if the condition number is huge?

• Test errors: Logistic regression with Gaussian kernels

– Left: Susy dataset (n = 5× 106, d = 18)

– Right: Higgs dataset (n = 1.1× 107, d = 28)
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• Using the Hessian of g

– Newton method: θt = θt−1 −∇2g(θt−1)
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– Local quadratic convergence: need O(log log 1
ε) iterations
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• Three solutions

1. Even a low-precision solution requires second-order schemes

2. Approximate linear system solvers

3. Novel globally convergent second-order method

• Globally Convergent Newton Methods for Ill-conditioned

Generalized Self-concordant Losses

– Marteau-Ferey, Bach, and Rudi (2019a)
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• Generalized self-concordance (Bach, 2010, 2014)

– One dimension: for all t, |ϕ(3)(t)| 6 Cϕ′′(t)

– No affine invariance

– Applies to logistic regression and beyond
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conditional random fields (Sutton and McCallum, 2012)

– Robust regression: ϕ(yi − Φ(xi)
⊤θ) with ϕ(u) = log(eu + e−u)

• Statistical analysis

– Non-asymptotic locally quadratic analysis

– Finite dimension: Ostrovskii and Bach (2018)

– Kernels: Marteau-Ferey, Ostrovskii, Bach, and Rudi (2019b)
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• Rate of convergence
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λ + log 1
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• Efficient Newton linear system (Pilanci and Wainwright, 2017;

Agarwal et al., 2017; Bollapragada et al., 2018; Roosta-Khorasani

and Mahoney, 2019)

– Hadamard transform (Boutsidis and Gittens, 2013)

– Randomized sketching (Drineas et al., 2012)

– Falkon: preconditioned Nyström method for kernel methods (Rudi,

Carratino, and Rosasco, 2017)
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– Worst-case optimal regularization parameter λ = 1/
√
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– Optimal excess error O(1/
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– O(n) space and O(n
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• Extensions to more refined convergence bounds

– Source and capacity conditions

– See Marteau-Ferey et al. (2019b,a)



Experiments

• Left: Susy dataset (n = 5× 106, d = 18)

• Right: Higgs dataset (n = 1.1× 107, d = 28)
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• Extensions

– Beyond Euclidean regularization

– Beyond convex problems
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